SlideShare a Scribd company logo
1
The world leader in serving science
Rosanne Slingsby, Kate Comstock, and Paul Voelker
March 18, 2015
Analysis of Phosphate and Manganese
Degradation Products in Aged Lithium
Ion Batteries
Part #: PP71583-EN 0315S
2
Li-ion Battery Analysis: IC-HRMS
What Steps Are Involved?
IC-HRMS
Thermo Scientific™ Q Exactive™ Orbitrap™ MS
• Component Identification in Untargeted and Unknown Workflows
IC-CD
Time (min)
125 135 145 155 165 175 185
m/z
0
100
169.0272
C 4 H 10 O 5 P
155.0115
C 3H8O5P
125.0009
C2H6O4P
139.0166
C3H8O4P
Phosphate esters
Chemical
formula
Exact
mass
Delta
ppm
C2H6O4P 125.0009 -0.1
C3H8O4P 139.0166 0.2
C3H8O5P 155.0115 0.1
C4H10O5P 169.0272 0.4
Relativeabundance
1.  IC Separation using a KOH eluent
2.  Full scan MS/MS acquisition
3.  Component ID based on HRAM
Data
4.  Propose Structure
Source for Dimethyl phosphate image: CSID:2982799, http://www.chemspider.com/Chemical-Structure.2982799.html (accessed 00:59, Feb 5, 2015)
3
Ion Chromatography Coupled to High Resolution Mass
Spectrometry
Eluent
Generator
(OH– or H+)
Conductivity
Detector
High-
Pressure
Non-Metallic
Pump
H2O
Autosampler
Electrolytic
Eluent
Suppressor
CR-TC
Separation
column
Pump
Solvent
/H2O
CD
Thermo Scientific
Q ExactiveTM
HRMS
C-trap HCD Cell
Segmented
Quadrupole
RF Lens
Injection flatapole
Electrospray inlet
4
Methods
•  IC Parameters
Column: Thermo Scientific™ Dionex™ IonPac™AG11, AS11 (2 mm)
Eluent: 1mM KOH from 0 to 5 minutes,
1-30 mM KOH from 5 to 25 minutes
30-65 mM KOH from 25.1-45 minutes
Eluent Source: Thermo Scientific Dionex EGC 500 KOH Cartridge
Flow Rate: 0.25 mL/min
Inj. Volume: 2.5 µL
Temperature: 30 ˚C
Detection: Suppressed Conductivity,
Thermo Scientific™ Dionex™ AERS™ 500 (2 mm) Suppressor
AutoSuppression, recycle mode
Post column solvent: 90/10 Acetonitrile/water, 0.25 mL/min
•  MS Parameters
HRAM full scan MS and data dependent top 3 MS/MS were collected at resolution 70K and 17.5K, respectively
Stepped NCE setting were: 30, 40, 60.
5
7. Methylsulfonate
8. Pyruvate
9. Chlorite
10. Valerate
11. Monochloroacetate
12. Bromate
13. Chloride
14. Nitrite
15. Trifluoroacetate
16. Bromide
17. Nitrate
18. Chlorate
19. Selenite
20. Carbonate
21. Malonate
22. Maleate
23. Sulfate
24. Oxalate
25. Ketomalonate
26. Tungstate
27. Phthalate
28. Phosphate
29. Chromate
30. Citrate
31. Tricarballylate
32. Isocitrate
33. cis-Aconitate
34. trans-Aconitate
Peaks:
1. Isopropylmethylphosphonate
mg/L
2. Quinate
3. Fluoride
4. Acetate
5. Propionate
6. Formate
0
10
µS
5 15Minutes 10
2
3 4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
3421
20
22
23
24
25
26
27
28
29
30
31
32
33
Monovalent Divalent Trivalent
Anion Exchange Gradients: Dionex IonPac AS11
Separation of Anions
6
Lithium Ion Battery (LiB) Samples
•  Overall Objectives
•  Screen samples to identify changes among sample types
•  Use ion exchange separation to help identify analyte properties
•  Identify as many components as possible
•  Samples
•  Control
•  Calendar aged 20% loss in capacity
•  Cycle Aged 20% loss in capacity
•  Additional Cycle Aged 45% loss in capacity
•  Other Injections
•  DI water blank
•  Process control blank
7
Preparation of LiB Anode Samples
• Anodes were cut to known weight
• Samples were sonicated and rinsed in deionized water
• Extracts were filtered thru Whatman PP 0.45 µm filters
• Weight losses were calculated
• Filtered extracts were injected into the IC-CD-HRMS
system
8
IC-CD Chromatograms of Anode Samples
e:libnov20-runva-3-pp 11/20/14 21:49:03
AS11 2mm 250ul/min
RT: 0.00 - 55.00
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
Time (min)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
µS
3.77
4.07
15.924.91
5.27
17.92
15.56
9.78 10.73 27.71 49.1524.688.15 14.94 26.675.81 23.01 54.8250.66 53.58
NL:
1.19E1
ECD_1 UV
MA-0-PP
RT: 0.00 - 54.99
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
Time (min)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
µS
4.91
16.1415.89
22.94
14.21
17.925.22 27.79
24.10 49.1448.5710.73 26.66 41.6613.867.00 9.76 50.65 51.53 53.1919.66 28.64
NL:
1.54E1
ECD_1 UV
UA-1-PP
RT: 0.00 - 54.99
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
Time (min)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
µS
4.91
16.14
15.87
22.95
14.20
27.77
17.92
5.17
49.7249.0226.6724.1313.86 50.67
NL:
3.21E1
ECD_1 UV
va-3-pp
Control
Calendar Aged 20% Loss
Cycle Aged 45% Loss
Sulfate
17.12
Phosphate
Monovalent Divalent Trivalent components
9
IC-HRMS Chromatograms of Anode Samples
e:libnov20-runva-3-pp 11/20/14 21:49:03
AS11 2mm 250ul/min
RT: 0.04 - 55.00
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
Time (min)
0
5
10
15
20
RelativeAbundance
5.32
9.82
8.21
4.11 16.2211.07
15.593.93 27.7424.7514.06
NL:
3.09E9
Base Peak F:
FTMS - p ESI
Full ms
[50.00-750.00]
MS MA-0-PP
RT: 0.00 - 54.99
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
Time (min)
0
5
10
15
20
RelativeAbundance
23.02
4.16 5.31 16.19
14.237.04 8.163.76 9.81 15.576.22 27.77
24.13 41.7217.9911.07 24.30 49.7513.99
NL:
2.57E9
Base Peak F:
FTMS - p ESI
Full ms
[50.00-750.00]
MS UA-1-PP
RT: 0.09 - 55.00
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
Time (min)
0
5
10
15
20
RelativeAbundance
23.00
14.24
5.294.20 16.19
27.7315.553.59 27.868.15
3.32 9.80
7.01 49.7926.7317.98 24.16 49.1913.95 41.7910.63 53.27
NL:
2.79E9
Base Peak F:
FTMS - p ESI
Full ms
[50.00-750.00]
MS va-3-pp
Monovalent Divalent Trivalent components
Control
Calendar Aged 20% Loss
Cycle Aged 45% Loss
10
Anionic Compounds and Classes Found in LiB
Samples to Date
• Solvents- Methyl carbonate
• Inorganic Anions- sulfate, phosphate, hexafluorophosphate
etc
• Carboxylic acids- succinate, malate, malonate, oxalate etc
• Organic sulfonates – propylsulfonate
• Sulfate esters
• Phosphate esters
• Fluorophosphate esters
11
Example Data Analysis - Identify Methyl Carbonate
E:LiBNov20-RunVA-3-PP 11/20/14 21:49:03
AS11 2mm 250ul/min
RT: 0.04 - 55.00
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
Time (min)
0
5
10
15
RelativeAbundance
23.00
14.24
5.294.20 16.19
27.7315.553.59 27.868.153.32 9.80
7.01 49.7926.7317.98 24.16 49.1913.95 41.7910.63 53.2728.2118.86 47.442.23 37.581.26 38.48 50.6136.4529.7822.53 31.87 46.0833.04 42.33
NL:
2.79E 9
B as e	
  P eak	
  F :	
  
