NAME – ABHINAB DAS
REGD NO – 11MSM0052
GUIDE- DR. K.SUTHINDHIRAN
ASSISTANT PROFESSOR
SBST, VIT UNIVERSITY
Marine Algae are a very large and diverse group of simple, typically autotrophic organism ranging from
unicellular to multicellular.
USES
 Agar
 Fertilizer
 Nutrition
MEDICINAL IMPORTANCE OF ALGAE
 Antioxidant properties
 Anticancer activities
 Antibacterial activities.
 Anti-diabetic property
ALGAE
MICROALGAE MACROALGAE
RED ALGAE GREEN ALGAE BROWN
ALGAE
AIM
The aim of our study is to investigate the antioxidant, antidiabetic and anticancer activity of
marine algae.
OBJECTIVE
The main objective of this dissertation: Sample collection, Extraction, Phytochemical analysis,
Antioxidant activity, Antibacterial activity, MIC, Recovery, α- amylase activity, α-
glucosidase activity, HDAC activity & GC-MS analysis.
Sample collection
Extraction
Phytochemical analysis (Hanaa et al., 2009)
Antioxidant activity (DPPH method) (M.A Jayasri et al., 2009)
Antibacterial by well diffusion method
MIC test
Recovery
α- amylase activity (M.A Jayasri et al., 2009)
α- glucosidase activity (M.A Jayasri et al., 2009)
HDAC inhibitory activity (By KIT method)
GC-MS analysis
Cladophora rupestris
Chaetomorpha antennina
Ulva linza
METHANOL ETHANOL E.ACETATE METHANOL ETHANOL E.ACETATE METHANOL
ALKALOIDS MAYERS TEST + + + + + + +
WAGNERS TEST + + + + + + +
CARBOHYDRAT
E
MOLISHES TEST + + + + + + +
FELINGS TEST + + + + + + +
AMINO ACID &
PROTEIN
NINHYDRIN TEST + + + + + + +
BIURET TEST - - - - - - -
PHENOLIC
COMPOUND
FERRIC CHLORIDE
TEST
+ + + + + + +
LEAD ACETATE TEST + + + + + + +
SAPONINS FOAM TEST - - - - - - -
GLYCOSIDES SULPHURIC ACID
TEST
- - - - - - -
TANNINS FERRIC CHLORIDE
TEST
+ + + + + + +
OILS & FATS SPOT TEST - - - - - - -
SAPONIFICATION
TEST
- - - - - - -
FLAVONOIDS ALKALINE REAGENT
TEST
+ + + + + + +
LEAD ACETATE TEST + + + + + + +
Cladophora rupestris Chaetomorpha antennina Ulva linza
0
20
40
60
80
100
1 2 3 4 5
PercentageofDPPH
Scavenging
Concentration (mg/ml)
Positive control
Methanol
Ethanol
Ethyl acetate 0
20
40
60
80
1 2 3 4 5
PercentageofDPPH
Scavenging
Concentration (mg/ml)
Positive control
Methanol
Ethanol
Ethyl acetate
0
20
40
60
80
1 2 3 4 5
PercentageofDPPH
Scavenging
Concentration (mg/ml)
Positive
control
SL.NO SAMPLE NO EXTRACT INHIBITION % IC50 (mg/ml)
1 Cladophora rupestris Methanol 78 1.20
Ethanol 64 2.75
Ethyl acetate 72 2.25
2 Chaetomorpha antennina Methanol 70 2.30
Ethanol 61 2.55
Ethyl acetate 65 2.35
3 Ulva linza Methanol 72 2.20
S.aureus
E.coli
V.parahaemolyticus
V.harveyii
S.aureus
V.alginolyticus
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
250 500 750 1000
Opticaldensityat520nm
Concentration (µg/ml)
E.coli
S.aureus
P.auregenosa
V.harveyii
V.parahaemolyti
cus
V.alginolyticus
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
250 500 750 1000
OpticalDensityat520nm
Concentration (µg/ml)
E.coli
S.aureus
P.auregenosa
V.harveyii
V.parahaemolyticus
V.alginolyticus
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
