BIOMECHANICS
  CONCEPTS
        BIOMECHANICS
 Study of Biological Systems by
 Means of Mechanical Principles
          father of Mechanics
            Sir Isaac Newton
Biology                                       Physics


Skeletal          Muscular    Nervous                        Mechanics
system             system     system


                                                     Kinetics         Kinematics



      22-Jun-12              P.Ratan (MPT, Ortho & Sports)                    2
HUMAN MOVEMENT ANALYSIS

                          BIOMECHANICS                            KINESIOLOGY


       KINETICS                    KINEMATICS                     FUNCTIONAL

 Linear            Angular        Linear          Angular

 Position           Position
 Velocity           Velocity       Force             Torque
Acceleration       Acceleration
       22-Jun-12                  P.Ratan (MPT, Ortho & Sports)             3
Basic types of Motion
      Linear
           Rectilinear
           Curvilinear
      Angular or rotational
      Combined or general



22-Jun-12                 P.Ratan (MPT, Ortho & Sports)   4
Human Analysis
   Internal: mechanical factors
    creating and controlling
    movement inside the body
   External: factors affecting
    motion from outside the body



22-Jun-12        P.Ratan (MPT, Ortho & Sports)   5
Kinematics
   Describes motion
       Time
       Position
       Displacement
       Velocity
       Acceleration
   Vectors
   Angular and linear quantities
    22-Jun-12          P.Ratan (MPT, Ortho & Sports)   6
Kinematics Formulas




22-Jun-12   P.Ratan (MPT, Ortho & Sports)   7
Kinetics
   Explains causes of motion                                 Axis
        Mass
               amount of matter (kg)
        Inertia: resistance to being moved
        Moment of Inertia (rotation) I = m·r2




    22-Jun-12                 P.Ratan (MPT, Ortho & Sports)      8
Kinetics
   Force: push or pull that tends to
    produce acceleration
   Important factor in injuries
   Vector




22-Jun-12          P.Ratan (MPT, Ortho & Sports)   9
Kinetics
      Idealized force vector
      Force couple system

                    F
                                   F’            F       M=Fd
                d                            d                  d
                        =                            =

                                         F                  F
22-Jun-12           P.Ratan (MPT, Ortho & Sports)                   10
Kinetics: Force
      Force & Injury factors
           Magnitude
           Location
           Direction
           Duration
           Frequency
           Variability
           Rate
22-Jun-12                 P.Ratan (MPT, Ortho & Sports)   11
Kinetics: Force System
      Linear
      Parallel

      Concurrent

      General

      Force Couple
22-Jun-12             P.Ratan (MPT, Ortho & Sports)   12
Center of Mass (COm) or
  Gravity (COG)
      It is an imaginary point where
       there is intersection of all 3
       cardinal plane.
      Imaginary point where all the
       mass of the body or system is
       concentrated
      Point where the body’s mass is
       equally distributed
22-Jun-12          P.Ratan (MPT, Ortho & Sports)   13
Pressure
      P = F/A
      Units (Pa = N m2)
      In the human body also
       called stress
      Important predisposing
       factor for injuries


22-Jun-12         P.Ratan (MPT, Ortho & Sports)   14
Moments of Force
    (Torque)
   Effect of a force that tends
    to cause rotation about an
    axis
   M = F ·d (Nm)
       If F and d are
   Force through axis


22-Jun-12                P.Ratan (MPT, Ortho & Sports)   15
Moments of Force
  (Torque)
      Force components
           Rotation
           Stabilizing or destabilizing
            component




22-Jun-12              P.Ratan (MPT, Ortho & Sports)   16
Moments of Force
  (Torque)
      Net Joint Moment
           Sum of the moments acting
            about an axis
      Human: represent the
       muscular activity at a joint
           Concentric action
           Eccentric action
           Isometric
22-Jun-12             P.Ratan (MPT, Ortho & Sports)   17
Moments of Force
  (Torque)
      Large moments tends to produce injuries on the
       musculo-skeletal system
      Structural deviation leads to different MA’s




22-Jun-12          P.Ratan (MPT, Ortho & Sports)        18
NEWTONIAN
LAWS of Motion




22-Jun-12   P.Ratan (MPT, Ortho & Sports)   19
1st Law of Motion
   A body a rest or in a
    uniform (linear or angular)
    motion will tend to remain
    at rest or in motion unless
    acted by an external force
    or torque
   Whiplash injuries

    22-Jun-12        P.Ratan (MPT, Ortho & Sports)   20
2nd Law of Motion
      A force or torque acting on a body will produce an
       acceleration proportional to the force or torque
      F = m ·a or T= I ·




                               F
22-Jun-12            P.Ratan (MPT, Ortho & Sports)          21
3rd Law of Motion
   For every action there is an
    equal and opposite reaction
    (torque and/or force)
   Contact forces: GRF, other
    players etc.