F T MS 	
  -­‐	
  p	
  E S I	
  F ull	
  
ms 	
  [50.00-­‐750.00]	
  	
  
MS 	
  VA -­‐3-­‐P P
VA-3-PP #1865 RT: 4.21 AV: 1 NL: 1.41E8
T: FTMS - p ESI Full ms [50.00-750.00]
60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210
m/z
0
50
100
RelativeAbundance
75.0087
C2 H3 O3
122.9853
C2 H4 O4 P89.0245
C3 H5 O3
60.9930
C H O3
59.0137
C2 H3 O2
RT: 0.00 - 55.00
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
Time (min)
0
20
40
60
80
100
RelativeAbundance
4.20
17.11
NL:	
  1.75E 8
m/z=	
  74.38-­‐75.38	
  F :	
  
F T MS 	
  -­‐	
  p	
  E S I	
  F ull	
  
ms 	
  [50.00-­‐750.00]	
  	
  
MS 	
  VA -­‐3-­‐P P
VA-3-PP #1854 RT: 4.19 AV: 1 NL: 2.21E7
F: FTMS - p ESI d Full ms2 75.01@hcd45.00 [50.00-100.00]
60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210
m/z
0
50
100
RelativeAbundance
75.0088
C2 H3 O3
Full Scan c-gram
Peak at 4.20 minutes
EIC of 75.0088 m/z
Delta 0.4 ppm
MS2 at 4.20 min.
C2H3O3
12
E:LiBNov20-RunVA-3-PP 11/20/14 21:49:03
AS11 2mm 250ul/min
RT: 0.09 - 55.00
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
Time (min)
0
2
4
6
8
10
12
14
16
RelativeAbundance
23.00
14.24
5.29 4.20 16.19
27.7315.553.59 27.868.15
3.32 9.803.24
7.01 49.7926.7317.98 24.16 49.1913.95 41.7910.63 53.2718.31 18.48 28.21 47.442.23 37.581.26 38.48 50.6136.4529.78 31.87 44.9633.04 42.33
NL:
2.79E9
Base Peak F:
FTMS - p ESI
Full ms
[50.00-750.00]
MS VA-3-PP
VA-3-PP #1568-1694 RT: 3.58-3.84 AV: 32 NL: 5.89E7
T: FTMS - p ESI Full ms [50.00-750.00]
60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
m/z
0
20
40
60
80
100
RelativeAbundance
169.0272
C4 H10 O5 P
139.0166
C3 H8 O4 P
125.0009
C2 H6 O4 P
155.0115
C3 H8 O5 P
185.0222
C11 H5 O360.9930
C H O3
153.0323
C4 H10 O4 P
119.0349
C4 H7 O4
133.0507
C5 H9 O4
89.0245
C3 H5 O3
179.0562
C6 H11 O6
110.9853
C H4 O4 P
163.0613
C6 H11 O5
103.0401
C4 H7 O3
RT: 0.00 - 55.00 SM: 7B
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
Time (min)
0
20
40
60
80
100
RelativeAbundance
5.30
3.87
5.63
NL:
1.70E8
m/z=
138.51-139.51 F:
FTMS - p ESI
Full ms
[50.00-750.00]
MS VA-3-PP
Early Eluting Phosphate Esters
Phosphate esters
Chemical
formula
Exact mass Delta
ppm
C2H6O4P 125.0009 -0.1
C3H8O4P 139.0166 0.2
C3H8O5P 155.0115 0.1
C4H10O5P 169.0272 0.4
(RT 3.6-3.8 minutes)
EIC of 139.01 m/z
RT 3.6-3.8 minutes
Base peak chromatogram
13
Later Eluting Phosphate Esters
e:libnov20-runva-3-pp 11/20/14 21:49:03
AS11 2mm 250ul/min
RT: 0.00 - 55.00
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
Time (min)
0
50
100
0
50
100
0
50
100
17.16
23.0014.245.294.20 16.19 27.733.59 8.15 9.80 49.7926.7317.9813.95 41.79 53.27
14.24
3.65 17.065.94 23.03 28.94 30.9226.152.78 38.5335.459.80 52.9046.5313.78 41.0721.93 45.378.68 49.8019.24 33.70 41.99
14.39
24.333.36 27.0114.85 22.993.74 17.2310.01 47.1938.53 54.2640.0922.1211.97 49.420.86 36.8635.3130.26 43.50 45.56 50.9733.578.256.96
NL: 2.79E9
Base Peak F: FTMS - p
ESI Full ms
[50.00-750.00] MS
va-3-pp
NL: 3.23E7
Base Peak m/z=
282.49-283.49 F: FTMS
- p ESI Full ms
[50.00-750.00] MS
va-3-pp
NL: 2.70E7
Base Peak m/z=
212.51-213.51 F: FTMS
- p ESI Full ms
[50.00-750.00] MS
va-3-pp
va-3-pp #6257-6338 RT: 14.19-14.36 AV: 21 SB: 129 14.50-15.08 , 13.35-13.92 NL: 1.22E8
T: FTMS - p ESI Full ms [50.00-750.00]
60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
m/z
0
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
140.9958
C2 H6 O5 P
125.0009
C2 H6 O4 P
110.9852
C H4 O4 P
78.9590
O3 P
282.9991
C4 H13 O10 P2
267.0039
C4 H13 O9 P2
121.0295
C7 H5 O2
213.0170
C5 H10 O7 P
236.9935
C3 H11 O8 P2
96.9600
H O4 S
(RT14.2-14.4 minutes)
14
Analysis of an Unknown- Ethanetricarboxylate
e:libnov20-runva-3-pp 11/20/14 21:49:03
AS11 2mm 250ul/min
RT: 0.04 - 55.00
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
Time (min)
0
2
4
6
8
10
12
14
16
18
20
RelativeAbundance
23.00
14.24
5.294.20
16.19
27.733.59
8.15
3.32 9.80
7.01 49.7926.7317.98 24.16 49.1913.95 41.799.97 53.27
NL:
2.79E9
Base Peak F:
FTMS - p ESI
Full ms
[50.00-750.00]
MS va-3-pp
va-3-pp #12253-12393 RT: 27.65-27.96 AV: 36 SB: 131 28.41-29.16 , 26.94-27.39 NL: 5.27E7
T: FTMS - p ESI Full ms [50.00-750.00]
60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
m/z
0
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
117.0193
C4 H5 O4
103.0037
C3 H3 O4
161.0092
C5 H5 O6
59.0137
C2 H3 O2 118.9986
C3 H3 O5
133.0143
C4 H5 O5
73.0295
C3 H5 O2
60.9929
C H O3
178.9317
H2 O6 F P2
149.0092
C4 H5 O6
99.0088
C4 H3 O3
173.0092
C6 H5 O6
115.0037
C4 H3 O4
Delta
0.2 ppm
Trivalent elution region
C5H5O6
15
Simple Case - Propylsulfonate
e:libnov20-runva-3-pp 11/20/14 21:49:03
AS11 2mm 250ul/min
RT: 0.04 - 55.00
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
Time (min)
0
2
4
6
8
10
12
14
16
18
20
RelativeAbundance
23.00
14.24
5.294.20
16.19
27.733.59
8.15
3.32 9.80
7.01 49.7926.7317.98 24.16 49.1913.95 41.799.97 53.27
NL:
2.79E9
Base Peak F:
FTMS - p ESI
Full ms
[50.00-750.00]
MS va-3-pp
va-3-pp #3544-3662 RT: 8.00-8.26 AV: 30 SB: 131 28.41-29.16 , 26.94-27.39 NL: 6.20E7
T: FTMS - p ESI Full ms [50.00-750.00]
60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
m/z
0
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
123.0121
C3 H7 O3 S
79.9572
O3 S
16
Chemical Formula for Propylsulfonate
Help from HRMS Data
Chemical formulae, Mass 123.01 Chemical formulae, Mass 123.0121
Formula Delta, ppm Formula Delta, ppm
1 C6H3O3 10.0 1 C3H7O3S -0.3
2 C3H7O3S -17.4 2 C6H3O3 27.1
17
Summary: ESI(-) Mode Peaks from Sample VA
RT: 0.44 - 55.00
5 10 15 20 25 30 35 40 45 50 55
Time (min)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
RelativeAbundance
5.29
4.20
16.19
27.73
3.59
27.86
8.15
3.32 9.80
7.01 49.79
26.73
17.98
24.16
49.19
13.95 41.79
53.2718.21
18.66 47.4428.792.23 47.1537.58 50.6136.4529.78 41.34
NL:
2.79E9
Base Peak F:
FTMS - p ESI
Full ms
[50.00-750.00]
MS VA-3-PP
6.21	
  