250 500 750 1000
OpticalDensityat520nm
Concentration (µg/ml)
E.coli
S.aureus
P.auregenosa
V.harveyii
V.parahaemolyticus
V.alginolyticus
PATHOGENIC MIC 50 (µg/ml)
BACTERIA Methanol Ethanol E.acetate
•E. coli 375 625 325
•S. aureus 425 537 287
•P. auregenosa 437 544 294
•V.harveyii 745 732 475
•V.parahaemolyticus 718 600 473
•V.alginolyticus 763 638 316
0
0.2
0.4
0.6
0.8
250 500 750 1000
OpticalDensityat520nm
Concentration (µg/ml)
E.coli
S.aureus
P.auregenosa
V.harveyii
V.parahaemolytic
us
V.alginolyticus
0
0.1
0.2
0.3
0.4
0.5
0.6
250 500 750 1000
OpticalDensityat520nm
Concentration (µg/ml)
E.coli
S.aureus
P.auregenosa
V.harveyii
V.parahaemolyticu
s
V.alginolyticus
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
250 500 750 1000
OpticalDensityat520nm
Concentration (µg/ml)
E.coli
S.aureus
P.auregenosa
V.harveyii
V.parahaemolyti
cus
V.alginolyticus
PATHOGENIC MIC 50 (µg/ml)
BACTERIA Methanol Ethanol E.acetate
•E. coli 396 618 378
•S. aureus 437 546 312
•P. auregenosa 456 498 301
•V.harveyii 712 719 468
•V.parahaemolyticus 738 595 437
•V.alginolyticus 801 618 339
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
250 500 750 1000
OpticalDensityat520nm
Concentration (µg/ml)
E.coli
S.aureus
P.auregenosa
V.harveyii
V.parahaemolyti
cus
V.alginolyticus
PATHOGENIC MIC 50 (µg/ml)
BACTERIA Methanol
• E. coli 378
• S. aureus 433
• P. auregenosa 448
• V.harveyii 747
• V.parahaemolyticus 727
• V.alginolyticus 771
0
0.1
0.2
0.3
0.4
0.5
0.6
250 500 750 1000
Opticaldensityat520nm
Concentration (µg/ml)
E.coli
S.aureus
P.auregenosa
V.harveyii
V.parahaemolyticus
V.alginolyticus 0
0.1
0.2
0.3
0.4
0.5
250 500 750 1000
OpticalDensityat520nm
Concentration (µg/ml)
E.coli
S.aureus
P.auregenosa
V.harveyii
V.parahaemolytic
us
V.alginolyticus
0
0.1
0.2
0.3
0.4
0.5
0.6
250 500 750 1000
Opticaldensityat520nm
Concentration (µg/ml)
E.coli
S.aureus
P.auregenosa
V.harveyii
V.parahaemolyticus
V.alginolyticus
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
250 500 750 1000
Opticaldensityat520nm
Concentration (µg/ml)
E.coli
S.aureus
P.auregenosa
V.harveyii
V.parahaemolyticus
V.alginolyticus 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
250 500 750 1000
OpticalDensityat520nm
Concentration (µg/ml)
E.coli
S.aureus
P.auregenosa
V.harveyii
V.parahaemolyticus
V.alginolyticus
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
250 500 750 1000
OpticalDensityat520nm
Concentration (µg/ml)
E.coli
S.aureus
P.auregenosa
V.harveyii
V.parahaemolyticus
V.alginolyticus
0
0.1
0.2
0.3
0.4
0.5
0.6
250 500 750 1000
OpticalDensityat520nm
Concentration (µg/ml)
E.coli
S.aureus
P.auregenosa
V.harveyii
V.parahaemolyticus
V.alginolyticus
0
10
20
30
40
50
60
70
80
250 500 750 1000
α-Amylaseinhibition
percentage
Concentration (µg/ml)
Methanol
Ethanol
Ethyl acetate
0
20
40
60
80
250 500 750 1000
α-Amylaseinhibition
percentage
Concentration (µg/ml)
Methanol
Ethanol
Ethyl acetate
0
50
100
250 500 750 1000
α-Amylase
inhibition
percentage
Concentration (µg/ml)
Methanol
SL.
