SlideShare a Scribd company logo
STERILIZATION OF WATER USING BLEACHING
POWDER
A CHEMISTRY INVESTIGATORY PROGECT
ANSHUL KUMAR PANDEY XII B
PTHIS PROJECT LOOKS AT THE TECHNIQUE CALLED STERILIZATION OF
WATER USING BLEACHING POWDER WHICH IS USED TO PURIFY WATER
AND MAKES IT FIT FOR
DRINKING.]
INDEX
1. Certificate of Authenticity
2. Acknowledgement
3. Introduction
-Need of Water
-Purification of Water
-Need for a stable purification technique
4. Theory
-History of Water purification
-Bleaching powder and its preparation
-Use of Bleaching powder in Sterilization of water
5. Experiment
-Aim
-Pre-Requisite Knowledge
-Requirements
-Procedure
1. Result
2. Bibliography
CERTIFICATE OF AUTHENTICITY
This is to certify that Anshul Kumar Pandey, a student of class XII has successfully
completed the research project on the topic “Sterilization of Water by using Bleaching
Powder” under the guidance of Mrs. Mohini Belani (Subject Teacher).
This project is absolutely genuine and does not indulge in plagiarism of any kind.
The references taken in making this project have been declared at the end of this report.
Signature ( Subject Teacher)
Signature ( Examiner)
ACKNOWLEDGEMENT
I feel proud to present my Investigatory project in Chemistry on the topic “Sterilization of
Water using Bleaching powder” which aims at using Bleaching powder as a disinfectant and
purifier to make water fit for drinking.
This project wouldn’t have been feasible without the proper and rigorous guidance of my
Chemistry teacher Mrs. Mohini Belani who guided me throughout this project in every
possible way. An investigatory project involves various difficult lab experiments which have
to be carried out by the student to obtain the observations and conclude the report on a
meaningful note. These experiments are very critical and in the case of failure, may result in
disastrous consequences. Thereby, I would like to thank both Mrs.Belani and Lab
Asst.Mr.Rajkumar for guiding me on a step by step basis and ensuring that I completed all
my experiments with ease.
Rigorous hard work has been put in this project to ensure that it proves to be the best. I hope
that this project will prove to be a breeding ground for the next generation of students and
will guide them in every possible way.
Needof water
Water is an important and essential ingredient in our quest for survival on this planet. It is
very essential for carrying out various metabolic processes in our body and also to carry out
Hemoglobin throughout the body.
A daily average of 1 gallon per man is sufficient for drinking and cooking purposes. A horse,
bullock, or mule drinks about 11 gallons at a time. standing up, an average allowance of 5
gallons should be given for a man, and 10 gallons for a horse or a camel. An elephant drinks
25 gallons, each mule or ox drinks 6 to 8 gallons, each sheep or pig 6 to 8 pints. These are
minimum quantities.
One cubic foot of water = 6 gallons (a gallon = 10 lbs.).
In order to fulfill such a huge demand of water, it needs to be purified and supplied in a
orderly and systematic way.
But with the increasing world population, the demand for drinking water has also increased
dramatically and therefore it is very essential to identify resources of water from which we
can use water for drinking purposes. Many available resources of water do not have it in
drinkable form. Either the water contains excess of Calcium or Magnesium salts or any other
organic impurity or it simply contains foreign particles which make it unfit and unsafe for
Drinking.
Purification of Water
There are many methods for the purification of water. Some of them are
1. Boiling
2. Filtration
3. Bleaching powder treatment
4. SODIS (Solar Water Disinfection) And the list goes on….
Boiling is perhaps the most commonly used water purification technique in use today. While
in normal households it is an efficient technique; it cannot be used for industrial and large
scale purposes. It is because in normal households, the water to be purified is very small in
quantity and hence the water loss due to evaporation is almost negligible. But in Industrial or
large scale purification of water the water loss due to evaporation will be quite high and the
amount of purified water obtained will be very less.
Filtration is also used for removing foreign particles from water. One major drawback of this
purification process is that it cannot be used for removing foreign chemicals and impurities
that are miscible with water.
SODIS or Solar Water Disinfection is recommended by the United Nations for
disinfection of water using soft drink bottles, sunlight, and a black surface– at least in
hot nations with regularly intense sunlight.
Water-filled transparent bottles placed in a horizontal position atop a flat surface in strong
sunlight for around five hours will kill microbes in the water. The process is made even more
safe and effective if the bottom half of the bottle or the surface it’s lying on is blackened,
and/or the flat surface is made of plastic or metal. It’s the combination of heat and ultraviolet
light which kills the organisms.
The major drawback of this purification technique is that it cannot be used in countries with
cold weather. Also, the time consumed for Purification process is more and it also needs a
‘blackened’ surface, much like solar cookers.
Needfor a stable purification technique
Therefore we need a purification technique which can be used anytime and anywhere, does
not require the use of any third party content and which is also economically feasible on both
normal scale and large scale.
Hence we look at the method of purification of water using the technique of treatment by
bleaching powder commonly known as “Chlorination”.