                                                    GRF

    22-Jun-12       P.Ratan (MPT, Ortho & Sports)         22
Equilibrium
   Sum of forces and the sum of
    moments must equal zero
         F=0
         M=0
   Dynamic Equilibrium
       Must follow equations of motions
        F=mxa
        T=Ix



    22-Jun-12             P.Ratan (MPT, Ortho & Sports)   23
Work & Power
      Mechanical Work
           W= F ·d (Joules)
           W= F ·d·cos ( )
      Power: rate of work
                                             d
           P = W/ t (Watts)
                                                      W   W
           P = F ·v
           P = F ·(d/t)

22-Jun-12             P.Ratan (MPT, Ortho & Sports)           24
Mechanical Energy
      Capacity or ability to
       do work
      Accounts for most
       severe injuries
      Classified into
           Kinetic (motion)
           Potential (position or
            deformation)
22-Jun-12              P.Ratan (MPT, Ortho & Sports)   25
Kinetic Energy
      Body’s motion
      Linear or Angular
           KE=.5·m·v2
           KE =.5 ·I· 2




22-Jun-12             P.Ratan (MPT, Ortho & Sports)   26
Potential Energy
      Gravitational: potential to
       perform work due to the
       height of the body
           Ep= m·g·h
      Strain: energy stored due to
       deformation
           Es= .5·k·x2

22-Jun-12                 P.Ratan (MPT, Ortho & Sports)   27
Total Mechanical Energy
      Body segment’s: rigid (nodeformable), no strain
       energy in the system
      TME = Sum of KE, KE , PE

            TME = (.5·m ·v2)+(.5 ·I ·                2)+(m   ·g ·h )


22-Jun-12            P.Ratan (MPT, Ortho & Sports)                     28
Momentum
                                                    P
      Quantity of motion
      p=m ·v (linear)
      Conservation of Momentum
      Transfer of Momentum
      Injury may result when momentum
       transferred exceeds the tolerance
       of the tissue
      Impulse = Momentum

22-Jun-12           P.Ratan (MPT, Ortho & Sports)       29
Angular Momentum
      Quantity of angular
       motion
      H=I · (angular)
      Conservation of angular
       momentum
      Transfer of angular
       momentum


22-Jun-12           P.Ratan (MPT, Ortho & Sports)   30
Collisions
     Large impact forces due to short impact time
     Elastic deformation
     Plastic deformation (permanent change)
     Elasticity: ability to return to original shape
     Elastoplastic collisions
          Some permanent deformation
          Transfer and loss of energy & velocity
     Coefficient of restitution
        e=Rvpost/Rvpre

    22-Jun-12               P.Ratan (MPT, Ortho & Sports)   31
Friction
   Resistance between two bodies
    trying to slide
   Imperfection of the surfaces
   Microscopic irregularities -
    asperities
   Static friction
      f< s·N
                                                  f
   Kinetic
      f=µk·N                                         N
22-Jun-12         P.Ratan (MPT, Ortho & Sports)           32
Friction
   Rolling: Lower that static and kinetic
    friction (100-1000 times)
   Joint Friction - minimized
   Blood vessels - atherosclerosis




    22-Jun-12           P.Ratan (MPT, Ortho & Sports)   33
FLUID MECHANICS

 Branch of Mechanics Dealing with the
Properties & Behaviors of Gases & Fluids
Fluid Flow
      Laminar
      Turbulent
      Effects of friction on
       arterial blood flow




22-Jun-12           P.Ratan (MPT, Ortho & Sports)   35
Fluid Forces
      Buoyancy
      Drag
           Surface
           Pressure
           Wave
      Lift
      Magnus forces
      Viscosity
      Biological tissue must have a fluid component


