Consequence of detailed modelling into shaft performance prediction
     q                          g            p           p
             Shaft Alignment and Whirling vibration
Problem?


                                       A proper Shaft Analysis report issued. 

             Practical alignment verfication muserments shows a recognaizable variation!

                                                        Why ?!

                                In some of the cases it is subjected to the tools used.

                                          But there is some other reasons!

          One of these reasons is the cosequence of the system components stiffness into: 
          One of these reasons is the cosequence of the system components stiffness into:

                           1‐Bearing loads and Shaft slope inside propeller bearing

                                         2‐Propeller shaft lateral vibration.
                                         2 Propeller shaft lateral vibration

      This will explain some of the other reasons meanwhile it helps to investigate the most 
                                        reliable working domain for new projects.
                                          li bl     ki d     i f           j t

DNV Software User Conference                                                                    3
      Busan July 2012
Model of the case study




Propeller


                            ASTB   FSTB         AGB FGB

                                     ASTB=Aft Sterntube Bearing
                                     FSTB=Fwd Sterntube Bearing
                                     AGB=Aft Gearbox Bearing
                                     FGB=Fwd Gearbox Bearing
                                     GB= Gearbox (OR Main
                                     Engine first
                                     E i fi two bearings).
                                                   b i )

DNV Software User Conference                                      4
      Busan July 2012
Bearing stiffness


                                     External Bearing
                                     E t     lB i
                                     Calc. Tool
                                Shaft

                                           Bearing
                                Oil Film
                                           Calculation
                                Bearing
                                Material
                                                         Practical or theoretical
                                                 Model   assumption

                                Bearing
                                Foundation




DNV Software User Conference                                                        5
      Busan July 2012
Part 1‐ Alignment
Case No.1‐ Variation of FSTB Stiffness
Case No 1 Variation of FSTB Stiffness

   Working Domain:
   ‐Variation of Forward Sterntube Bearing 
   stiffness from 5.0E7 N/m to 5.0E10 N/m.

   ‐GAP & SAG are kept constant at all analysis 
                                                    Propeller
   points.
                                                                              GB
                                                                ASTB   FSTB
   ‐All other bearings assumed stiffness kept 
   constant.

   ‐GB bearings offsets changed at each analysis 
   point in order to maintain the same GAP‐SAG 
   figures.
   fi




DNV Software User Conference                                                       6
      Busan July 2012
Case No.1‐ Variation of FSTB Stiffness


     Results:
     A‐ Bearing loads.
                                             FSTB Stiffness variation effect on Bearing Loads
                                             FSTB Stiffness variation effect on Bearing Loads
                                 120

                                                        ASTB/10        FSTB             AGB       FGB
                                 100


                                  80
                           kN)




                                  60
                     Load (k




                                  40


                                  20


                                   0
                                  4.00E+07                4.00E+08                     4.00E+09         4.00E+10
                                                                     Stiffness (N/m)


DNV Software User Conference                                                                                       7
      Busan July 2012
Case No.1‐ Variation of FSTB Stiffness


     Results:
     B‐ Slope of the shaft inside Aft Sterntube bearing.

                                       FSTB Stiffness variation effect on Shaft Slope at ASTB
                                       FSTB Stiffness variation effect on Shaft Slope at ASTB
                               0.53

                              0.525

                               0.52

                              0.515
                      mm/m)




                               0.51
                                                                                    Shaft Slope at ASTB
                                                                                             p
               Slope (m




                              0.505

                                0.5

                              0.495

                               0.49
                                 4.00E+07          4.00E+08              4.00E+09         4.00E+10
                                                              Stiffness (N/m)




DNV Software User Conference                                                                              8
      Busan July 2012
Case No.2‐ Variation of ASTB Stiffness


    Working Domain:
    ‐Variation of  Aft Sterntube Bearing stiffness 
    from 3.0E8 N/m to 5.0E10 N/m.

    ‐GAP & SAG are kept constant at all analysis 
                                                      Propeller
    points.
                                                                                GB
                                                                  ASTB   FSTB
    ‐All other bearings assumed stiffness kept 
    constant.