14.24
15.55
17.22
23.03
Retention time Masses Delta (ppm) Possible ID
3.3-3.8 several Phosphate esters
4.20 75.0088 0.4 CH3O3
Methyl carbonate
6.21 112.9810 0.6 CH3O3FP
Methylfluorophosphate
8.15 123.0121 -0.3 C3H7O3S
Propylsulfonate
14.24 several Phosphate esters
15.55 117.0193 0.3 C4H5O4
Succinate
16.19 103.0036 -0.2 C3H3O4
Malonate
15.62 133.0137 0.4 C4H5O5
Malate
17.22 98.9601 0 HSO4
23.03 98.9696 -0.2 H2PO4
27.73 161.0092 0.2 C5H5O6
41.79 176.9360 0.3 H3P2O7
49.19 175.0249 0.5 C6H7O6
18
Summary
• Ion chromatography provides ion exchange separations of
anionic (or cationic) sample components
• The IC with a conductivity detector is coupled to HRMS to
provide information in the elucidation of unknowns
• Analytes are eluted in the order of
monovalent<divalent<trivalent<higher by ion exchange
separation so information is provided on key structural
features
• To date we have found components from the aging of LiB
anodes in several chemical classes including carboxylic
acids, esters, phosphate esters, fluorophosphate esters,
sulfate esters, as well as inorganic anions
19
Lithium Ion Battery Anode Samples Analysis
•  Anode samples
•  Control Cell Shelf Aged.
•  Calendar Aged. Exhibited 20% loss in capacity.
•  Cycle Aged. Exhibited 20% loss in capacity.
•  Additional Cycle Aged. Exhibited 45% loss in capacity.
•  Objective
•  To identify the impurity and degradant present in the sample group.
•  To correlate the analysis results with the batteries performance.
•  IC-HRMS Analysis and software
•  Thermo Scientific Dionex IC combined with the Q Exactive HRMS was used
for separation and identification.
•  Thermo Scientific™ SIEVE™ software used for component extraction and
differential analysis. The Chem Spider report with the high resolution data
base for known component screening. Thermo Scientific™ Mass Frontier™
was used for structural elucidation.
20
Comprehensive Li-ion Battery Analysis Workflow : IC-HRMS
HR MS Analysis
Full Scan-MS/MS
Ion Separation
Components
Identified .
_________________
. _________________
. _________________
. _________________
. _________________
. _________________
Component ID
(Chem Spider and high
resolution ion database)
Sample Preparation
Thermo Scientific high resolution accurate mass ion database contains accurate masses for common anions and
elemental compositions. Users can quickly identify the common anions by database search.
Report
Thermo Scientific
Dionex ICS-2100 System
Q Exactive MS
SIEVE Software
Component Extraction
Differential Analysis
High Resolution Anion Database
. __________ .__________
. __________ .__________
. __________ .__________
21
Schematic of Q Exactive Benchtop LC-MS/MS
22
Q Exactive MS Specifications
•  Max resolution: 140,000 at m/z 200
•  Scan speed: up to 12 HZ (at 17.5K)
•  Mass Accuracy
•  < 3 ppm external
•  < 1 ppm internal
•  Mass range for full scans: 50 < m/z < 6000
•  Intra-scan dynamic range: > 5000:1
•  Sensitivity
•  Full MS: 500 fg Buspirone on column S/N 100:1
•  SIM: 50 fg Buspirone on column S/N 100:1
•  Polarity Switching
•  One full cycle in < 1 sec (one full scan positive mode and one full scan
negative mode at resolution setting of 35,000)
Resolution at
m/z 200
Max. Scan
Speed (Hz)
17.500 12
35.000 7
70.000 3
140.000 1.5
23
Why Use Q Exactive HRMS?
• Q Exactive High Resolution Accurate Mass (HRAM) data
provides ultimate confidence for qualitative and
quantitative analysis.
• High sensitivity, rapid polarity switching ensure detection of
structurally diverse compounds at all level.
• The HRAM full scan and MS/MS provide rich information for
component identification and structure elucidation
• Coupled with SIEVE and other Thermo Scientific software,
QExactive MS is best suited for known and unknown
impurity and degradant analysis for Li-ion battery and other
industrial applications.
24
Q Exactive Instrument Method
• MS Method
•  ESI negative ion mode
•  AGC target 1e6
•  Full scan MS and data dependent top 3 MS/MS at resolution 70K
and 17.5K
•  Stepped NCE: 30, 45, 60
•  Scan range: 50 to 750 m/z
25
HR-MS for Lithium Ion Battery Anode Analysis
• HR-MS unambiguously identifies ion species based on
HRAM data
•  Unit mass vs. high resolution accurate mass
m/z	
  (-­‐)	
  
Unit	
  mass	
  
m/z	
  (-­‐)	
  