THEORY
History of water purification in different parts of the world.
In 1854 it was discovered that a cholera epidemic spread through water. The outbreak seemed
less severe in areas where sand filters were installed. British scientist John Snow found that
the direct cause of the outbreak was water pump contamination by sewage water. He applied
chlorine to purify the water, and this paved the way for water disinfection. Since the water in
the pump had tasted and smelled normal, the conclusion was finally drawn that good taste
and smell alone do not guarantee safe drinking water. This discovery led to governments
starting to install municipal water filters (sand filters and chlorination), and hence the first
government regulation of public water.
In the 1890s America started building large sand filters to protect public health. These turned
out to be a success. Instead of slow sand filtration, rapid sand filtration was now applied.
Filter capacity was improved by cleaning it with powerful jet steam. Subsequently, Dr. Fuller
found that rapid sand filtration worked much better when it was preceded by coagulation and
sedimentation techniques. Meanwhile, such waterborne illnesses as cholera and typhoid
became less and less common as water chlorination won terrain throughout the world.
But the victory obtained by the invention of chlorination did not last long. After some time
the negative effects of this element were discovered. Chlorine vaporizes much faster than
water, and it was linked to the aggravation and cause of respiratory disease. Water experts
started looking for alternative water disinfectants. In 1902 calcium hypo chlorite and ferric
chloride were mixed in a drinking water supply in Belgium, resulting in both coagulation and
disinfection.
The treatment and distribution of water for safe use is one of the greatest achievements of the
twentieth century. Before cities began routinely treating drinking water with chlorine (starting
with Chicago and Jersey City in US in 1908), cholera, typhoid fever, dysentery and hepatitis
A killed thousands of U.S. residents annually. Drinking water chlorination and filtration have
helped to virtually eliminate these diseases in the U.S. and other developed countries.
Meeting the goal of clean, safe drinking water requires a multi-barrier approach that includes:
protecting source water from contamination, appropriately treating raw water, and ensuring
safe distribution of treated water to consumers’ taps. During the treatment process, chlorine is
added to drinking water as elemental chlorine (chlorine gas),
sodium hypochlorite solution or dry calcium hypochlorite. When applied to water, each
of these forms “free chlorine,” which destroys pathogenic (disease-causing) organisms.
Almost all systems that disinfect their water use some type of chlorine-based process,
either alone or in combination with other disinfectants. In addition to
controlling disease-causing organisms, chlorination offers a number of benefits
including:
 Reduces many disagreeable tastes and odors;
 Eliminates slime bacteria, molds and algae that commonly grow in water supply
reservoirs, on the walls of water mains and in storage tanks;
 Removes chemical compounds that have unpleasant tastes and hinder disinfection;
and
 Helps remove iron and manganese from raw water.
As importantly, only chlorine-based chemicals provide “residual disinfectant” levels that
prevent microbial re-growth and help protect treated water throughout the distribution
system.
For more than a century, the safety of drinking water supplies has been greatly improved by
the addition of bleaching powder. Disinfecting our drinking water ensures it is free of the
microorganisms that can cause serious and life-threatening diseases, such as cholera and
typhoid fever. To this day, bleaching powder remains the most commonly used drinking
water disinfectant, and the disinfectant for which we have the
most scientific information. Bleaching powder is added as part of the drinking water
treatment process. However, bleaching powder also reacts with the organic matter, naturally
present in water, such as decaying leaves. This chemical reaction forms a group of chemicals
known as disinfection by-products. Current scientific data shows that the benefits of
bleaching our drinking water (less disease) are much greater than any health risks from
THMs and other by-products. Although other disinfectants are available, bleaching powder
remains the choice of water treatment experts. When used with modern water filtration
methods, chlorine is effective against virtually all microorganisms. Bleaching powder is easy
to apply and small amounts of the chemical remain in the water as it travels in the distribution
system from the treatment plant to the consumer’s tap, this level of effectiveness ensures that
microorganisms cannot recontaminate the water after it leaves the treatment.
But what is bleaching powder and how is it prepared?
Bleaching powder or Calcium hypochlorite is a chemical compound with formula Ca(ClO) 2.
It is widely used for water treatment and as a bleaching agent bleaching powder). This
chemical is considered to be relatively stable and has greater available chlorine than sodium
hypochlorite (liquid bleach).
It is prepared by either calcium process or sodium process. Calcium Process
2 Ca(OH)2 + 2 Cl2 Ca(ClO)2 + CaCl2 + 2 H2O Sodium Process
2 Ca(OH)2 + 3 Cl2 + 2 NaOH Ca(ClO)2 + CaCl2 + 2 H2O + 2 NaCl
But how can this chemical be used to sterilize water?
This chemical can be used for sterilizing water by Using 5 drops of bleach per each half
gallon of water to be purified, and allowing it to sit undisturbed for half an hour to make it