    ‐GB bearings offsets changed at each analysis 
    point in order to maintain the same GAP‐SAG 
    figures.
    fi




DNV Software User Conference                                                         9
      Busan July 2012
Case No.2‐ Variation of ASTB Stiffness


     Results:
     A‐ Bearing loads.
                                        ASTB Stiffness variation effect on Bearing Loads
                                        ASTB Stiffness variation effect on Bearing Loads
                             90
                                              ASTB/10       FSTB             AGB   FGB
                             80

                             70

                             60
                 Load (kN)




                             50

                             40

                             30

                             20

                             10

                              0
                             2.00E+08                    2.00E+09                        2.00E+10
                                                              Stiffness (mm/m)



DNV Software User Conference                                                                        10
      Busan July 2012
Case No.2‐ Variation of ASTB Stiffness


     Results:
     B‐ Slope of the shaft inside Aft Sterntube Bearing.

                                         ASTB Stiffness variation effect on Shaft Slope at ASTB
                                         ASTB Stiffness variation effect on Shaft Slope at ASTB
                            0.75

                             0.7

                            0.65
                                                                                      Shaft Slope at ASTB
              Slope(mm/m)




                             0.6

                            0.55

                             0.5

                            0.45
                            0 45

                             0.4
                              2.00E+08                   2.00E+09                                      2.00E+10
                                                                    Stiffness (N/m)




DNV Software User Conference                                                                                      11
      Busan July 2012
Case No.3‐ Variation of GB Bearings Stiffness. 
(OR Main Engine foundation stiffness)
                   fo ndation

    Working Domain:
    ‐Variation of Gearbox Bearings stiffness from 
    2.0E7 N/m to 1.0E11 N/m.

    ‐GAP & SAG are kept constant at all analysis     Propeller
    points.
                                                                               GB
                                                                 ASTB   FSTB
    ‐All other bearings assumed stiffness kept 
    constant.

    ‐GB bearings offsets changed at each analysis 
    point in order to maintain the same GAP‐SAG 
    figures.
    fi




DNV Software User Conference                                                        12
      Busan July 2012
Case No.3‐ Variation of GB Bearings Stiffness. 
(OR Main Engine foundation stiffness)
                   fo ndation

     Results:
     A‐ Bearing loads.
                                      GB bearings Stiffness variation effect on Bearing Loads
                          100
                                                       ASTB/10      FSTB           AGB   FGB
                          90

                          80

                          70

                          60
              Load (kN)




                          50
              L




                          40

                          30

                          20

                          10

                            0
                           2.00E+07             2.00E+08                2.00E+09               2.00E+10
                                                                 Stiffness (N/m)
                                                                 Stiffness (N/m)



DNV Software User Conference                                                                              13
      Busan July 2012
Case No.3‐ Variation of GB Bearings Stiffness. 
(OR Main Engine foundation stiffness)
                   fo ndation

    Results:
    B‐ Slope of the shaft inside Aft Sterntube Bearing.

                                       GB bearings Stiffness variation effect on Shaft Slope at ASTB
                                       GB bearings Stiffness variation effect on Shaft Slope at ASTB
                             0.538


                             0.536


                             0.534
                                                                            Shaft Slope at ASTB
                             0.532
                     mm/m)
              Slope (m




                              0.53


                             0.528


                             0.526


                             0.524
                                1.00E+07          1.00E+08         1.00E+09                       1.00E+10   1.00E+11
                                                                 Stiffness (N/m)
                                                                           ( / )




DNV Software User Conference                                                                                            14
      Busan July 2012
Discussion of results 


      A‐ Bearing loads.
      A Bearing loads
        It is of importance to advice a well reliable stiffness range for the bearings 
        (Foundation & Material) in order to ensure a more reliable loads into the 
        bearing.

120                                                                                  100
                                              90
                                                                                       90
100                                           80
                                                                                       80
                                              70
                                                                                       70
80
                                              60                                       60
60                                            50                                       50
                                              40                                       40
40                                            30                                       30
                                              20                                       20
20
                                                                                       10
                                              10
  0                                                                                     0
                                               0
 4.00E+07      4.00E+08   4.00E+09   4.00E+10 2.00E+08                                 2.00E+07 2.00E+08 2.00E+09 2.00E+10
                                                              2.00E+09    2.00E+10



                      Case 1
                      C                                            Case 2
                                                                   C                                  Case 3
            Variation of FSTB Stiffness                  Variation of ASTB Stiffness        Variation of GB B. Stiffness
DNV Software User Conference                                                                                                 15
      Busan July 2012
Discussion of results 


    B‐ Slope of the shaft inside propeller bearing.
    B Slope of the shaft inside propeller bearing
       Is the slope of the shaft inside the propeller bearing  (only) is judgeable ?