22-Jun-12              P.Ratan (MPT, Ortho & Sports)   36
Fluid Forces




22-Jun-12   P.Ratan (MPT, Ortho & Sports)   37

Biomechanics concepts

  • 1.
    BIOMECHANICS CONCEPTS BIOMECHANICS Study of Biological Systems by Means of Mechanical Principles father of Mechanics Sir Isaac Newton
  • 2.
    Biology Physics Skeletal Muscular Nervous Mechanics system system system Kinetics Kinematics 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 2
  • 3.
    HUMAN MOVEMENT ANALYSIS BIOMECHANICS KINESIOLOGY KINETICS KINEMATICS FUNCTIONAL Linear Angular Linear Angular Position Position Velocity Velocity Force Torque Acceleration Acceleration 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 3
  • 4.
    Basic types ofMotion  Linear  Rectilinear  Curvilinear  Angular or rotational  Combined or general 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 4
  • 5.
    Human Analysis  Internal: mechanical factors creating and controlling movement inside the body  External: factors affecting motion from outside the body 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 5
  • 6.
    Kinematics  Describes motion  Time  Position  Displacement  Velocity  Acceleration  Vectors  Angular and linear quantities 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 6
  • 7.
    Kinematics Formulas 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 7
  • 8.
    Kinetics  Explains causes of motion Axis  Mass  amount of matter (kg)  Inertia: resistance to being moved  Moment of Inertia (rotation) I = m·r2 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 8
  • 9.
    Kinetics  Force: push or pull that tends to produce acceleration  Important factor in injuries  Vector 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 9
  • 10.
    Kinetics  Idealized force vector  Force couple system F F’ F M=Fd d d d = = F F 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 10
  • 11.
    Kinetics: Force  Force & Injury factors  Magnitude  Location  Direction  Duration  Frequency  Variability  Rate 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 11
  • 12.
    Kinetics: Force System  Linear  Parallel  Concurrent  General  Force Couple 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 12
  • 13.
    Center of Mass(COm) or Gravity (COG)  It is an imaginary point where there is intersection of all 3 cardinal plane.  Imaginary point where all the mass of the body or system is concentrated  Point where the body’s mass is equally distributed 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 13
  • 14.
    Pressure  P = F/A  Units (Pa = N m2)  In the human body also called stress  Important predisposing factor for injuries 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 14
  • 15.
    Moments of Force (Torque)  Effect of a force that tends to cause rotation about an axis  M = F ·d (Nm)  If F and d are  Force through axis 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 15
  • 16.
    Moments of Force (Torque)  Force components  Rotation  Stabilizing or destabilizing component 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 16
  • 17.
    Moments of Force (Torque)  Net Joint Moment  Sum of the moments acting about an axis  Human: represent the muscular activity at a joint  Concentric action  Eccentric action  Isometric 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 17
  • 18.
    Moments of Force (Torque)  Large moments tends to produce injuries on the musculo-skeletal system  Structural deviation leads to different MA’s 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 18
  • 19.
    NEWTONIAN LAWS of Motion 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 19
  • 20.
    1st Law ofMotion  A body a rest or in a uniform (linear or angular) motion will tend to remain at rest or in motion unless acted by an external force or torque  Whiplash injuries 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 20
  • 21.
    2nd Law ofMotion  A force or torque acting on a body will produce an acceleration proportional to the force or torque  F = m ·a or T= I · F 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 21
  • 22.
    3rd Law ofMotion  For every action there is an equal and opposite reaction (torque and/or force)  Contact forces: GRF, other players etc. GRF 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 22
  • 23.
    Equilibrium  Sum of forces and the sum of moments must equal zero  F=0  M=0  Dynamic Equilibrium  Must follow equations of motions  F=mxa  T=Ix 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 23
  • 24.
    Work & Power  Mechanical Work  W= F ·d (Joules)  W= F ·d·cos ( )  Power: rate of work d  P = W/ t (Watts) W W  P = F ·v  P = F ·(d/t) 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 24
  • 25.
    Mechanical Energy  Capacity or ability to do work  Accounts for most severe injuries  Classified into  Kinetic (motion)  Potential (position or deformation) 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 25
  • 26.
    Kinetic Energy  Body’s motion  Linear or Angular  KE=.5·m·v2  KE =.5 ·I· 2 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 26
  • 27.
    Potential Energy  Gravitational: potential to perform work due to the height of the body  Ep= m·g·h  Strain: energy stored due to deformation  Es= .5·k·x2 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 27
  • 28.
    Total Mechanical Energy  Body segment’s: rigid (nodeformable), no strain energy in the system  TME = Sum of KE, KE , PE TME = (.5·m ·v2)+(.5 ·I · 2)+(m ·g ·h ) 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 28
  • 29.
    Momentum P  Quantity of motion  p=m ·v (linear)  Conservation of Momentum  Transfer of Momentum  Injury may result when momentum transferred exceeds the tolerance of the tissue  Impulse = Momentum 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 29
  • 30.
    Angular Momentum  Quantity of angular motion  H=I · (angular)  Conservation of angular momentum  Transfer of angular momentum 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 30
  • 31.
    Collisions  Large impact forces due to short impact time  Elastic deformation  Plastic deformation (permanent change)  Elasticity: ability to return to original shape  Elastoplastic collisions  Some permanent deformation  Transfer and loss of energy & velocity  Coefficient of restitution  e=Rvpost/Rvpre 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 31
  • 32.
    Friction  Resistance between two bodies trying to slide  Imperfection of the surfaces  Microscopic irregularities - asperities  Static friction  f< s·N f  Kinetic  f=µk·N N 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 32
  • 33.
    Friction  Rolling: Lower that static and kinetic friction (100-1000 times)  Joint Friction - minimized  Blood vessels - atherosclerosis 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 33
  • 34.
    FLUID MECHANICS Branchof Mechanics Dealing with the Properties & Behaviors of Gases & Fluids
  • 35.
    Fluid Flow  Laminar  Turbulent  Effects of friction on arterial blood flow 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 35
  • 36.
    Fluid Forces  Buoyancy  Drag  Surface  Pressure  Wave  Lift  Magnus forces  Viscosity  Biological tissue must have a fluid component 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 36
  • 37.
    Fluid Forces 22-Jun-12 P.Ratan (MPT, Ortho & Sports) 37