NO
SAMPLE EXTRACT INHIBITION
%
IC50
(µg/ml)
1 C.rupestris Methanol 72 475
Ethanol 65 520
E. acetate 69 491
2 C.antennina Methanol 67 575
Ethanol 59 700
E. acetate 65 650
3 Ulva linza Methanol 71 600
0
20
40
60
80
250 500 750 1000
α-Glucosidaseinhibition
percentage
Concentration (µg/ml)
Methanol
Ethanol
Ethyl acetate
0
20
40
60
80
250 500 750 1000
α-Glucosidaseinhibition
percentage
Concentration (µg/ml)
Methanol
Ethanol
Ethyl acetate
0
10
20
30
40
50
60
70
250 500 750 1000
α-Glucosidaseinhibition
percentage
Concentration (µg/ml)
U.linza
SL.
NO
SAMPLE EXTRACT INHIBITION
%
IC50
(µg/ml)
1 C.rupestris Methanol 64 478
Ethanol 59 512
E. acetate 62 445
2 C.antennina Methanol 60 650
Ethanol 57 725
E. acetate 61 643
3 Ulva linza Methanol 64 750
Sl. No Inhibitor Samples HDAC activity (OD/h/ml) HDAC Inhibition %
1 Cladophora rupestris 161 22.3
2 Chaetomorpha antennina 182.5 12.9
3 Ulva linza 172 17.1
4 Trichostatin A 130 58.9
0
10
20
30
40
50
60
70
Inhibitionat450nm
Inhibitor samples
Inhibition %
HDAC activity of marine seaweeds
HDAC inhibition % of marine seaweeds Change of colouration during HDAC activity
SL.N
O
RETENTI
ON TIME
COMPO
UND
NAME
MOL.W
EIGHT
FORMU
LA
1 6.16 Chloroac
etic acid
290 C16H31O2
2 9.84 Dichloroa
cetic acid
352 C18H34O2
3 14.30 Butyric
acid
140 C15H28O2
4 18.74 Trimecai
ne
248 C15H24O
N2
5 2.41 Benzami
de
263 C14H21O2
N3
6 27.14 Cyclohex
anol
124 C15H24O
N2
SL.
NO
RETEN
TION
TIME
COMPOUND
NAME
MOL.WEI
GHT
FORM
ULA
1 3.57 Diphenic
anhydride
224 C14H8O3
2 3.67 Eicosyne 278 C20H3O8
3 16.22 Menthol 156 C10H20O
4 17.02 Benzocinnoline 180 C12H8N2
5 17.47 Butyric acid 140 C15H28O2
6 19.62 Anthracenedio
ne
208 C14H8O2
7 28.70 Phenanthrenedi
one
206 C14H10O
2
8 30.01 Trichosenyl
formate
366 C24H46O
2
SL.NO RETENTION
TIME
COMPOUND NAME M
OL
.W
EI
GH
T
FORMULA
1 5.58 8-Heptadecene 238 C17H34
2 7.55 Isoneptadecanol 256 C17H34O
3 14.96 5-Eicosene 280 C20H40
4 15.32 Acetic acid 318 C18H35O2
5 15.51 1-Decanetheiol 174 C10H22S
6 17.02 Ethanol 312 C20H40O2
7 17.46 1-Oleylalcohol 268 C18HH36O
8 17.93 Butyric acid 140 C15H28O2
9 21.91 1,16-Hexadecanediol 258 C16H34O2
10 22.75 1,14-Docosanediol 342 C22H46O2
11 26.41 1-Pentadecane-
2,Methyl
224 C16H32
12 27.20 Menthol 156 C10H20O
13 29.27 Cyclohexanol 142 C9H18O
14 31.23 Trimecaine 24
8
C14H21O2N3
Cladophora rupestris, Chaetomorpha antennina & Ulva linza had showed
good inhibitory results in antioxidant and antidiabetic inhibition assays.