     0.53                                     0.75                                   0.538

    0.525                                      0.7                                   0.536
     0.52                                                                                                 Shaft Slope at ASTB
                                              0.65                                   0.534
    0.515
                                               0.6                                   0.532
     0.51
                        Shaft Slope at ASTB   0.55                                    0.53
    0.505
                                               0.5                                   0.528
      0.5
      05                                                   Shaft Slope at ASTB
                                                              f
    0.495                                     0.45                                   0.526

     0.49                                      0.4                                   0.524
       4.00E+07 4.00E+08 4.00E+09 4.00E+10      2.00E+08   2.00E+09       2.00E+10      1.00E+07 1.00E+08 1.00E+09 1.00E+10 1.00E+11



              Case 1                                           Case 2                                  Case 3
    Variation of FSTB Stiffness                      Variation of ASTB Stiffness             Variation of GB B. Stiffness


DNV Software User Conference                                                                                                           16
      Busan July 2012
Discussion of results 


    B‐ Slope of the shaft inside propeller bearing.
    B Slope of the shaft inside propeller bearing
       Slope mismatch between the shaft and the bearing is more interesting, So 
       the slope of the bearing it self is important as well. 
                                              BEARING REACTIONS IN VERTICAL - OPERATING CONDITION 1 (GB-COLD-STATIC)
                                              -----------------------------------------------------------------------------------
                                              ----
                                                             Position       Load           Pressure       Offset         Slope
                                                              [cm]           [kN]           [bar]          [mm]          [mm/m]
                                              Bearing 1      244            182            5              -0 221
                                                                                                           0.221         0.669
                                                                                                                         0 669
                                              Bearing 2      284            129            5              -0.060         0.511
                                              Bearing 3      803            5              0              0.000          -0.163
                                              Bearing 4      1325           78             5              0.719          0.447
      Lubricant                 White metal   Bearing 5      1436           59             4              1.223          0.474



                                                               238      -1.074     7.340E-004    235233        15      -220
                                                               244      -1.036     7.200E-004    246710        16      -221
                                                               244      -1.035     7.200E-004    246930        16      -221
                                                               249      -1.000     7.050E-004    248883        16       -39
                                                               254      -0.964     6.910E-004    250869        16       -40
                                                               259      -0.930     6.770E-004    252888        16       -40
                                                               264      -0.896
                                                                        -0 896     6 620E-004
                                                                                   6.620E-004    254940        17       -41
                                                               269      -0.863     6.470E-004    257025        17       -42
                                                               274      -0.831     6.320E-004    259143        17       -42
                                                               279      -0.799     6.170E-004    261294        17       -43
                                                               284      -0.769     6.020E-004    263463        17       -44
                                                               292      -0.723     5.790E-004    256819        17        84




DNV Software User Conference                                                                                                  17
      Busan July 2012
Discussion of results 


    B‐ Slope of the shaft inside propeller bearing.
    B Slope of the shaft inside propeller bearing
      Then a traditional evaluation of the oil fils stiffness can be checked. 




DNV Software User Conference                                                     18
      Busan July 2012
Part 2‐Lateral vibration study.


    Introduction‐
    Introduction Basics


      Vibration: Is a harmonic motion.
      Vib ti     I h        i    ti

      Stiffness: Is the rigidity of an object

      Damping: Is the resistance to the motion.  


      System response: Is the amount of the 
      object deflection based on stiffness and 
      damping (Local/Global).  
      damping (Local/Global)




DNV Software User Conference                        19
      Busan July 2012
Part 2‐Lateral vibration study.


    Introduction‐ Lateral vibration mode shapes 
    Introduction Lateral vibration mode shapes                   Amplitude
    and stiffness components.




                                                            λ4
                                                                 λ3
                                                                             λ2
                                                                                                          λ1

                                             λ1 > λ2 > λ3 > λ4                    Ω1 < Ω2 < Ω3 < Ω4
                                              wave lengths                        vibrating frequencies




DNV Software User Conference                                                                                   20
      Busan July 2012
Part 2‐Lateral vibration study.