HRAM	
  
Formula	
  (-­‐)	
   Ionic	
  Species	
  
97	
   96.9601	
   HSO4	
   Hydrogen	
  Sulfate	
  
97	
   96.9696	
   H2PO4	
   DiHydrogen	
  Phosphate	
  
139	
   139.0166	
   C3H8O4P	
   Phosphate	
  Ester	
  
139	
   139.0071	
   C3H7O4S	
   Sulfate	
  Ester	
  
26
90 100 110 120 130 140 150 160 170 180 190
m/z
0
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
139.0166
133.0507
110.9853
120 130 140 150 160 170 180
m/z
0
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
139.0071
141.0029
UA-1-PP#1634 RT: 3.73
T:
50 60 70 80 90 100 110 120 130 140 150 160
m/z
0
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
78.9591
O3 P
0.8 ppm
110.9853
C H4 O4 P
0.5 ppm
139.0166
C3 H8 O4 P
0.5 ppm
62.9642
O2 P
0.3 ppm
UA-1-PP#2322 RT: 5.26 AV: 1 NL: 2.84E7
T:
50 60 70 80 90 100 110 120 130 140 150 160
m/z
0
10
20
30
40
50
60
70
80
90
100RelativeAbundance
139.0072
C3 H7 O4 S
1.0 ppm
79.9575
O3 S
1.3 ppm
81.953264.9702
HO2 S
-1.4873 ppm
120.9965
C3 H5 O3 S
-0.1060 ppm
HRAM MS/MS Fragments for Structure Elucidation
(M-H)-(M-H)-
C3H7O4S
m/z (-) 139.0071
0.3 ppm
(-) C3H8O4P
m/z (-)
139.0166
0.4 ppm
MS/MS MS/MS
S
O
O
OOH
OH P
O
O
O
•  HRAM MS/MS fragments for confident structure characterization
27
HRAM MS/MS Fragments for Structure Elucidation
The structures of co-eluting peaks were identified by MS/MS fragments
O
P
O
O
O
O
P
O
O
O
OH O
P
O
O
O
OH O
P
O
O
O
OH
OH
ua-1-pp #1521 RT: 3.48 AV: 1 NL: 5.71E7
T: FTMS - p ESI Full ms [50.00-750.00]
80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290
m/z
0
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
169.0272
155.0116
185.0222
125.0009
139.0166
183.012296.9601 112.9856
121.0295
163.0613 200.986589.024579.9574 190.9916
172.9915
133.0507 149.0456 255.2331217.0256101.0608 237.0148 283.2644274.9611 293.0074
ua-1-pp #1510 RT: 3.46 AV: 1 NL: 2.72E6
T: FTMS - p ESI d Full ms2 125.00@hcd45.00 [50.00-150.00]
60 80 100 120 140
m/z
0
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
125.0010
62.9641
78.9591
111.9568
94.9905
ua-1-pp #1518 RT: 3.48 AV: 1 NL: 8.32E6
T: FTMS - p ESI d Full ms2 155.01@hcd45.00 [50.00-180.00]
60 80 100 120 140 160 180
m/z
0
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
78.9591 110.9853
155.0117
122.9854
ua-1-pp #1502 RT: 3.44 AV: 1 NL: 1.82E7
T: FTMS - p ESI d Full ms2 169.03@hcd45.00 [50.00-195.00]
60 80 100 120 140 160 180
m/z
0
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
78.9591
140.9960
169.0273
125.0010
ua-1-pp #1496 RT: 3.43 AV: 1 NL: 6.67E6
T: FTMS - p ESI d Full ms2 184.99@hcd45.00 [50.00-210.00]
50 100 150 200
m/z
0
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
78.9591
122.9854
185.0223
140.9960
28
IC-HRMS Result for Aged Anode
F:Li-Battary-PaulNov20-RunVA-3-PP 11/20/14 21:49:03
AS11 2mm 250ul/min
RT: 0.0 - 55.0 SM: 5G
0 5 10 15 20 25 30 35 40 45 50 55
Time (min)
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
0
5
10
15
20
25
30
µS
4.0
17.1
4.9 16.1 22.914.2 27.817.95.2 49.748.626.724.113.9 50.7
17.2
23.0
14.25.34.2 16.2 27.73.6 27.88.1 9.83.3 49.87.0 26.718.0 24.2 49.213.9 41.810.6 53.3
NL:
3.21E1
ECD_1 UV
VA-3-PP
NL:
2.73E9
Base Peak F:
FTMS - p ESI
Full ms
[50.00-750.00]
MS VA-3-PP
IC Chromatogram
MS Base Peak Chromatogram
Cycle Aged Sample 45% Loss
29
IC Chromatograms for All Samples
f:li-battary-paulnov20-runma-0-pp 11/20/14 23:59:15
AS11 2mm 250ul/min
RT: 0.0 - 30.0 SM: 7G
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (min)
0
10
20
µS
0
10
20
µS
0
10
20
µS
0
10
20
µS
0
10
20
µS
0
10
20
µS
17.1
3.8 4.1 15.94.9
3.9
17.1
4.9 16.1 22.9
3.9
17.1
4.9 15.9
17.1
4.9 16.1 22.914.2 27.8
NL:
2.50E1
ECD_1 UV
blk_1411202
25409
NL:
2.50E1
ECD_1 UV
pc-2-pp
NL:
2.50E1
ECD_1 UV
ma-0-pp
NL:
2.50E1
ECD_1 UV
ua-1-pp
NL:
2.50E1
ECD_1 UV
xa-2-pp
NL:
2.50E1
ECD_1 UV
VA-3-PP
Solvent Blank
Control Cell shelf aged
Calendar-aged 20% loss in capacity
Cycle aged 20% loss in capacity
Process Control
Cycle aged 45% loss in capacity
The IC chromatograms show the differences between samples
30
HRMS Base Peak Chromatograph
f:li-battary-paul...blk_141120225409 11/20/14 22:54:09
AS11 2mm 250ul/min
RT: 0.0 - 55.0 SM: 5G
0 5 10 15 20 25 30 35 40 45 50 55
Time (min)
0
50
100
0
50
100
0
50
100
0
50
100
0
50
100
0
50
100
5.3 9.88.24.1 16.211.1 15.63.9 27.824.7
17.2
23.04.2 5.3 16.214.27.0 8.23.8 9.8 27.824.1 41.711.1 49.8
17.2
23.014.24.2 5.3 16.23.5 27.88.2 9.8 49.826.77.1 13.9
23.014.25.34.2 16.2 27.73.6 8.1 9.8 49.87.0 26.718.013.9 41.8
NL: 2.60E9
Base Peak m/z= 50.0000-6000.0000
F: FTMS - p ESI Full ms
[50.00-750.00] - m/z=
144.9640-144.9654 MS
blk_141120225409
NL: 2.60E9
Base Peak F: FTMS - p ESI Full ms
[50.00-750.00] MS pc-2-pp
NL: 2.60E9
Base Peak F: FTMS - p ESI Full ms
[50.00-750.00] MS ma-0-pp
NL: 2.60E9
Base Peak F: FTMS - p ESI Full ms
[50.00-750.00] MS ua-1-pp
NL: 2.60E9
Base Peak F: FTMS - p ESI Full ms
[50.00-750.00] MS xa-2-pp
NL: 2.60E9
Base Peak F: FTMS - p ESI Full ms
[50.00-750.00] MS VA-3-PP
Solvent Blank
Control cell shelf aged
Calendar-aged 20% loss in capacity
Cycle aged 20% loss in capacity
Process Control
Cycle aged 45% loss in capacity
See zoomed-in view in next slide (Full Scan Negative mode)
31
F:Li-Battary-PaulNov20-RunVA-3-PP 11/20/14 21:49:03
AS11 2mm 250ul/min
RT: 0.2 - 54.5 SM: 5G
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
Time (min)
0
20
40
60
80
100
RelativeAbundance
0
20
40
60
80
100
RelativeAbundance
0
20
40
60
80
100
RelativeAbundance
0
20
40
60
80
100
RelativeAbundance
9.8
8.2
4.1 16.211.1
15.63.9 27.824.713.812.9 18.33.6 26.7
23.0
4.2 5.3 16.2
14.27.0
8.2
4.0 9.83.5 6.2 15.6 27.8
24.1 41.711.1 24.3 49.814.0 18.1 49.228.1
23.014.2
4.2
5.3 16.2
4.0
3.5 27.815.68.2 9.8
49.826.77.1 13.913.2 24.2 49.218.2
14.2
5.34.2
16.2
27.73.6 15.5 27.88.1
9.83.3
49.87.0 26.718.0 24.2 49.213.9 41.813.4 53.318.6
NL:
2.60E8
Base Peak F:
FTMS - p ESI
Full ms
[50.00-750.00]
MS ma-0-pp
NL:
2.60E8
Base Peak F:
FTMS - p ESI
Full ms
[50.00-750.00]
MS ua-1-pp
NL:
2.60E8
Base Peak F:
FTMS - p ESI
Full ms
[50.00-750.00]
MS xa-2-pp
NL:
2.60E8
Base Peak F:
FTMS - p ESI
Full ms
[50.00-750.00]
MS VA-3-PP
Yellow –new or increasing
MS Base Peak Chromatograph
Blue – Decrease or disappearing
Control cell shelf aged
Calendar-aged 20% loss in capacity
Cycle aged 20% loss in capacity
Cycle aged 45% loss in capacity
MS show different profiles and more peaks
Zoomed-in View
32
SIEVE Base Peak Alignments (MS Data)
0-30 min
Zoom In View
40-55 min
33
SIEVE - Trend Intensities and XIC
Trend Intensities
RT =11 min
XIC
RT =11 min
Component m/z 124.9912 at RT 11.0 min with Elemental Formula C2H5O4S,
Ethyl sulfate. The Shelf aged control has high intensity.
34
SIEVE PCA Showing Differences Between Sample Groups
Trend Intensities at RT =11 min m/z 124.9912
PCA plot for all six samples
35
Control Cell Shelf Aged
E:GM-Li BatteryNov20-RunMA-0-PP 11/20/14 23:59:15
AS11 2mm 250ul/min
RT: 0.0 - 55.0 SM: 5G
0 5 10 15 20 25 30 35 40 45 50 55
Time (min)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
RelativeAbundance
5.3
9.8
8.2
4.1 16.2
11.1
15.63.9 27.8
24.713.8
NL:
2.95E9
Base Peak F:
FTMS - p ESI
Full ms
[50.00-750.00]
MS MA-0-PP
HRMS Base Peak Chromatogram
1
2
3
4
5
6
7
8
9
10
11
12
13
36
Component Identified from “Control Cell Shelf Aged”
Components	
  idenPfied	
  in	
  Control	
  Sample	
  