safe for drinking. Letting it sit several hours more will help reduce the chlorine taste, as the
chlorine will slowly evaporate out. A different reference advises when using household
bleach for purification; add a single drop of bleach per quart of water which is visibly clear,
or three drops per quart of water where the water is NOT visibly clear. Then allow the water
to sit undisturbed for half an hour.
What are the actual processes involved in disinfecting and purifying water?
The combination of following processes is used for municipal drinking water treatment
worldwide:
1. Pre-chlorination – for algae control and arresting any biological growth
2. Aeration – along with pre-chlorination for removal of dissolved iron and manganese
3. Coagulation – for flocculation
4. Coagulant aids also known as polyelectrolyte’s – to improve coagulation and for
thicker floc formation
5. Sedimentation – for solids separation, that is, removal of suspended solids trapped in
the floc
6. Filtration – for removal of carried over floc
7. Disinfection – for killing bacteria
Out of these processes, the role of Bleaching powder is only in the last step i.e. for
Disinfection of water.
EXPERIMENT
Aim: To Determine the dosage of bleaching powder required for sterilization or
disinfection of different samples of water.
Requirements: Burette, titration flask, 100ml graduated cylinder, 250ml measuring flask,
weight box, glazed tile, glass wool.
Bleaching Powder, Glass wool, 0.1 N Na2S2O3 solution, 10% KI solution, different samples
of water, starch solution.
Pre-Requisite Knowledge:
1. A known mass of the given sample of bleaching powder is dissolved in water to
prepare a solution of known concentration. This solution contains dissolved chlorine,
liberated by the action of bleaching powder with water.
CaOCl2+H20 I >> Ca(OH)2+Cl2
2. The amount of Chlorine present in the above solution is determined by treating a
known volume of the above solution with excess of 10% potassium iodide solution,
when equivalent amount of Iodine is liberated. The Iodine, thus liberated is then
estimated by titrating it against a standard solution of Sodium thiosulphate, using
starch solution as indicator.
Cl2+2KI i > 2KCl+I2
I2+2Na2S2O3 i > Na2S4O6+2NaI
1. A known Volume of one of the given samples of water is treated with a known
volume of bleaching powder solution. The amount of residual chlorine is determined
by adding excess potassium iodide solution and then titrating against standard sodium
thiosulphate solution.
2. From the readings in 2 and 3, the amount of chlorine and hence bleaching powder
required for the disinfection of a given volume of the given sample of water can be
calculated.
Procedure:
1. Preparation of bleaching powder solution. Weigh accurately 2.5g of the given sample
of bleaching powder and transfer it to a 250ml conical flask. Add about 100-150ml of
distilled water. Stopper the flask and shake it vigorously. The suspension thus
obtained is filtered through glass wool and the filtrate is diluted with water (in a
measuring flask) to make the volume 250ml. The solution obtained is 1% bleaching
powder solution.
2. Take 20ml of bleaching powder solution in a stoppered conical flask and add it to
20ml of 10% KI solution. Stopper the flask and shake it vigorously. Titrate this
solution against 0.1N Na2S2O3 solution taken in the burette. When the solution in the
conical flask becomes light yellow in color, add about 2ml starch solution. The
solution now becomes blue in color. Continue titrating till the blue color just
disappears. Repeat the titration to get a set of three concordant readings.
3. Take 100ml of the water sample in a 250ml stoppered conical flask and add it to 10ml
of bleching powder solution. Then add 20ml of KI solution and stopper the flask.
Shake vigorously and titrate against 0.1N Na2S2O3 solution using starch solution as
indicator as described in step 2.
4. Repeat the step 3 with other samples of water and record the observations.
RESULT
Amount of the given sample of bleaching powder required to disinfect one litre of water
Sample I =……….. g
Sample II=……….. g
Sample III=……….. g
BIBLIOGRAPHY
1.The Medical front-”Water Supply” http://www.vlib.us/medical/sancamp/water.htm
2. “Chemistry Projects” http://www.icbse.com
3.How to live on Very,Very Little-”Clean drinking water: How to develop low cost sources
of drinking water just about anywhere”
http://www.jmooneyham.com/watp.html
4.Calcium Hypochloride http://en.wikipedia.org/wiki/Bleaching_powder
5.Water Treatment http://en.wikipedia.org/wiki/Water_treatment
6.Bleach
http://en.wikipedia.org/wiki/Bleach 7.Drinking Water Treatment:Continuous Chlorination
http://www.ianrpubs.unl.edu/epublic/pages/publicationD.jsp?publicationId=358
8.Chlorination of Drinking Water http://www.water-
research.net/watertreatment/chlorination.htm
9.Chlorination Of Drinking Water (2) www.edstrom.com/doclib/mi4174.pdf
10.Wagenet, L, K. Mancl, and M. Sailus, 1995. “Home Water Treatment,”
Northeast Regional Agricultural Engineering Service, Cooperative Extension, Ithaca, N.Y.
11.”Treatment Systems for Household Water Supplies: Chlorination,” North Dakota State
University Extension Service
12.”Water Treatment Notes: Chlorination of Drinking Water,” Cornell Cooperative
Extension, New York State College of Human Ecology,USA
13.”Drinking Water Standards,” www.epa.gov/safewater/mcl.html
14.”Understanding the New Consumer Confidence Report,”
www.awwa.org/Advocacy/bluethumb98/consumer.cfm
15.”Testing for Drinking Water Quality,” NebGuide G89-907 Cooperative Extension,
Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln,USA
16.DISINFECTING YOUR WELL WATER: SHOCK CHLORINATION
http://www.fcs.uga.edu/pubs/PDF/HACE-858-4.pdf