    Introduction‐ System response amplification factor with related damping.
    Introduction System response amplification factor with related damping

                                5




                                4                                                            η=0
                                                                                             η=0.1
                           or




                                                                                             η 0.2
                                                                                             η=0.2
           plification facto




                                                                                             η=0.3
                                3
                                                                                             η=0.4
                                                                                             η=0.5
                                                                                             η=1
         Amp




                                2                                                            η=1.5
                                                                                             η=2
                                                                                             η=7

                                1




                                0
                                    0   0.2   0.4   0.6   0.8          1   1.2   1.4   1.6
                                                                Ω/Ωn


DNV Software User Conference                                                                         21
      Busan July 2012
Part 2‐Lateral vibration study.


    Introduction‐ Lateral vibration and whirling.
    Introduction Lateral vibration and whirling


     Real life whirling case
     Real life whirling case        Whirling case during test System stiffness diagram in lateral
                                    Whirling case during test System stiffness diagram in lateral




DNV Software User Conference                                                                 22
      Busan July 2012
Case study‐ Variation of ASTB Stiffness


    Working Domain:
    ‐Variation of Aft Sterntube bearing stiffness 
    from 3.0E8 N/m to 5.0E10 N/m.

    ‐GAP & SAG are kept constant at all analysis 
                                                     Propeller
    points.
                                                                               GB
                                                                 ASTB   FSTB
    ‐All other bearings assumed stiffness kept 
    constant.

    ‐GB bearings offsets changed at each analysis 
    point in order to maintain the same GAP‐SAG 
    figures.
    fi




DNV Software User Conference                                                        23
      Busan July 2012
Case study‐ Variation of ASTB Stiffness


                Results:


                      ASTB Stiffness variation effect on 
                      ASTB Stiffness variation effect on                                      ASTB Stiffness variation effect on 
                                                                                              ASTB Stiffness variation effect on
                      Shaft natural frequency (order1)                                       Propeller natural frequency (order4)
                800                                                                    190
                750                                                                    180
           M)




                700                                                                    170
  Speed (RPM




                                                                         Speed (RPM)
                                                                                   )
                650                                                                    160
                                                                                       150
                600
                                      Shaft natural frequency (order1)                 140
                550                                                                                          Propeller natural frequency (order4)
                                                                                                                p                 q    y(       )
                                                                                       130
                500                                                                    120
                 2.00E+08         2.00E+09                  2.00E+10                    2.00E+08          2.00E+09                   2.00E+10
                                     Stiffness (N/m)
                                                                                                             Stiffness (mm/m)


                              1‐ Lateral vibration                                                     2‐ Lateral vibration
                            Shaft natural frequency.                                           Propeller blades natural frequency.



DNV Software User Conference                                                                                                                        24
      Busan July 2012
1‐ Lateral vibration, Shaft natural frequency.


       How it Built?
       What is the Natural frequency and Excitation frequency ? 
       What is the mode shapes?




                Clear mode shapes.
                Cl      d h                              Integrated mode shapes.




DNV Software User Conference                                                       25
      Busan July 2012
1‐ Lateral vibration, Shaft natural frequency


     How to handle?
       Most determined mode shapes: 
       Cantliver , First bending.
       Direction of the local/global 
       response.
       Damping: Have a slight effect on the 
       D      i H           li ht ff t  th       5
       cantiver mode and almost no effect on     4

       the first bending (Global response        3

       direction is linear toward the maximum 
       direction is linear toward the maximum    2

       bending without resistance).              1

                                                 0
                                                     0   0.5   1   1.5

       General conclusion: Running 
       close to reasonance  have to 
       be avoided.


DNV Software User Conference                                             26
      Busan July 2012
2‐ Lateral vibration, Propeller blades natural 
frequency

     How it built?




DNV Software User Conference                      27
      Busan July 2012
2‐ Lateral vibration, Propeller blades natural 
frequency

    What is the Natural frequency and Excitation frequency ? 
    What is the mode shapes?
                                                                    190   Propeller natural frequency (order4)

                                                                    180
                                                                    170
                                                                    160
                                                                    150
                                                                    140
                                                                    130
                                                                    120
                                                                     2.00E+08
                                                                     2 00E+08       2.00E+09
                                                                                    2 00E+09        2.00E+10
                                                                                                    2 00E+10

                                                           5

                                                           4

                                                           3

                                                           2

                                                           1

                                                           0
                                                                0            0.5             1            1.5
DNV Software User Conference                                                                                     28
      Busan July 2012
2‐ Lateral vibration, Propeller blades natural 
frequency