Peak	
  #	
   RT	
  (min)	
   m/z	
   Formula	
  (-­‐)	
   Delta	
  ppm	
   Name*	
  (Based	
  on	
  MS	
  results)**	
  
1	
   3.9	
   89.0244	
  
105.0193	
  
119.0350	
  
C3H5O3	
  
C3H5O4	
  
C4H7O4	
  
0.3	
  
-­‐0.4	
  
-­‐0.3	
  
lactate	
  
2	
   4.1	
   75.0087	
   C2H3O3	
   -­‐0.4	
   Methyl	
  carbonate	
  
3	
   5.3	
   139.0070	
   C3H7O4S	
   0	
   Propyl	
  sulfate	
  
4	
   8.2	
   123.0121	
   C3H7O3S	
   -­‐0.1	
   Propyl	
  sulfonate	
  
5	
   9.8	
   140.9864	
   C2H5O5S	
   0.3	
   2-­‐hydroxyethyl	
  sulfate	
  
6	
   11.1	
   124.9914	
   C2H5O4S	
   -­‐0.3	
   Ethyl	
  sulfate	
  
7	
   15.6	
   117.0193	
   C4H5O4	
   0.2	
   methyl	
  malonate	
  
8	
   15.7	
   133.0143	
   C4H5O5	
   0.2	
   3-­‐carboxy-­‐3-­‐hydroxypropanoate	
  
9	
   16.2	
   103.0037	
   C3H3O4	
   0	
   2-­‐carboxyacetate	
  
10	
   17.2	
   96.9601	
   HO4S	
   -­‐0.2	
   hydrogen	
  sulfate	
  
11	
   24.7	
   218.9639	
   C3H7O7S2	
   0.2	
   2-­‐hydroxy-­‐3-­‐sulfopropane-­‐1-­‐sulfonate	
  
12	
   26.7	
   175.0249	
   C6H7O6	
   0.3	
  
13	
   27.8	
   117.0193	
   C4H5O4	
   0.1	
   2-­‐carboxy-­‐propanoate	
  
*	
  	
  	
  	
  	
  	
  The	
  compounds	
  are	
  proposed	
  based	
  on	
  database	
  search	
  using	
  HRAM	
  data	
  .	
  The	
  other	
  possible	
  structures	
  are	
  not	
  show.
**	
  	
  	
  The	
  MS	
  data	
  were	
  acquired	
  in	
  ESI	
  negaPve	
  ion	
  mode.	
  The	
  ions	
  reported	
  there	
  are	
  all	
  HRAM	
  single	
  charged	
  negaPve	
  ions.	
  	
  
	
  	
  	
  	
  	
  	
  	
  The	
  names	
  listed	
  here	
  are	
  corresponding	
  to	
  the	
  single	
  charge	
  ionic	
  species.	
  
***	
  The	
  notes	
  here	
  apply	
  to	
  other	
  samples	
  in	
  this	
  experiment.	
  
37
Calendar Aged 20% Capacity Loss
E:GM-Li BatteryNov20-RunUA-1-PP 11/21/14 02:09:29
AS11 2mm 250ul/min
RT: 1.9 - 50.9 SM: 5G
5 10 15 20 25 30 35 40 45 50
Time (min)
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
RelativeAbundance
23.0
4.2 5.3
16.2
14.27.0
8.2
3.8 9.8
6.2 15.6
27.8
24.1
NL:
2.53E9
Base Peak F:
FTMS - p ESI
Full ms
[50.00-750.00]
MS UA-1-PP
MS Base Peak Chromatogram
1
2, 3
8
4 5
6
7
9
10
11
12, 13, 14
19
23
20
22
18
21
15,16, 17
24 25
29
26
28
27
30
31
38
Component Identified from Calendar Aged Sample 45%
Capacity Loss
Components	
  IdenPfied	
  in	
  Calendar	
  Aged	
  	
  Sample	
  
Peak	
  #	
   RT	
  (min)	
   m/z	
   Formula	
  (-­‐)	
   Delta	
  ppm	
   Name	
  (Based	
  on	
  MS	
  results)*	
  
1	
   3.4	
  
To	
  
3.6	
  
125.0009	
  
155.0116	
  
169.0272	
  
185.0222	
  
C2H6O4P	
  
C3H8O5P	
  
C4H10O5P	
  
C4H10O6P	
  
0	
  
0.6	
  
0.6	
  
0.6	
  
Phosphate	
  Esters	
  
2	
   3.7	
   139.0166	
   C3H8O4P	
   0.5	
   Phosphoric acid	
  
3	
   3.9	
   153.0323	
   C4H10O4P	
   0.5	
   Phosphate	
  
4	
   4.2	
   75.0088	
   C2H3O3	
   -­‐0.2	
   Methyl	
  Carbonate	
  
5	
   5.3	
   139.0071	
   C3H7O4S	
   0.4	
   Propyl	
  sulfate	
  
6	
   6.2	
   112.9810	
   CH3O3FP	
   0.3	
   Methyl	
  Phosphorofluoridate	
  	
  
7	
   7.0	
   126.9966	
   C2H5O3FP	
   0.1	
   Ethyl	
  phosphorofluoridate	
  
8	
   8.2	
   123.0122	
   C3H7O3S	
   0.3	
   Propyl	
  sulfonate	
  
9	
   9.8	
   140.9864	
   C2H5O5S	
   0.3	
   2-­‐hydroxyethyl	
  sulfate	
  
10	
   10.7	
   110.9757	
   CH3O4S	
   -­‐0.3	
   methyl	
  sulfate	
  
11	
   11.1	
   124.9914	
   C2H5O4S	
   0.1	
   Ethyl	
  sulfate	
  
12	
   14.2	
   140.9958	
   C2H6O5P	
   0.1	
   2-­‐hydroxyethyl	
  hydrogen	
  phosphate	
  