More Related Content

What's hot

Water Quality In Mumbai : Chlorinated Compounds In Potable Water
Water Quality In Mumbai : Chlorinated Compounds In Potable WaterWater Quality In Mumbai : Chlorinated Compounds In Potable Water
Water Quality In Mumbai : Chlorinated Compounds In Potable WaterSourabh Kulkarni
 
treatment of water for drinking purpose
treatment  of water for drinking purposetreatment  of water for drinking purpose
treatment of water for drinking purpose
subhananthini jeyamurugan
 
Water purification and methods
Water purification and methodsWater purification and methods
Water purification and methods
Mir Zafarullah
 
Purification of water
Purification of waterPurification of water
Purification of water
Hrushyang Adloori
 
Water technology
Water technologyWater technology
Water technology
Dr. Tanuja Nautiyal
 
Water purification methods
Water purification methodsWater purification methods
Water purification methods
AMARESH JHA
 
WATER PURIFICATION
WATER PURIFICATIONWATER PURIFICATION
WATER PURIFICATION
Suraj Dhara
 
AquaH2O Water filtration - water purification
AquaH2O Water filtration - water purificationAquaH2O Water filtration - water purification
AquaH2O Water filtration - water purification
Alg Colombo
 
Water purification
Water purificationWater purification
Water purification
Beena Negi
 
Water purification methods
Water purification methodsWater purification methods
Water purification methods
Ihsan Wassan
 
Why do we need water purification?
Why do we need water purification?Why do we need water purification?
Why do we need water purification?
Indian Ion Exchange
 
Modern potable water disinfection
Modern potable water disinfectionModern potable water disinfection
Modern potable water disinfection
Tero Luukkonen
 
potable water sources and methods of purification at domestic level
potable water   sources and methods of purification at domestic levelpotable water   sources and methods of purification at domestic level
potable water sources and methods of purification at domestic level
Dr. Manoj kumar
 
Purification of water
Purification of waterPurification of water
Purification of water
beyblader8790
 
Env
EnvEnv
Water purification
Water purificationWater purification
Water purification
amangupta919
 
Drinking water chlorination
Drinking  water chlorinationDrinking  water chlorination
Drinking water chlorination
Microbiology
 
Water purification on small scale in english
Water purification on small scale in englishWater purification on small scale in english
Water purification on small scale in english
MY STUDENT SUPPORT SYSTEM .
 
Water purification plant...
Water purification plant...Water purification plant...
Water purification plant...Mubashir Ayyub
 

What's hot (20)

Water Quality In Mumbai : Chlorinated Compounds In Potable Water
Water Quality In Mumbai : Chlorinated Compounds In Potable WaterWater Quality In Mumbai : Chlorinated Compounds In Potable Water
Water Quality In Mumbai : Chlorinated Compounds In Potable Water
 
treatment of water for drinking purpose
treatment  of water for drinking purposetreatment  of water for drinking purpose
treatment of water for drinking purpose
 
Water purification and methods
Water purification and methodsWater purification and methods
Water purification and methods
 
Purification of water
Purification of waterPurification of water
Purification of water
 
Water technology
Water technologyWater technology
Water technology
 
Disinfection
DisinfectionDisinfection
Disinfection
 
Water purification methods
Water purification methodsWater purification methods
Water purification methods
 
WATER PURIFICATION
WATER PURIFICATIONWATER PURIFICATION
WATER PURIFICATION
 
AquaH2O Water filtration - water purification
AquaH2O Water filtration - water purificationAquaH2O Water filtration - water purification
AquaH2O Water filtration - water purification
 
Water purification
Water purificationWater purification
Water purification
 
Water purification methods
Water purification methodsWater purification methods
Water purification methods
 
Why do we need water purification?
Why do we need water purification?Why do we need water purification?
Why do we need water purification?
 
Modern potable water disinfection
Modern potable water disinfectionModern potable water disinfection
Modern potable water disinfection
 
potable water sources and methods of purification at domestic level
potable water   sources and methods of purification at domestic levelpotable water   sources and methods of purification at domestic level
potable water sources and methods of purification at domestic level
 
Purification of water
Purification of waterPurification of water
Purification of water
 
Env
EnvEnv
Env
 
Water purification
Water purificationWater purification
Water purification
 
Drinking water chlorination
Drinking  water chlorinationDrinking  water chlorination
Drinking water chlorination
 
Water purification on small scale in english
Water purification on small scale in englishWater purification on small scale in english
Water purification on small scale in english
 
Water purification plant...
Water purification plant...Water purification plant...
Water purification plant...
 

Similar to Blchng (1)

PM SHREE SCHOOL chemistry investigatory project.pptx
PM SHREE SCHOOL chemistry investigatory project.pptxPM SHREE SCHOOL chemistry investigatory project.pptx
PM SHREE SCHOOL chemistry investigatory project.pptx
sanrockybhai569
 
Water purification methods
Water purification methodsWater purification methods
Water purification methods
arnav1230
 
STERILIZATION OF WATER USING BLEACHING POWDER PPTX..pptx
STERILIZATION OF WATER USING BLEACHING POWDER PPTX..pptxSTERILIZATION OF WATER USING BLEACHING POWDER PPTX..pptx
STERILIZATION OF WATER USING BLEACHING POWDER PPTX..pptx
DivyamMittal11
 
CHEMISTRY PROJECT JOYDEEP ROY CLASS XII SCI III.pdf
CHEMISTRY PROJECT JOYDEEP ROY CLASS XII SCI III.pdfCHEMISTRY PROJECT JOYDEEP ROY CLASS XII SCI III.pdf
CHEMISTRY PROJECT JOYDEEP ROY CLASS XII SCI III.pdf
joydeepislive
 
To study in detail about water purification techniques
To study in detail about water purification techniquesTo study in detail about water purification techniques
To study in detail about water purification techniques
Sumit Tiwari
 
1 paddel operated water filter
1 paddel operated water filter1 paddel operated water filter
1 paddel operated water filter
Nikhil Gawande Patil
 
IS-WATER PURF.pptx
IS-WATER PURF.pptxIS-WATER PURF.pptx
IS-WATER PURF.pptx
PrakartiLulla2
 
Water borne diseases
Water borne diseasesWater borne diseases
Water borne diseases
iqra ejaz
 
water borne diseases
water borne diseaseswater borne diseases
water borne diseases
iqra ejaz
 