  How to handle?
  How to handle?
                                                 Diametrical Damping
  2.1) Shaft impact (Direct impact)
                                               Propeller shaft
       Most determined mode shapes:            response to vibration
       Cantliver , First bending.
       Cantliver First bending
       Direction of the local/global 
       response.
       Propeller damping (Resistance) effect due to this 
       applied vibration motion have to be considered 
                                                                       5
       as it is very effctive (Propeller diametrical 
       damping).                                                       4

                                                                       3
        So far the damping is effective, then a view 
                                                                       2
        of the excitation force is important as well.
         f th     it ti f       i i     t t        ll
                                                                       1

       The system response of this vibration motion                    0
                                                                           0   0.5   1   1.5
       should be followed up as it is an excitation force 
       should be followed up as it is an excitation force
       for another vibration motion‐‐‐‐ >
DNV Software User Conference                                                                   29
      Busan July 2012
2‐ Lateral vibration, Propeller blades natural 
frequency

  How to handle?
  How to handle?
  2.2) ASTB impact (indirect impact)
       Aft Sterntube bearing vibration, 
       (Consequence of main propeller 
       (Consequence of main propeller
       viberation).
       Bending  variation leads to load variation into the 
       bearing.
       bearing
       Is the bearing damping able to dominate  Bearing Damping
                                                     capability.
       the new intreduced harmonic load?
       Is the viberation motion charctrestics 
       acceptable ?




DNV Software User Conference                                       30
      Busan July 2012
Questions and discussion !


BERG PROPULSION PRODUCTION AB
BERG PROPULSION PRODUCTION AB
Mohamed Zeid
Naval Architect ‐ Rotordynamics Specialist

Direct: +46 31 30 10 736
Mobile: +46 761 175 022
E‐mail: mohamed.zeid@bergpropulsion.com
                      @ gp p

www.bergpropulsion.com


                                DNV Software User Conference 
                                                                31
                                      Busan July 2012