Therefore it can be used in dietry supplements and in therapeutic use for
the treatment of diabetes. Though Butyric acid has good antioxidant
property, It also inhibits colonic tumor cells. The most important property
of Butyric acid is that, it can act as a HDAC inhibitor, inhibiting the
function of Histone Deacetylase enzymes. Due to present of Butyric acid in
these three marine seaweeds we can say that marine seaweeds have anti-
cancer properties. Therefore it can be used as antidiabetic properties and in
therapeautic use for the treatment of cancer.
 Hanna VA, Abou-Elela, Gehan M. Hanan Abd-Elnaby, Hassan A.H. Ibrahim and M.A. Okbah., 2009.
Marine natural products and their potential applications as anti-infective agents. World Appl. Sci. J., 7(7):
pp. 872-880.
 Duarte, M.E.R., J.P. Cauduro, G.D. Noseda, M.D. Noseda, A.G. Goncalves, C.A. Pujol, E.B. Damonte
andA.S. Cerezo, 2004. The structure of the agaran sulfate from Acanthophoraspicifera (Rhodomelaceae,
Ceramiales) and its antiviral activity. Relation between structure and antiviral activity in agarans,
Carbohydrate Res., 339: 335-347.
 Fujiwara- Arasaki T., Mino N., Kuroda M. The value of protein in human nutrition of edible marine algae
in Japan. Hydrobiol. 1984; 116/117: 513–516
 Gupta, M. P., N. E. Gomez, A. I. Santana, P. N. Solis and G. Palacios, 1991. Antimicrobial activity of
various algae of the Panamian Atlantic coast.Review in Medical Panama, 16: 64-8.
 Hasenah Ali, P.J. Houghton and Amala Soumyanath., 2006. α-amylase inhibitory activity of some
Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. Journal of
Ethnopharmacology., 107: 449-455.
 Lahaye M. Marine algae as a source of dietary fibers: Determination of soluble and insoluble dietary fiber
contents in some 'sea vegetable'. Journal of Science Food Agric. 1991; 54: 587 -594.
 MA Jayasri, Lazar Mathew, A Radha. 2009. A report on the Antioxidant Activity of leaves and rhizomes of
Costus pictus D. Don. International Journal of Integrated Biology, Vol 5: No 1, 20-26.
 MA Jayasri, Lazar Mathew, A Radha. 2009. α-Amylase and α-Glucosidase inhibitory activity of Costus
pictus D.DON in the management of Diabetes. Journal of Herbal Medicine and Toxicology, 3(1), 91-94.
THANK YOU

BIOACTIVITY OF MARINE ALGAE

  • 1.
    NAME – ABHINABDAS REGD NO – 11MSM0052 GUIDE- DR. K.SUTHINDHIRAN ASSISTANT PROFESSOR SBST, VIT UNIVERSITY
  • 2.
    Marine Algae area very large and diverse group of simple, typically autotrophic organism ranging from unicellular to multicellular. USES  Agar  Fertilizer  Nutrition MEDICINAL IMPORTANCE OF ALGAE  Antioxidant properties  Anticancer activities  Antibacterial activities.  Anti-diabetic property ALGAE MICROALGAE MACROALGAE RED ALGAE GREEN ALGAE BROWN ALGAE
  • 3.
    AIM The aim ofour study is to investigate the antioxidant, antidiabetic and anticancer activity of marine algae. OBJECTIVE The main objective of this dissertation: Sample collection, Extraction, Phytochemical analysis, Antioxidant activity, Antibacterial activity, MIC, Recovery, α- amylase activity, α- glucosidase activity, HDAC activity & GC-MS analysis.
  • 4.
    Sample collection Extraction Phytochemical analysis(Hanaa et al., 2009) Antioxidant activity (DPPH method) (M.A Jayasri et al., 2009) Antibacterial by well diffusion method MIC test Recovery α- amylase activity (M.A Jayasri et al., 2009) α- glucosidase activity (M.A Jayasri et al., 2009) HDAC inhibitory activity (By KIT method) GC-MS analysis
  • 5.
  • 6.