13	
   14.3	
   125.0009	
   C2H6O4P	
   -­‐0.1	
   ethyl	
  hydrogen	
  phosphate	
  
14	
   14.4	
   110.9853	
   CH4O4P	
   -­‐0.2	
   methyl	
  hydrogenphosphate	
  
15	
   15.3	
   131.0350	
   C5H7O4	
   0	
   3-­‐carboxy-­‐2-­‐methylpropanoate	
  
16	
   15.6	
   117.0193	
   C4H5O4	
   0.2	
   Methyl	
  Malonate	
  
17	
   15.7	
   133.0143	
   C4H5O5	
   0.2	
   3-­‐carboxy-­‐3-­‐hydroxypropanoate	
  
18	
   15.9	
   117.0194	
   C4H5O4	
   0.2	
   Succinate	
  
19	
   16.2	
   103.0037	
   C3H3O4	
   0.3	
   2-­‐carboxyacetate	
  
20	
   16.6	
   98.9653	
   HO3FP	
   0.2	
   hydrogen	
  phosphorofluoridate	
  
21	
   17.2	
   96.9601	
   HO4S	
   -­‐0.2	
   hydrogen	
  sulfate	
  
22	
   23.0	
   96.9696	
   H2O4P	
   -­‐0.5	
   dihydrogen	
  phosphate	
  
23	
   24.1	
   204.9674	
   C2H7O7P2	
   0.7	
   hydrogen	
  (1-­‐hydroxy-­‐1-­‐phosphono-­‐ethyl)-­‐phosphonate	
  
24	
   24.3	
   190.9517	
   CH5O7P2	
   1.1	
   Methyl	
  trihydrogen	
  diphosphate	
  
25	
   26.7	
   175.0249	
   C6H7O6	
   0.3	
   Ascorbate	
  
26	
   27.8	
   161.0092	
   C5H5O6	
   0.1	
   Ethanetricarboxylate	
  
27	
   27.9	
   103.0037	
   C3H3O4	
   0.3	
  
28	
   28.1	
   133.0143	
   C4H5O5	
   0.4	
  
29	
   41.7	
   176.9361	
   H3O7P2	
   0.9	
   Trihydrogen	
  diphosphate	
  
30	
   49.2	
   175.0249	
   C6H7O6	
   0.6	
   Tricarballylate	
  
31	
   49.8	
   204.9990	
   C6H5O8	
   0.1	
  
Yellow –new or increasing
Blue –Decrease or disappearing
39
Cycle Aged Sample 20% Capacity Loss
F:Li-Battary-PaulNov20-RunXA-2-PP 11/20/14 19:38:48
AS11 2mm 250ul/min
RT: 0.0 - 55.0 SM: 5G
0 5 10 15 20 25 30 35 40 45 50 55
Time (min)
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
RelativeAbundance
23.0
14.2
4.2
5.3 16.2
4.0
3.5
27.8
15.6
8.2
9.8
49.826.7
7.1
13.9
13.4 24.2 49.2
18.211.9 24.4
NL:
1.96E9
Base Peak F:
FTMS - p ESI
Full ms
[50.00-750.00]
MS XA-2-PP
MS Base Peak Chromatogram
1
2
4
5
6
8
9
3
19
26
14
18
21
24
30
31
29
10
11, 12, 13
15, 16, 17
20
7
23
25
28
22
32
27
40
Component Identified from Cycle Aged 20% Loss in Capacity
Components	
  IdenPfied	
  in	
  Cycle	
  Aged	
  Sample	
  
Peak	
  #	
   RT	
  (min)	
   m/z	
   Formula	
  (-­‐)	
   Delta	
  ppm	
   Name	
  (Based	
  on	
  MS	
  results)*	
  
1	
   3.2-­‐3.6	
   125.0009	
  
155.0116	
  
169.0272	
  
185.0222	
  
C2H6O4P	
  
C3H8O5P	
  
C4H10O5P	
  
C4H10O6P	
  
0	
  
0.6	
  
0.6	
  
0.6	
  
Phosphate	
  Esters	
  
2	
   3.8	
   139.0166	
   C3H8O4P	
   0.4	
   Phosphoric acid	
  
3	
   4.0	
   89.0244	
   C3H5O3	
   0.1	
  
4	
   4.2	
   75.0088	
   C2H3O3	
   -­‐0.2	
   Methyl	
  Carbonate	
  	
  
5	
   5.3	
   139.0071	
   C3H7O4S	
   0.4	
   Propyl	
  sulfate	
  
6	
   6.2	
   112.9810	
   CH3O3FP	
   0.3	
   Methyl	
  Phosphorofluoridate	
  	
  
7	
   7.1	
   126.9966	
   C2H5O3FP	
   0.1	
   Ethyl	
  phosphorofluoridate	
  
8	
   8.2	
   123.0122	
   C3H7O3S	
   0.3	
   Propyl	
  sulfonate	
  
9	
   9.8	
   140.9864	
   C2H5O5S	
   0.3	
   2-­‐hydroxyethyl	
  sulfate	
  
10	
   10.0	
   155.0020	
   C3H7O5S	
   -­‐0.3	
  
11	
   14.2	
   140.9958	
   C2H6O5P	
   0.1	
   2-­‐hydroxyethyl	
  hydrogen	
  phosphate	
  
12	
   14.3	
   125.0009	
   C2H6O4P	
   -­‐0.1	
   ethyl	
  hydrogen	
  phosphate	
  
13	
   14.4	
   110.9853	
   CH4O4P	
   -­‐0.2	
   methyl	
  hydrogenphosphate	
  
14	
   15.3	
   131.0350	
   C5H7O4	
   0	
   3-­‐carboxy-­‐2-­‐methylpropanoate	
  
15	
   15.6	
   117.0193	
   C4H5O4	
   0.2	
   methyl	
  malonate	
  
16	
   15.7	
   133.0143	
   C4H5O5	
   0.2	
   3-­‐carboxy-­‐3-­‐hydroxypropanoate	
  
17	
   15.9	
   117.0194	
   C4H5O4	
   0.2	
   Succinate	
  
18	
   16.2	
   103.0037	
   C3H3O4	
   0.3	
   2-­‐carboxyacetate	
  
19	
   16.6	
   98.9653	
   HO3FP	
   0	
   hydrogen	
  phosphorofluoridate	
  
20	
   17.1	
   118.9986	
   C3H3O5	
  
21	
   17.2	
   96.9601	
   HO4S	
   -­‐0.2	
   hydrogen	
  sulfate	
  
22	
   23.0	
   96.9696	
   H2O4P	
   -­‐0.5	
   dihydrogen	
  phosphate	
  
23	
   24.2	
   204.9674	
   C2H7O7P2	
   0.7	
   hydrogen	
  (1-­‐hydroxy-­‐1-­‐phosphono-­‐ethyl)-­‐phosphonate	
  
24	
   24.4	
   190.9517	
   CH5O7P2	
   1.1	
   Methyl	
  trihydrogen	
  diphosphate	
  
25	
   26.1	
   131.0349	
   C5H7O4	
   -­‐0.4	
  
26	
   26.7	
   175.0249	
   C6H7O6	
   0.3	
  
27	
   26.9	
   147.0299	
   C5H7O5	
   0.3	
   4-­‐carboxy-­‐3-­‐hydroxybutanoate	
  