Shaft Alignment and Whirling Vibration

  • 1.
    Consequence of detailed modelling into shaft performance prediction q g p p Shaft Alignment and Whirling vibration
  • 2.
    Problem? A proper Shaft Analysis report issued.  Practical alignment verfication muserments shows a recognaizable variation! Why ?! In some of the cases it is subjected to the tools used. But there is some other reasons! One of these reasons is the cosequence of the system components stiffness into:  One of these reasons is the cosequence of the system components stiffness into: 1‐Bearing loads and Shaft slope inside propeller bearing 2‐Propeller shaft lateral vibration. 2 Propeller shaft lateral vibration This will explain some of the other reasons meanwhile it helps to investigate the most  reliable working domain for new projects. li bl ki d i f j t DNV Software User Conference  3 Busan July 2012
  • 3.
    Model of the case study Propeller ASTB FSTB AGB FGB ASTB=Aft Sterntube Bearing FSTB=Fwd Sterntube Bearing AGB=Aft Gearbox Bearing FGB=Fwd Gearbox Bearing GB= Gearbox (OR Main Engine first E i fi two bearings). b i ) DNV Software User Conference  4 Busan July 2012
  • 4.
    Bearing stiffness External Bearing E t lB i Calc. Tool Shaft Bearing Oil Film Calculation Bearing Material Practical or theoretical Model assumption Bearing Foundation DNV Software User Conference  5 Busan July 2012
  • 5.
    Part 1‐ Alignment Case No.1‐ Variation of FSTB Stiffness CaseNo 1 Variation of FSTB Stiffness Working Domain: ‐Variation of Forward Sterntube Bearing  stiffness from 5.0E7 N/m to 5.0E10 N/m. ‐GAP & SAG are kept constant at all analysis  Propeller points. GB ASTB FSTB ‐All other bearings assumed stiffness kept  constant. ‐GB bearings offsets changed at each analysis  point in order to maintain the same GAP‐SAG  figures. fi DNV Software User Conference  6 Busan July 2012
  • 6.
    Case No.1‐ Variation of FSTB Stiffness Results: A‐ Bearing loads. FSTB Stiffness variation effect on Bearing Loads FSTB Stiffness variation effect on Bearing Loads 120 ASTB/10 FSTB AGB FGB 100 80 kN) 60 Load (k 40 20 0 4.00E+07 4.00E+08 4.00E+09 4.00E+10 Stiffness (N/m) DNV Software User Conference  7 Busan July 2012
  • 7.
    Case No.1‐ Variation of FSTB Stiffness Results: B‐ Slope of the shaft inside Aft Sterntube bearing. FSTB Stiffness variation effect on Shaft Slope at ASTB FSTB Stiffness variation effect on Shaft Slope at ASTB 0.53 0.525 0.52 0.515 mm/m) 0.51 Shaft Slope at ASTB p Slope (m 0.505 0.5 0.495 0.49 4.00E+07 4.00E+08 4.00E+09 4.00E+10 Stiffness (N/m) DNV Software User Conference  8 Busan July 2012
  • 8.
    Case No.2‐ Variation of ASTB Stiffness Working Domain: ‐Variation of  Aft Sterntube Bearing stiffness  from 3.0E8 N/m to 5.0E10 N/m. ‐GAP & SAG are kept constant at all analysis  Propeller points. GB ASTB FSTB ‐All other bearings assumed stiffness kept  constant. ‐GB bearings offsets changed at each analysis  point in order to maintain the same GAP‐SAG  figures. fi DNV Software User Conference  9 Busan July 2012
  • 9.
    Case No.2‐ Variation of ASTB Stiffness Results: A‐ Bearing loads. ASTB Stiffness variation effect on Bearing Loads ASTB Stiffness variation effect on Bearing Loads 90 ASTB/10 FSTB AGB FGB 80 70 60 Load (kN) 50 40 30 20 10 0 2.00E+08 2.00E+09 2.00E+10 Stiffness (mm/m) DNV Software User Conference  10 Busan July 2012
  • 10.
    Case No.2‐ Variation of ASTB Stiffness Results: B‐ Slope of the shaft inside Aft Sterntube Bearing. ASTB Stiffness variation effect on Shaft Slope at ASTB ASTB Stiffness variation effect on Shaft Slope at ASTB 0.75 0.7 0.65 Shaft Slope at ASTB Slope(mm/m) 0.6 0.55 0.5 0.45 0 45 0.4 2.00E+08 2.00E+09 2.00E+10 Stiffness (N/m) DNV Software User Conference  11 Busan July 2012
  • 11.
    Case No.3‐ Variation of GB Bearings Stiffness.  (OR MainEngine foundation stiffness) fo ndation Working Domain: ‐Variation of Gearbox Bearings stiffness from  2.0E7 N/m to 1.0E11 N/m. ‐GAP & SAG are kept constant at all analysis  Propeller points. GB ASTB FSTB ‐All other bearings assumed stiffness kept  constant. ‐GB bearings offsets changed at each analysis  point in order to maintain the same GAP‐SAG  figures. fi DNV Software User Conference  12 Busan July 2012
  • 12.
    Case No.3‐ Variation of GB Bearings Stiffness.  (OR MainEngine foundation stiffness) fo ndation Results: A‐ Bearing loads. GB bearings Stiffness variation effect on Bearing Loads 100 ASTB/10 FSTB AGB FGB 90 80 70 60 Load (kN) 50 L 40 30 20 10 0 2.00E+07 2.00E+08 2.00E+09 2.00E+10 Stiffness (N/m) Stiffness (N/m) DNV Software User Conference  13 Busan July 2012