    METHANOL ETHANOL E.ACETATEMETHANOL ETHANOL E.ACETATE METHANOL ALKALOIDS MAYERS TEST + + + + + + + WAGNERS TEST + + + + + + + CARBOHYDRAT E MOLISHES TEST + + + + + + + FELINGS TEST + + + + + + + AMINO ACID & PROTEIN NINHYDRIN TEST + + + + + + + BIURET TEST - - - - - - - PHENOLIC COMPOUND FERRIC CHLORIDE TEST + + + + + + + LEAD ACETATE TEST + + + + + + + SAPONINS FOAM TEST - - - - - - - GLYCOSIDES SULPHURIC ACID TEST - - - - - - - TANNINS FERRIC CHLORIDE TEST + + + + + + + OILS & FATS SPOT TEST - - - - - - - SAPONIFICATION TEST - - - - - - - FLAVONOIDS ALKALINE REAGENT TEST + + + + + + + LEAD ACETATE TEST + + + + + + + Cladophora rupestris Chaetomorpha antennina Ulva linza
  • 7.
    0 20 40 60 80 100 1 2 34 5 PercentageofDPPH Scavenging Concentration (mg/ml) Positive control Methanol Ethanol Ethyl acetate 0 20 40 60 80 1 2 3 4 5 PercentageofDPPH Scavenging Concentration (mg/ml) Positive control Methanol Ethanol Ethyl acetate 0 20 40 60 80 1 2 3 4 5 PercentageofDPPH Scavenging Concentration (mg/ml) Positive control
  • 8.
    SL.NO SAMPLE NOEXTRACT INHIBITION % IC50 (mg/ml) 1 Cladophora rupestris Methanol 78 1.20 Ethanol 64 2.75 Ethyl acetate 72 2.25 2 Chaetomorpha antennina Methanol 70 2.30 Ethanol 61 2.55 Ethyl acetate 65 2.35 3 Ulva linza Methanol 72 2.20
  • 9.
  • 10.
    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 250 500 7501000 Opticaldensityat520nm Concentration (µg/ml) E.coli S.aureus P.auregenosa V.harveyii V.parahaemolyti cus V.alginolyticus 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 250 500 750 1000 OpticalDensityat520nm Concentration (µg/ml) E.coli S.aureus P.auregenosa V.harveyii V.parahaemolyticus V.alginolyticus 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 250 500 750 1000 OpticalDensityat520nm Concentration (µg/ml) E.coli S.aureus P.auregenosa V.harveyii V.parahaemolyticus V.alginolyticus PATHOGENIC MIC 50 (µg/ml) BACTERIA Methanol Ethanol E.acetate •E. coli 375 625 325 •S. aureus 425 537 287 •P. auregenosa 437 544 294 •V.harveyii 745 732 475 •V.parahaemolyticus 718 600 473 •V.alginolyticus 763 638 316
  • 11.
    0 0.2 0.4 0.6 0.8 250 500 7501000 OpticalDensityat520nm Concentration (µg/ml) E.coli S.aureus P.auregenosa V.harveyii V.parahaemolytic us V.alginolyticus 0 0.1 0.2 0.3 0.4 0.5 0.6 250 500 750 1000 OpticalDensityat520nm Concentration (µg/ml) E.coli S.aureus P.auregenosa V.harveyii V.parahaemolyticu s V.alginolyticus 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 250 500 750 1000 OpticalDensityat520nm Concentration (µg/ml) E.coli S.aureus P.auregenosa V.harveyii V.parahaemolyti cus V.alginolyticus PATHOGENIC MIC 50 (µg/ml) BACTERIA Methanol Ethanol E.acetate •E. coli 396 618 378 •S. aureus 437 546 312 •P. auregenosa 456 498 301 •V.harveyii 712 719 468 •V.parahaemolyticus 738 595 437 •V.alginolyticus 801 618 339
  • 12.
    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 250 500 7501000 OpticalDensityat520nm Concentration (µg/ml) E.coli S.aureus P.auregenosa V.harveyii V.parahaemolyti cus V.alginolyticus PATHOGENIC MIC 50 (µg/ml) BACTERIA Methanol • E. coli 378 • S. aureus 433 • P. auregenosa 448 • V.harveyii 747 • V.parahaemolyticus 727 • V.alginolyticus 771
  • 13.