Presentation
PresentationPresentation
Presentation
Felix Vong
 
Water Treatment
Water TreatmentWater Treatment
Water Treatmentmaluris
 
Evolution of Drinking Water Quality and its Filtration Process in India.pptx
Evolution of Drinking Water Quality and its Filtration Process in India.pptxEvolution of Drinking Water Quality and its Filtration Process in India.pptx
Evolution of Drinking Water Quality and its Filtration Process in India.pptx
kitz filters
 
Water treatment plant
Water treatment plantWater treatment plant
Water treatment plantSyeda Fatima
 
JCC Water Quality Parameters and Chlorination Procedure Handout
JCC Water Quality Parameters and Chlorination Procedure HandoutJCC Water Quality Parameters and Chlorination Procedure Handout
JCC Water Quality Parameters and Chlorination Procedure HandoutBinaisa Godfrey
 
M.SC SEM2.ADITI BAJPAI.PAPER3water purification system.Z_22_40.docx.pptx
M.SC SEM2.ADITI BAJPAI.PAPER3water purification system.Z_22_40.docx.pptxM.SC SEM2.ADITI BAJPAI.PAPER3water purification system.Z_22_40.docx.pptx
M.SC SEM2.ADITI BAJPAI.PAPER3water purification system.Z_22_40.docx.pptx
Aditi Bajpai
 
water.born disease and environmental health
water.born disease and environmental healthwater.born disease and environmental health
water.born disease and environmental health
imjanaa42
 
water treatment.pptx
water treatment.pptxwater treatment.pptx
water treatment.pptx
ArnettsWaterSystems
 
Utility model-of-a water purifier
Utility model-of-a water purifierUtility model-of-a water purifier
Utility model-of-a water purifier
Kaye Estacio
 
Water Quality and Contamina on 22 Usable wate.docx
Water Quality and Contamina on 22  Usable wate.docxWater Quality and Contamina on 22  Usable wate.docx
Water Quality and Contamina on 22 Usable wate.docx
celenarouzie
 
Microbiology of domestic and sewage water
Microbiology of domestic and sewage waterMicrobiology of domestic and sewage water
Microbiology of domestic and sewage water
Iram Qaiser
 

Similar to Blchng (1) (20)

PM SHREE SCHOOL chemistry investigatory project.pptx
PM SHREE SCHOOL chemistry investigatory project.pptxPM SHREE SCHOOL chemistry investigatory project.pptx
PM SHREE SCHOOL chemistry investigatory project.pptx
 
Water purification methods
Water purification methodsWater purification methods
Water purification methods
 
STERILIZATION OF WATER USING BLEACHING POWDER PPTX..pptx
STERILIZATION OF WATER USING BLEACHING POWDER PPTX..pptxSTERILIZATION OF WATER USING BLEACHING POWDER PPTX..pptx
STERILIZATION OF WATER USING BLEACHING POWDER PPTX..pptx
 
CHEMISTRY PROJECT JOYDEEP ROY CLASS XII SCI III.pdf
CHEMISTRY PROJECT JOYDEEP ROY CLASS XII SCI III.pdfCHEMISTRY PROJECT JOYDEEP ROY CLASS XII SCI III.pdf
CHEMISTRY PROJECT JOYDEEP ROY CLASS XII SCI III.pdf
 
To study in detail about water purification techniques
To study in detail about water purification techniquesTo study in detail about water purification techniques
To study in detail about water purification techniques
 
1 paddel operated water filter
1 paddel operated water filter1 paddel operated water filter
1 paddel operated water filter
 
IS-WATER PURF.pptx
IS-WATER PURF.pptxIS-WATER PURF.pptx
IS-WATER PURF.pptx
 
Water borne diseases
Water borne diseasesWater borne diseases
Water borne diseases
 
water borne diseases
water borne diseaseswater borne diseases
water borne diseases
 
Presentation
PresentationPresentation
Presentation
 
Water Treatment
Water TreatmentWater Treatment
Water Treatment
 
Evolution of Drinking Water Quality and its Filtration Process in India.pptx
Evolution of Drinking Water Quality and its Filtration Process in India.pptxEvolution of Drinking Water Quality and its Filtration Process in India.pptx
Evolution of Drinking Water Quality and its Filtration Process in India.pptx
 
Water treatment plant
Water treatment plantWater treatment plant
Water treatment plant
 
JCC Water Quality Parameters and Chlorination Procedure Handout
JCC Water Quality Parameters and Chlorination Procedure HandoutJCC Water Quality Parameters and Chlorination Procedure Handout
JCC Water Quality Parameters and Chlorination Procedure Handout
 
M.SC SEM2.ADITI BAJPAI.PAPER3water purification system.Z_22_40.docx.pptx
M.SC SEM2.ADITI BAJPAI.PAPER3water purification system.Z_22_40.docx.pptxM.SC SEM2.ADITI BAJPAI.PAPER3water purification system.Z_22_40.docx.pptx
M.SC SEM2.ADITI BAJPAI.PAPER3water purification system.Z_22_40.docx.pptx
 
water.born disease and environmental health
water.born disease and environmental healthwater.born disease and environmental health
water.born disease and environmental health
 
water treatment.pptx
water treatment.pptxwater treatment.pptx
water treatment.pptx
 
Utility model-of-a water purifier
Utility model-of-a water purifierUtility model-of-a water purifier
Utility model-of-a water purifier
 
Water Quality and Contamina on 22 Usable wate.docx
Water Quality and Contamina on 22  Usable wate.docxWater Quality and Contamina on 22  Usable wate.docx
Water Quality and Contamina on 22 Usable wate.docx
 