  • 13.
    Case No.3‐ Variation of GB Bearings Stiffness.  (OR MainEngine foundation stiffness) fo ndation Results: B‐ Slope of the shaft inside Aft Sterntube Bearing. GB bearings Stiffness variation effect on Shaft Slope at ASTB GB bearings Stiffness variation effect on Shaft Slope at ASTB 0.538 0.536 0.534 Shaft Slope at ASTB 0.532 mm/m) Slope (m 0.53 0.528 0.526 0.524 1.00E+07 1.00E+08 1.00E+09 1.00E+10 1.00E+11 Stiffness (N/m) ( / ) DNV Software User Conference  14 Busan July 2012
  • 14.
    Discussion of results  A‐ Bearing loads. A Bearing loads It is of importance to advice a well reliable stiffness range for the bearings  (Foundation & Material) in order to ensure a more reliable loads into the  bearing. 120 100 90 90 100 80 80 70 70 80 60 60 60 50 50 40 40 40 30 30 20 20 20 10 10 0 0 0 4.00E+07 4.00E+08 4.00E+09 4.00E+10 2.00E+08 2.00E+07 2.00E+08 2.00E+09 2.00E+10 2.00E+09 2.00E+10 Case 1 C Case 2 C Case 3 Variation of FSTB Stiffness Variation of ASTB Stiffness Variation of GB B. Stiffness DNV Software User Conference  15 Busan July 2012
  • 15.
    Discussion of results  B‐ Slope of the shaft inside propeller bearing. B Slope of the shaft inside propeller bearing Is the slope of the shaft inside the propeller bearing  (only) is judgeable ? 0.53 0.75 0.538 0.525 0.7 0.536 0.52 Shaft Slope at ASTB 0.65 0.534 0.515 0.6 0.532 0.51 Shaft Slope at ASTB 0.55 0.53 0.505 0.5 0.528 0.5 05 Shaft Slope at ASTB f 0.495 0.45 0.526 0.49 0.4 0.524 4.00E+07 4.00E+08 4.00E+09 4.00E+10 2.00E+08 2.00E+09 2.00E+10 1.00E+07 1.00E+08 1.00E+09 1.00E+10 1.00E+11 Case 1 Case 2 Case 3 Variation of FSTB Stiffness Variation of ASTB Stiffness Variation of GB B. Stiffness DNV Software User Conference  16 Busan July 2012
  • 16.
    Discussion of results  B‐ Slope of the shaft inside propeller bearing. B Slope of the shaft inside propeller bearing Slope mismatch between the shaft and the bearing is more interesting, So  the slope of the bearing it self is important as well.  BEARING REACTIONS IN VERTICAL - OPERATING CONDITION 1 (GB-COLD-STATIC) ----------------------------------------------------------------------------------- ---- Position Load Pressure Offset Slope [cm] [kN] [bar] [mm] [mm/m] Bearing 1 244 182 5 -0 221 0.221 0.669 0 669 Bearing 2 284 129 5 -0.060 0.511 Bearing 3 803 5 0 0.000 -0.163 Bearing 4 1325 78 5 0.719 0.447 Lubricant White metal Bearing 5 1436 59 4 1.223 0.474 238 -1.074 7.340E-004 235233 15 -220 244 -1.036 7.200E-004 246710 16 -221 244 -1.035 7.200E-004 246930 16 -221 249 -1.000 7.050E-004 248883 16 -39 254 -0.964 6.910E-004 250869 16 -40 259 -0.930 6.770E-004 252888 16 -40 264 -0.896 -0 896 6 620E-004 6.620E-004 254940 17 -41 269 -0.863 6.470E-004 257025 17 -42 274 -0.831 6.320E-004 259143 17 -42 279 -0.799 6.170E-004 261294 17 -43 284 -0.769 6.020E-004 263463 17 -44 292 -0.723 5.790E-004 256819 17 84 DNV Software User Conference  17 Busan July 2012
  • 17.
    Discussion of results  B‐ Slope of the shaft inside propeller bearing. B Slope of the shaft inside propeller bearing Then a traditional evaluation of the oil fils stiffness can be checked.  DNV Software User Conference  18 Busan July 2012
  • 18.
    Part 2‐Lateral vibration study. Introduction‐ Introduction Basics Vibration: Is a harmonic motion. Vib ti I h i ti Stiffness: Is the rigidity of an object Damping: Is the resistance to the motion.   System response: Is the amount of the  object deflection based on stiffness and  damping (Local/Global).   damping (Local/Global) DNV Software User Conference  19 Busan July 2012
  • 19.
    Part 2‐Lateral vibration study. Introduction‐ Lateral vibration mode shapes  Introduction Lateral vibration mode shapes Amplitude and stiffness components. λ4 λ3 λ2 λ1 λ1 > λ2 > λ3 > λ4 Ω1 < Ω2 < Ω3 < Ω4 wave lengths vibrating frequencies DNV Software User Conference  20 Busan July 2012
  • 20.
    Part 2‐Lateral vibration study. Introduction‐ System response amplification factor with related damping. Introduction System response amplification factor with related damping 5 4 η=0 η=0.1 or η 0.2 η=0.2 plification facto η=0.3 3 η=0.4 η=0.5 η=1 Amp 2 η=1.5 η=2 η=7 1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Ω/Ωn DNV Software User Conference  21 Busan July 2012
  • 21.