    0 0.1 0.2 0.3 0.4 0.5 0.6 250 500 7501000 Opticaldensityat520nm Concentration (µg/ml) E.coli S.aureus P.auregenosa V.harveyii V.parahaemolyticus V.alginolyticus 0 0.1 0.2 0.3 0.4 0.5 250 500 750 1000 OpticalDensityat520nm Concentration (µg/ml) E.coli S.aureus P.auregenosa V.harveyii V.parahaemolytic us V.alginolyticus 0 0.1 0.2 0.3 0.4 0.5 0.6 250 500 750 1000 Opticaldensityat520nm Concentration (µg/ml) E.coli S.aureus P.auregenosa V.harveyii V.parahaemolyticus V.alginolyticus
  • 14.
    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 250 500 7501000 Opticaldensityat520nm Concentration (µg/ml) E.coli S.aureus P.auregenosa V.harveyii V.parahaemolyticus V.alginolyticus 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 250 500 750 1000 OpticalDensityat520nm Concentration (µg/ml) E.coli S.aureus P.auregenosa V.harveyii V.parahaemolyticus V.alginolyticus 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 250 500 750 1000 OpticalDensityat520nm Concentration (µg/ml) E.coli S.aureus P.auregenosa V.harveyii V.parahaemolyticus V.alginolyticus
  • 15.
    0 0.1 0.2 0.3 0.4 0.5 0.6 250 500 7501000 OpticalDensityat520nm Concentration (µg/ml) E.coli S.aureus P.auregenosa V.harveyii V.parahaemolyticus V.alginolyticus
  • 16.
    0 10 20 30 40 50 60 70 80 250 500 7501000 α-Amylaseinhibition percentage Concentration (µg/ml) Methanol Ethanol Ethyl acetate 0 20 40 60 80 250 500 750 1000 α-Amylaseinhibition percentage Concentration (µg/ml) Methanol Ethanol Ethyl acetate 0 50 100 250 500 750 1000 α-Amylase inhibition percentage Concentration (µg/ml) Methanol SL. NO SAMPLE EXTRACT INHIBITION % IC50 (µg/ml) 1 C.rupestris Methanol 72 475 Ethanol 65 520 E. acetate 69 491 2 C.antennina Methanol 67 575 Ethanol 59 700 E. acetate 65 650 3 Ulva linza Methanol 71 600
  • 17.
    0 20 40 60 80 250 500 7501000 α-Glucosidaseinhibition percentage Concentration (µg/ml) Methanol Ethanol Ethyl acetate 0 20 40 60 80 250 500 750 1000 α-Glucosidaseinhibition percentage Concentration (µg/ml) Methanol Ethanol Ethyl acetate 0 10 20 30 40 50 60 70 250 500 750 1000 α-Glucosidaseinhibition percentage Concentration (µg/ml) U.linza SL. NO SAMPLE EXTRACT INHIBITION % IC50 (µg/ml) 1 C.rupestris Methanol 64 478 Ethanol 59 512 E. acetate 62 445 2 C.antennina Methanol 60 650 Ethanol 57 725 E. acetate 61 643 3 Ulva linza Methanol 64 750
  • 18.
    Sl. No InhibitorSamples HDAC activity (OD/h/ml) HDAC Inhibition % 1 Cladophora rupestris 161 22.3 2 Chaetomorpha antennina 182.5 12.9 3 Ulva linza 172 17.1 4 Trichostatin A 130 58.9 0 10 20 30 40 50 60 70 Inhibitionat450nm Inhibitor samples Inhibition % HDAC activity of marine seaweeds HDAC inhibition % of marine seaweeds Change of colouration during HDAC activity
  • 19.
    SL.N O RETENTI ON TIME COMPO UND NAME MOL.W EIGHT FORMU LA 1 6.16Chloroac etic acid 290 C16H31O2 2 9.84 Dichloroa cetic acid 352 C18H34O2 3 14.30 Butyric acid 140 C15H28O2 4 18.74 Trimecai ne 248 C15H24O N2 5 2.41 Benzami de 263 C14H21O2 N3 6 27.14 Cyclohex anol 124 C15H24O N2
  • 20.