Microbiology of domestic and sewage water
Microbiology of domestic and sewage waterMicrobiology of domestic and sewage water
Microbiology of domestic and sewage water
 

Recently uploaded

Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
GeoBlogs
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdf
Vivekanand Anglo Vedic Academy
 
ESC Beyond Borders _From EU to You_ InfoPack general.pdf
ESC Beyond Borders _From EU to You_ InfoPack general.pdfESC Beyond Borders _From EU to You_ InfoPack general.pdf
ESC Beyond Borders _From EU to You_ InfoPack general.pdf
Fundacja Rozwoju Społeczeństwa Przedsiębiorczego
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
joachimlavalley1
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
PedroFerreira53928
 
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
AzmatAli747758
 
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
bennyroshan06
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
Celine George
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
EduSkills OECD
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
Col Mukteshwar Prasad
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
PedroFerreira53928
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
Vikramjit Singh
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
RaedMohamed3
 

Recently uploaded (20)

Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdf
 
ESC Beyond Borders _From EU to You_ InfoPack general.pdf
ESC Beyond Borders _From EU to You_ InfoPack general.pdfESC Beyond Borders _From EU to You_ InfoPack general.pdf
ESC Beyond Borders _From EU to You_ InfoPack general.pdf
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
 
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
 
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
 

Blchng (1)