    Part 2‐Lateral vibration study. Introduction‐ Lateral vibration and whirling. Introduction Lateral vibration and whirling Real life whirling case Real life whirling case Whirling case during test System stiffness diagram in lateral Whirling case during test System stiffness diagram in lateral DNV Software User Conference  22 Busan July 2012
  • 22.
    Case study‐ Variation of ASTB Stiffness Working Domain: ‐Variation of Aft Sterntube bearing stiffness  from 3.0E8 N/m to 5.0E10 N/m. ‐GAP & SAG are kept constant at all analysis  Propeller points. GB ASTB FSTB ‐All other bearings assumed stiffness kept  constant. ‐GB bearings offsets changed at each analysis  point in order to maintain the same GAP‐SAG  figures. fi DNV Software User Conference  23 Busan July 2012
  • 23.
    Case study‐ Variation of ASTB Stiffness Results: ASTB Stiffness variation effect on  ASTB Stiffness variation effect on ASTB Stiffness variation effect on  ASTB Stiffness variation effect on Shaft natural frequency (order1) Propeller natural frequency (order4) 800 190 750 180 M) 700 170 Speed (RPM Speed (RPM) ) 650 160 150 600 Shaft natural frequency (order1) 140 550 Propeller natural frequency (order4) p q y( ) 130 500 120 2.00E+08 2.00E+09 2.00E+10 2.00E+08 2.00E+09 2.00E+10 Stiffness (N/m) Stiffness (mm/m) 1‐ Lateral vibration 2‐ Lateral vibration Shaft natural frequency. Propeller blades natural frequency. DNV Software User Conference  24 Busan July 2012
  • 24.
    1‐ Lateral vibration, Shaft natural frequency. How it Built? What is the Natural frequency and Excitation frequency ?  What is the mode shapes? Clear mode shapes. Cl d h Integrated mode shapes. DNV Software User Conference  25 Busan July 2012
  • 25.
    1‐ Lateral vibration, Shaft natural frequency How to handle? Most determined mode shapes:  Cantliver , First bending. Direction of the local/global  response. Damping: Have a slight effect on the  D i H li ht ff t th 5 cantiver mode and almost no effect on  4 the first bending (Global response  3 direction is linear toward the maximum  direction is linear toward the maximum 2 bending without resistance). 1 0 0 0.5 1 1.5 General conclusion: Running  close to reasonance  have to  be avoided. DNV Software User Conference  26 Busan July 2012
  • 26.
    2‐ Lateral vibration, Propeller blades natural  frequency How it built? DNV Software User Conference  27 Busan July 2012
  • 27.
    2‐ Lateral vibration, Propeller blades natural  frequency What is the Natural frequency and Excitation frequency ?  What is the mode shapes? 190 Propeller natural frequency (order4) 180 170 160 150 140 130 120 2.00E+08 2 00E+08 2.00E+09 2 00E+09 2.00E+10 2 00E+10 5 4 3 2 1 0 0 0.5 1 1.5 DNV Software User Conference  28 Busan July 2012
  • 28.
    2‐ Lateral vibration, Propeller blades natural  frequency How to handle? How to handle? Diametrical Damping 2.1) Shaft impact (Direct impact) Propeller shaft Most determined mode shapes:  response to vibration Cantliver , First bending. Cantliver First bending Direction of the local/global  response. Propeller damping (Resistance) effect due to this  applied vibration motion have to be considered  5 as it is very effctive (Propeller diametrical  damping). 4 3 So far the damping is effective, then a view  2 of the excitation force is important as well. f th it ti f i i t t ll 1 The system response of this vibration motion  0 0 0.5 1 1.5 should be followed up as it is an excitation force  should be followed up as it is an excitation force for another vibration motion‐‐‐‐ > DNV Software User Conference  29 Busan July 2012
  • 29.
    2‐ Lateral vibration, Propeller blades natural  frequency How to handle? How to handle? 2.2) ASTB impact (indirect impact) Aft Sterntube bearing vibration,  (Consequence of main propeller  (Consequence of main propeller viberation). Bending  variation leads to load variation into the  bearing. bearing Is the bearing damping able to dominate  Bearing Damping capability. the new intreduced harmonic load? Is the viberation motion charctrestics  acceptable ? DNV Software User Conference  30 Busan July 2012
  • 30.
    Questions and discussion ! BERG PROPULSION PRODUCTION AB BERG PROPULSION PRODUCTIONAB Mohamed Zeid Naval Architect ‐ Rotordynamics Specialist Direct: +46 31 30 10 736 Mobile: +46 761 175 022 E‐mail: mohamed.zeid@bergpropulsion.com @ gp p www.bergpropulsion.com DNV Software User Conference  31 Busan July 2012