    SL. NO RETEN TION TIME COMPOUND NAME MOL.WEI GHT FORM ULA 1 3.57 Diphenic anhydride 224C14H8O3 2 3.67 Eicosyne 278 C20H3O8 3 16.22 Menthol 156 C10H20O 4 17.02 Benzocinnoline 180 C12H8N2 5 17.47 Butyric acid 140 C15H28O2 6 19.62 Anthracenedio ne 208 C14H8O2 7 28.70 Phenanthrenedi one 206 C14H10O 2 8 30.01 Trichosenyl formate 366 C24H46O 2
  • 21.
    SL.NO RETENTION TIME COMPOUND NAMEM OL .W EI GH T FORMULA 1 5.58 8-Heptadecene 238 C17H34 2 7.55 Isoneptadecanol 256 C17H34O 3 14.96 5-Eicosene 280 C20H40 4 15.32 Acetic acid 318 C18H35O2 5 15.51 1-Decanetheiol 174 C10H22S 6 17.02 Ethanol 312 C20H40O2 7 17.46 1-Oleylalcohol 268 C18HH36O 8 17.93 Butyric acid 140 C15H28O2 9 21.91 1,16-Hexadecanediol 258 C16H34O2 10 22.75 1,14-Docosanediol 342 C22H46O2 11 26.41 1-Pentadecane- 2,Methyl 224 C16H32 12 27.20 Menthol 156 C10H20O 13 29.27 Cyclohexanol 142 C9H18O 14 31.23 Trimecaine 24 8 C14H21O2N3
  • 22.
    Cladophora rupestris, Chaetomorphaantennina & Ulva linza had showed good inhibitory results in antioxidant and antidiabetic inhibition assays. Therefore it can be used in dietry supplements and in therapeutic use for the treatment of diabetes. Though Butyric acid has good antioxidant property, It also inhibits colonic tumor cells. The most important property of Butyric acid is that, it can act as a HDAC inhibitor, inhibiting the function of Histone Deacetylase enzymes. Due to present of Butyric acid in these three marine seaweeds we can say that marine seaweeds have anti- cancer properties. Therefore it can be used as antidiabetic properties and in therapeautic use for the treatment of cancer.
  • 23.
     Hanna VA,Abou-Elela, Gehan M. Hanan Abd-Elnaby, Hassan A.H. Ibrahim and M.A. Okbah., 2009. Marine natural products and their potential applications as anti-infective agents. World Appl. Sci. J., 7(7): pp. 872-880.  Duarte, M.E.R., J.P. Cauduro, G.D. Noseda, M.D. Noseda, A.G. Goncalves, C.A. Pujol, E.B. Damonte andA.S. Cerezo, 2004. The structure of the agaran sulfate from Acanthophoraspicifera (Rhodomelaceae, Ceramiales) and its antiviral activity. Relation between structure and antiviral activity in agarans, Carbohydrate Res., 339: 335-347.  Fujiwara- Arasaki T., Mino N., Kuroda M. The value of protein in human nutrition of edible marine algae in Japan. Hydrobiol. 1984; 116/117: 513–516  Gupta, M. P., N. E. Gomez, A. I. Santana, P. N. Solis and G. Palacios, 1991. Antimicrobial activity of various algae of the Panamian Atlantic coast.Review in Medical Panama, 16: 64-8.  Hasenah Ali, P.J. Houghton and Amala Soumyanath., 2006. α-amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. Journal of Ethnopharmacology., 107: 449-455.  Lahaye M. Marine algae as a source of dietary fibers: Determination of soluble and insoluble dietary fiber contents in some 'sea vegetable'. Journal of Science Food Agric. 1991; 54: 587 -594.  MA Jayasri, Lazar Mathew, A Radha. 2009. A report on the Antioxidant Activity of leaves and rhizomes of Costus pictus D. Don. International Journal of Integrated Biology, Vol 5: No 1, 20-26.  MA Jayasri, Lazar Mathew, A Radha. 2009. α-Amylase and α-Glucosidase inhibitory activity of Costus pictus D.DON in the management of Diabetes. Journal of Herbal Medicine and Toxicology, 3(1), 91-94.
  • 24.