28	
   27.8	
   161.0092	
   C5H5O6	
   0.1	
   Ethanetricarboxylate	
  
29	
   27.9	
   103.0037	
   C3H3O4	
   0	
  
30	
   41.7	
   176.9360	
   H3O7P2	
   0.3	
   Trihydrogen	
  diphosphate	
  
31	
   49.2	
   175.0249	
   C6H7O6	
   0.3	
   Tricarballyllate	
  
32	
   49.8	
   204.9312	
   C6H5O8	
   0.1	
  
Yellow –new or increasing
Blue –Decrease or disappearing
41
Cycle Aged 45% Loss in Capacity
F:Li-Battary-PaulNov20-RunVA-3-PP 11/20/14 21:49:03
AS11 2mm 250ul/min
RT: 0.0 - 55.0 SM: 5G
0 5 10 15 20 25 30 35 40 45 50 55
Time (min)
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
12.5
RelativeAbundance
23.0
14.2
5.34.2
16.2
27.7
3.6
15.5
27.8
8.1
9.83.3
49.87.0
26.7
18.0
24.2 49.224.313.9 41.810.6 53.318.3
NL:
2.73E9
Base Peak F:
FTMS - p ESI
Full ms
[50.00-750.00]
MS VA-3-PP
MS Base Peak Chromatogram
1
2
4
5 6
8
9
3
18
19
21
10
12, 13, 14
15, 16, 17
20
7
22
11
23
24
25
26
27
29
28
30
31
32
33
34
42
Component Identified from Cycle Aged 45% Loss in Capacity
Components	
  IdenPfied	
  in	
  Cycle	
  Aged	
  
Peak	
  #	
   RT	
  (min)	
   m/z	
  (-­‐)	
  	
  
Measured	
  
m/z	
  (-­‐)	
  
Calculated	
  
Delta	
  ppm	
   Formula	
  (-­‐)	
   Name	
  (Based	
  on	
  MS	
  results)*	
  
1	
   3.2	
  
To	
  
3.6	
  
125.0009	
  
155.0116	
  
169.0272	
  
185.0222	
  
125.0009	
  
155.0115	
  
169.0271	
  
185.0220	
  
0	
  
0.6	
  
0.6	
  
0.6	
  
C2H6O4P	
  
C3H8O5P	
  
C4H10O5P	
  
C4H10O6P	
  
Phosphate	
  Esters	
  
2	
   3.9	
   139.0166	
   139.0166	
   0.4	
   C3H8O4P	
   Phosphoric acid	
  
3	
   4.2	
   75.0088	
   75.0088	
   -­‐0.2	
   C2H3O3	
   Methyl	
  Carbonate	
  	
  
4	
   5.3	
   139.0071	
   139.0071	
   0	
   C3H7O4S	
   Propyl	
  sulfate	
  
5	
   6.2	
   112.9810	
   112.9809	
   0.2	
   CH3O3FP	
   Methyl	
  Phosphorofluoridate	
  	
  
6	
   7.0	
   126.9966	
   126.9966	
   0.1	
   C2H5O3FP	
   Ethyl	
  Phosphorofluoridate	
  
7	
   7.4	
   120.9965	
   120.9965	
   -­‐0.1	
   C3H5O3S	
   2-­‐Propene-­‐1-­‐sulfonic	
  acid	
  
8	
   8.2	
   123.0122	
   123.0121	
   0.2	
   C3H7O3S	
   Propyl	
  sulfonate	
  
9	
   9.8	
   140.9864	
   140.9863	
   0.3	
   C2H5O5S	
   2-­‐hydroxyethyl	
  sulfate	
  
10	
   10.7	
   110.9757	
   110.9758	
   -­‐0.3	
   CH3O4S	
   methyl	
  sulfate	
  
11	
   11.1	
   124.9914	
   124.9914	
   0.1	
   C2H5O4S	
   Ethyl	
  sulfate	
  
12	
   14.2	
   140.9958	
   140.9958	
   0.1	
   C2H6O5P	
   2-­‐hydroxyethyl	
  hydrogen	
  phosphate	
  
13	
   14.3	
   125.0009	
   125.0009	
   -­‐0.1	
   C2H6O4P	
   ethyl	
  hydrogen	
  phosphate	
  
14	
   14.4	
   110.9853	
   110.9853	
   0	
   CH4O4P	
   methyl	
  hydrogenphosphate	
  
15	
   15.3	
   131.0350	
   131.0350	
   0	
   C5H7O4	
   3-­‐carboxy-­‐2-­‐methylpropanoate	
  
16	
   15.5	
   117.0193	
   117.0193	
   0.2	
   C4H5O4	
   methyl	
  malonate	
  
17	
   15.7	
   133.0143	
   133.0143	
   0.2	
   C4H5O5	
   3-­‐carboxy-­‐3-­‐hydroxypropanoate	
  
18	
   15.9	
   117.0194	
   117.0194	
   0.2	
   C4H5O4	
   Succinate	
  
19	
   16.2	
   103.0037	
   103.0037	
   0.3	
   C3H3O4	
   2-­‐carboxyacetate	
  
20	
   16.6	
   98.9653	
   98.9653	
   0	
   HO3FP	
   hydrogen	
  phosphorofluoridate	
  
21	
   17.2	
   96.9601	
   96.9601	
   -­‐0.2	
   HO4S	
   hydrogen	
  sulfate	
  
22	
   23.00	
   96.9696	
   96.9696	
   -­‐0.5	
   H2O4P	
   dihydrogen	
  phosphate	
  
23	
   24.1	
   204.9674	
   204.9674	
   0.7	
   C2H7O7P2	
   hydrogen	
  (1-­‐hydroxy-­‐1-­‐phosphono-­‐ethyl)-­‐phosphonate	
  
24	
   24.3	
   190.9517	
   190.9517	
   1.1	
   CH5O7P2	
   Methyl	
  trihydrogen	
  diphosphate	
  
25	
   24.7	
   218.9639	
   218.9639	
   0.2	
   C3H7O7S2	
   2-­‐hydroxy-­‐3-­‐sulfopropane-­‐1-­‐sulfonate	
  
26	
   26.1	
   175.0249	
   175.0249	
   0.5	
   C6H7O6	
   Ascorbate	
  
27	
   26.7	
   175.0249	
   175.0249	
   0.3	
   C6H7O6	
  
28	
   26.9	
   147.0299	
   147.0299	
   0.3	
   C5H7O5	
   4-­‐carboxy-­‐3-­‐hydroxybutanoate	
  
29	
   27.7	
   161.0092	
   161.0092	
   0	
   C5H5O6	
   Ethanetricarboxylate	
  
30	
   27.8	
   103.0037	
   103.0037	
   0	
   C3H3O4	
  
31	
   41.8	
   176.9360	
   176.9360	
   0.3	
   H3O7P2	
   trihydrogen	
  diphosphate	
  