  • 1. STERILIZATION OF WATER USING BLEACHING POWDER A CHEMISTRY INVESTIGATORY PROGECT ANSHUL KUMAR PANDEY XII B PTHIS PROJECT LOOKS AT THE TECHNIQUE CALLED STERILIZATION OF WATER USING BLEACHING POWDER WHICH IS USED TO PURIFY WATER AND MAKES IT FIT FOR DRINKING.] INDEX 1. Certificate of Authenticity 2. Acknowledgement 3. Introduction -Need of Water -Purification of Water -Need for a stable purification technique 4. Theory -History of Water purification -Bleaching powder and its preparation -Use of Bleaching powder in Sterilization of water 5. Experiment -Aim -Pre-Requisite Knowledge -Requirements -Procedure 1. Result 2. Bibliography CERTIFICATE OF AUTHENTICITY
  • 2. This is to certify that Anshul Kumar Pandey, a student of class XII has successfully completed the research project on the topic “Sterilization of Water by using Bleaching Powder” under the guidance of Mrs. Mohini Belani (Subject Teacher). This project is absolutely genuine and does not indulge in plagiarism of any kind. The references taken in making this project have been declared at the end of this report. Signature ( Subject Teacher) Signature ( Examiner) ACKNOWLEDGEMENT I feel proud to present my Investigatory project in Chemistry on the topic “Sterilization of Water using Bleaching powder” which aims at using Bleaching powder as a disinfectant and purifier to make water fit for drinking. This project wouldn’t have been feasible without the proper and rigorous guidance of my Chemistry teacher Mrs. Mohini Belani who guided me throughout this project in every possible way. An investigatory project involves various difficult lab experiments which have to be carried out by the student to obtain the observations and conclude the report on a meaningful note. These experiments are very critical and in the case of failure, may result in disastrous consequences. Thereby, I would like to thank both Mrs.Belani and Lab Asst.Mr.Rajkumar for guiding me on a step by step basis and ensuring that I completed all my experiments with ease. Rigorous hard work has been put in this project to ensure that it proves to be the best. I hope that this project will prove to be a breeding ground for the next generation of students and will guide them in every possible way. Needof water Water is an important and essential ingredient in our quest for survival on this planet. It is very essential for carrying out various metabolic processes in our body and also to carry out Hemoglobin throughout the body. A daily average of 1 gallon per man is sufficient for drinking and cooking purposes. A horse, bullock, or mule drinks about 11 gallons at a time. standing up, an average allowance of 5 gallons should be given for a man, and 10 gallons for a horse or a camel. An elephant drinks 25 gallons, each mule or ox drinks 6 to 8 gallons, each sheep or pig 6 to 8 pints. These are minimum quantities. One cubic foot of water = 6 gallons (a gallon = 10 lbs.). In order to fulfill such a huge demand of water, it needs to be purified and supplied in a orderly and systematic way. But with the increasing world population, the demand for drinking water has also increased dramatically and therefore it is very essential to identify resources of water from which we can use water for drinking purposes. Many available resources of water do not have it in
  • 3. drinkable form. Either the water contains excess of Calcium or Magnesium salts or any other organic impurity or it simply contains foreign particles which make it unfit and unsafe for Drinking. Purification of Water There are many methods for the purification of water. Some of them are 1. Boiling 2. Filtration 3. Bleaching powder treatment 4. SODIS (Solar Water Disinfection) And the list goes on…. Boiling is perhaps the most commonly used water purification technique in use today. While in normal households it is an efficient technique; it cannot be used for industrial and large scale purposes. It is because in normal households, the water to be purified is very small in quantity and hence the water loss due to evaporation is almost negligible. But in Industrial or large scale purification of water the water loss due to evaporation will be quite high and the amount of purified water obtained will be very less. Filtration is also used for removing foreign particles from water. One major drawback of this purification process is that it cannot be used for removing foreign chemicals and impurities that are miscible with water. SODIS or Solar Water Disinfection is recommended by the United Nations for disinfection of water using soft drink bottles, sunlight, and a black surface– at least in hot nations with regularly intense sunlight. Water-filled transparent bottles placed in a horizontal position atop a flat surface in strong sunlight for around five hours will kill microbes in the water. The process is made even more safe and effective if the bottom half of the bottle or the surface it’s lying on is blackened, and/or the flat surface is made of plastic or metal. It’s the combination of heat and ultraviolet light which kills the organisms. The major drawback of this purification technique is that it cannot be used in countries with cold weather. Also, the time consumed for Purification process is more and it also needs a ‘blackened’ surface, much like solar cookers. Needfor a stable purification technique Therefore we need a purification technique which can be used anytime and anywhere, does not require the use of any third party content and which is also economically feasible on both normal scale and large scale. Hence we look at the method of purification of water using the technique of treatment by bleaching powder commonly known as “Chlorination”. THEORY History of water purification in different parts of the world.
  • 4. In 1854 it was discovered that a cholera epidemic spread through water. The outbreak seemed less severe in areas where sand filters were installed. British scientist John Snow found that the direct cause of the outbreak was water pump contamination by sewage water. He applied chlorine to purify the water, and this paved the way for water disinfection. Since the water in the pump had tasted and smelled normal, the conclusion was finally drawn that good taste and smell alone do not guarantee safe drinking water. This discovery led to governments starting to install municipal water filters (sand filters and chlorination), and hence the first government regulation of public water. In the 1890s America started building large sand filters to protect public health. These turned out to be a success. Instead of slow sand filtration, rapid sand filtration was now applied. Filter capacity was improved by cleaning it with powerful jet steam. Subsequently, Dr. Fuller found that rapid sand filtration worked much better when it was preceded by coagulation and sedimentation techniques. Meanwhile, such waterborne illnesses as cholera and typhoid became less and less common as water chlorination won terrain throughout the world. But the victory obtained by the invention of chlorination did not last long. After some time the negative effects of this element were discovered. Chlorine vaporizes much faster than water, and it was linked to the aggravation and cause of respiratory disease. Water experts started looking for alternative water disinfectants. In 1902 calcium hypo chlorite and ferric chloride were mixed in a drinking water supply in Belgium, resulting in both coagulation and disinfection. The treatment and distribution of water for safe use is one of the greatest achievements of the twentieth century. Before cities began routinely treating drinking water with chlorine (starting with Chicago and Jersey City in US in 1908), cholera, typhoid fever, dysentery and hepatitis A killed thousands of U.S. residents annually. Drinking water chlorination and filtration have helped to virtually eliminate these diseases in the U.S. and other developed countries. Meeting the goal of clean, safe drinking water requires a multi-barrier approach that includes: protecting source water from contamination, appropriately treating raw water, and ensuring safe distribution of treated water to consumers’ taps. During the treatment process, chlorine is added to drinking water as elemental chlorine (chlorine gas), sodium hypochlorite solution or dry calcium hypochlorite. When applied to water, each of these forms “free chlorine,” which destroys pathogenic (disease-causing) organisms. Almost all systems that disinfect their water use some type of chlorine-based process, either alone or in combination with other disinfectants. In addition to controlling disease-causing organisms, chlorination offers a number of benefits including:  Reduces many disagreeable tastes and odors;  Eliminates slime bacteria, molds and algae that commonly grow in water supply reservoirs, on the walls of water mains and in storage tanks;  Removes chemical compounds that have unpleasant tastes and hinder disinfection; and
  • 5.  Helps remove iron and manganese from raw water. As importantly, only chlorine-based chemicals provide “residual disinfectant” levels that prevent microbial re-growth and help protect treated water throughout the distribution system. For more than a century, the safety of drinking water supplies has been greatly improved by the addition of bleaching powder. Disinfecting our drinking water ensures it is free of the microorganisms that can cause serious and life-threatening diseases, such as cholera and typhoid fever. To this day, bleaching powder remains the most commonly used drinking water disinfectant, and the disinfectant for which we have the most scientific information. Bleaching powder is added as part of the drinking water treatment process. However, bleaching powder also reacts with the organic matter, naturally present in water, such as decaying leaves. This chemical reaction forms a group of chemicals known as disinfection by-products. Current scientific data shows that the benefits of bleaching our drinking water (less disease) are much greater than any health risks from THMs and other by-products. Although other disinfectants are available, bleaching powder remains the choice of water treatment experts. When used with modern water filtration methods, chlorine is effective against virtually all microorganisms. Bleaching powder is easy to apply and small amounts of the chemical remain in the water as it travels in the distribution system from the treatment plant to the consumer’s tap, this level of effectiveness ensures that microorganisms cannot recontaminate the water after it leaves the treatment. But what is bleaching powder and how is it prepared? Bleaching powder or Calcium hypochlorite is a chemical compound with formula Ca(ClO) 2. It is widely used for water treatment and as a bleaching agent bleaching powder). This chemical is considered to be relatively stable and has greater available chlorine than sodium hypochlorite (liquid bleach). It is prepared by either calcium process or sodium process. Calcium Process 2 Ca(OH)2 + 2 Cl2 Ca(ClO)2 + CaCl2 + 2 H2O Sodium Process 2 Ca(OH)2 + 3 Cl2 + 2 NaOH Ca(ClO)2 + CaCl2 + 2 H2O + 2 NaCl But how can this chemical be used to sterilize water? This chemical can be used for sterilizing water by Using 5 drops of bleach per each half gallon of water to be purified, and allowing it to sit undisturbed for half an hour to make it safe for drinking. Letting it sit several hours more will help reduce the chlorine taste, as the chlorine will slowly evaporate out. A different reference advises when using household bleach for purification; add a single drop of bleach per quart of water which is visibly clear, or three drops per quart of water where the water is NOT visibly clear. Then allow the water to sit undisturbed for half an hour. What are the actual processes involved in disinfecting and purifying water?
  • 6. The combination of following processes is used for municipal drinking water treatment worldwide: 1. Pre-chlorination – for algae control and arresting any biological growth 2. Aeration – along with pre-chlorination for removal of dissolved iron and manganese 3. Coagulation – for flocculation 4. Coagulant aids also known as polyelectrolyte’s – to improve coagulation and for thicker floc formation 5. Sedimentation – for solids separation, that is, removal of suspended solids trapped in the floc 6. Filtration – for removal of carried over floc 7. Disinfection – for killing bacteria Out of these processes, the role of Bleaching powder is only in the last step i.e. for Disinfection of water. EXPERIMENT Aim: To Determine the dosage of bleaching powder required for sterilization or disinfection of different samples of water. Requirements: Burette, titration flask, 100ml graduated cylinder, 250ml measuring flask, weight box, glazed tile, glass wool. Bleaching Powder, Glass wool, 0.1 N Na2S2O3 solution, 10% KI solution, different samples of water, starch solution. Pre-Requisite Knowledge: 1. A known mass of the given sample of bleaching powder is dissolved in water to prepare a solution of known concentration. This solution contains dissolved chlorine, liberated by the action of bleaching powder with water. CaOCl2+H20 I >> Ca(OH)2+Cl2 2. The amount of Chlorine present in the above solution is determined by treating a known volume of the above solution with excess of 10% potassium iodide solution, when equivalent amount of Iodine is liberated. The Iodine, thus liberated is then estimated by titrating it against a standard solution of Sodium thiosulphate, using starch solution as indicator. Cl2+2KI i > 2KCl+I2 I2+2Na2S2O3 i > Na2S4O6+2NaI 1. A known Volume of one of the given samples of water is treated with a known volume of bleaching powder solution. The amount of residual chlorine is determined by adding excess potassium iodide solution and then titrating against standard sodium thiosulphate solution.
  • 7. 2. From the readings in 2 and 3, the amount of chlorine and hence bleaching powder required for the disinfection of a given volume of the given sample of water can be calculated. Procedure: 1. Preparation of bleaching powder solution. Weigh accurately 2.5g of the given sample of bleaching powder and transfer it to a 250ml conical flask. Add about 100-150ml of distilled water. Stopper the flask and shake it vigorously. The suspension thus obtained is filtered through glass wool and the filtrate is diluted with water (in a measuring flask) to make the volume 250ml. The solution obtained is 1% bleaching powder solution. 2. Take 20ml of bleaching powder solution in a stoppered conical flask and add it to 20ml of 10% KI solution. Stopper the flask and shake it vigorously. Titrate this solution against 0.1N Na2S2O3 solution taken in the burette. When the solution in the conical flask becomes light yellow in color, add about 2ml starch solution. The solution now becomes blue in color. Continue titrating till the blue color just disappears. Repeat the titration to get a set of three concordant readings. 3. Take 100ml of the water sample in a 250ml stoppered conical flask and add it to 10ml of bleching powder solution. Then add 20ml of KI solution and stopper the flask. Shake vigorously and titrate against 0.1N Na2S2O3 solution using starch solution as indicator as described in step 2. 4. Repeat the step 3 with other samples of water and record the observations. RESULT Amount of the given sample of bleaching powder required to disinfect one litre of water Sample I =……….. g Sample II=……….. g Sample III=……….. g BIBLIOGRAPHY 1.The Medical front-”Water Supply” http://www.vlib.us/medical/sancamp/water.htm 2. “Chemistry Projects” http://www.icbse.com 3.How to live on Very,Very Little-”Clean drinking water: How to develop low cost sources of drinking water just about anywhere” http://www.jmooneyham.com/watp.html 4.Calcium Hypochloride http://en.wikipedia.org/wiki/Bleaching_powder 5.Water Treatment http://en.wikipedia.org/wiki/Water_treatment 6.Bleach
  • 8. http://en.wikipedia.org/wiki/Bleach 7.Drinking Water Treatment:Continuous Chlorination http://www.ianrpubs.unl.edu/epublic/pages/publicationD.jsp?publicationId=358 8.Chlorination of Drinking Water http://www.water- research.net/watertreatment/chlorination.htm 9.Chlorination Of Drinking Water (2) www.edstrom.com/doclib/mi4174.pdf 10.Wagenet, L, K. Mancl, and M. Sailus, 1995. “Home Water Treatment,” Northeast Regional Agricultural Engineering Service, Cooperative Extension, Ithaca, N.Y. 11.”Treatment Systems for Household Water Supplies: Chlorination,” North Dakota State University Extension Service 12.”Water Treatment Notes: Chlorination of Drinking Water,” Cornell Cooperative Extension, New York State College of Human Ecology,USA 13.”Drinking Water Standards,” www.epa.gov/safewater/mcl.html 14.”Understanding the New Consumer Confidence Report,” www.awwa.org/Advocacy/bluethumb98/consumer.cfm 15.”Testing for Drinking Water Quality,” NebGuide G89-907 Cooperative Extension, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln,USA 16.DISINFECTING YOUR WELL WATER: SHOCK CHLORINATION http://www.fcs.uga.edu/pubs/PDF/HACE-858-4.pdf