32	
   49.2	
   175.0249	
   175.0249	
   0.3	
   C6H7O6	
   tricarballylate	
  
33	
   49.8	
   204.9990	
   204.9990	
   0	
   C6H5O8	
  
34	
   53.3	
   224.9312	
   224.9312	
   0.	
   HO3F6P2	
   F5P-­‐PO3H2F	
  
Yellow –new or increasing
Blue –Decrease or disappearing
43
Summary
• Ion chromatography coupled with the Orbitrap Q Exactive
mass spectrometer provides a powerful platform for Li-ion
battery anode impurity and degradant analysis.
• The HRAM full scan and ms/ms data with polarity switching
allows for unambiguous ionic species identification and
structure characterization.
• This IC-HR/AM MS-based platform provides comprehensive
results which can be used for QA/QC for Lithium-ion battery
manufacturers and performance evaluations.
44
IC-ICP-MS, 55Mn
•  Amount of irreversibly formed Mn species is correlated to aging
Zheng, H.; Sun, Q.; Liu, G.; Song, X.; Battaglia, V.S. Correlation between Dissolution Behavior and Electrochemical Cycling Performance for
LiNi1/3Co1/3Mn1/3O2-Based Cells. J. Power Sources 2012, 207, 134–140.
45
MnxOy
z-
Mn2+
Cycle- or Calendar-Aged
LiB
H+
Mn2+
CathodeAnode
Anion Analysis of Cathode Dissolution
LiNi0.42Mn0.42Co0.16O2
Mechanistic Pathway
-Mn3+
Mn4+
+
Anode* Cathode**
* Mn2+ sol .in electrolyte, migrates to anode
** Mn4+ insol .in electolyte, remains on cathode
Manganese IC-ICP-MS Analysis of Aged Li-ion Batteries
Acid-Catalyzed Dissolution of Mn to Mn3+
and Disproportionation to Mn2+ and Mn4+
46
Permanganate/Manganate Configurations
Manganate(VI)
Permanganate(VII)
47
Control Anode and Calendar-Aged Anode Sample
Anion Analysis
Chromatographic Conditions:
Column: Dionex IonPac AS11, 2 × 250 mm
Eluent: 1 mM KOH 0–5 minutes,1–30 mM KOH 5–25 minutes
Eluent Source: Dionex EGC 500 KOH Cartridge
Flow Rate: 0.25 mL/min
Injection Volume: 2.5 µL
Temperature: 30 ˚C
Detection: Suppressed conductivity,
Dionex AERS 500 (2 mm) Suppressor,
AutoSuppression, recycle mode
48
Manganate, Permanganate, Anion Standards, and
Calendar-Aged Anode Samples
100 ppm Manganate
100 ppm Permanganate
Anion Standard
Fluoride
Chlorite Bromate
Chloride
Nitrite
Sulfate
Carbonate
Bromide, Nitrate, Chlorate
0 10 20 30
-10
10
µS
Minutes
Aged Anode Sample
49
IC Anion-Exchange Analysis of Aged Li-ion Battery Samples
Summary:
•  Neither manganate nor permanganate are stable on the anion
exchange column
•  They may be reacting on the column and degradation products
may be eluting in the vicinity of carbonate as well as earlier
•  It is possible that carbonate is produced during a reaction on the
column
50
Permanganate Standard
• Positive response to direct infusion HRMS in –ESI mode
• Negative response to IC-HRMS
O
Mn
O
O O
Theoretical Simulation
Experimental Result
116 117 118 119 120 121 122 123
m/z
0
20
40
60
80
100
0
20
40
60
80
100
RelativeAbundance
118.9181
116.9287 120.9221118.9541 119.9219117.9288 118.7880115.9206
118.9183
120.9225119.9225 122.9267121.9267
51
Proposed Mechanism for Anionic Mn Species
•  Compound 1 formed by the reaction of permanganate with a
succinic acid adduct, a plausible degradation product
•  Compound 1 degrades under acidic conditions
Tetrahedron 65 (2009) 707–739
?
52
Cycle Aged (45% Capacity Loss): IC-HRMS
•  Positive response to a Mn containing product
•  Proposed Mn species consistent with a retention time of 16-33 min
•  pH 10-11 of the aq anode extract
•  2 decimal point m/z accuracy supports proposed species
•  4 decimal point m/z accuracy disputes proposed species
Experimental	
  
m/z
Calculated	
  
m/z
234.98 234.93
Experimental	
  
m/z
Calculated	
  
m/z
234.9779 234.9281
2 Decimal Point Accuracy 4 Decimal Point Accuracy
53
IC-HRMS and Direct Infusion HRMS Analysis of Aged Li-
ion Battery Samples
Conclusions:
•  Permanganate Standard
•  Detected by direct infusion HRMS in –ESI mode
•  Not detected by anion exchange IC-HRMS
•  Proposed Mn Oxide complex
•  Positive response by IC-HRMS for aged 40% capacity loss sample
•  Proposed species was disproved by direct infusion HRMS in –ESI mode with 4
decimal point accuracy
•  No anionic Mn containing products observed by IC-HRMS
•  Next Steps
•  Cation exchange IC with +ESI mode HRMS to validate presence of Mn2+ from
the degradation of permanganate
54
Acknowledgement
•  Chris Pohl, Thermo Fisher Scientific, Sunnyvale, CA, USA
•  Charanjit Saini, Thermo Fisher Scientific, Sunnyvale CA, USA
55
Questions?

More Related Content

What's hot

Super critical fluid chromatography
Super critical fluid chromatographySuper critical fluid chromatography
Super critical fluid chromatographyceutics1315
 
Platforms for mAb Commercialization
Platforms for mAb Commercialization Platforms for mAb Commercialization
Platforms for mAb Commercialization
KBI Biopharma
 
Lc ms
Lc msLc ms
MALDI-TOF Mass Spectrometry
MALDI-TOF Mass SpectrometryMALDI-TOF Mass Spectrometry
MALDI-TOF Mass Spectrometry
Nawaz Shah
 
Cad introduction 2019 30 min
Cad introduction 2019 30 minCad introduction 2019 30 min
Cad introduction 2019 30 min
Oskari Aro
 
Waters Oligonucleotide Analysis Solutions
Waters Oligonucleotide Analysis SolutionsWaters Oligonucleotide Analysis Solutions
Waters Oligonucleotide Analysis Solutions
Waters Corporation
 
Routine Quantification of Pesticides in Food Matrices using UPLC APGC-MSMS - ...
Routine Quantification of Pesticides in Food Matrices using UPLC APGC-MSMS - ...Routine Quantification of Pesticides in Food Matrices using UPLC APGC-MSMS - ...
Routine Quantification of Pesticides in Food Matrices using UPLC APGC-MSMS - ...
Waters Corporation - Food QC, Safety & Research
 
Lateral Flow Assay
Lateral Flow AssayLateral Flow Assay
MALDI-TOF: Pricinple and Its Application in Biochemistry and Biotechnology
MALDI-TOF: Pricinple  and Its Application in Biochemistry and BiotechnologyMALDI-TOF: Pricinple  and Its Application in Biochemistry and Biotechnology
MALDI-TOF: Pricinple and Its Application in Biochemistry and Biotechnology
Devakumar Jain
 
Introduction to total organic carbon
Introduction to total organic carbonIntroduction to total organic carbon
Introduction to total organic carbon
MD. SELIM REZA
 
A Beginner’s Guide to the Principles and Applications of FRET
A Beginner’s Guide to the Principles and Applications of FRETA Beginner’s Guide to the Principles and Applications of FRET
A Beginner’s Guide to the Principles and Applications of FRET
Expedeon
 
Maldi tof
Maldi tofMaldi tof
Maldi tof
JayaPrakash369
 
Kaumil Hplc
Kaumil   HplcKaumil   Hplc
Kaumil Hplc
Kaumil Bhavsar
 
Sulfur dioxide monitoring
Sulfur dioxide monitoringSulfur dioxide monitoring
Sulfur dioxide monitoring
ECRD IN
 
HPLC tips & tricks
HPLC tips & tricks HPLC tips & tricks
HPLC tips & tricks
Oskari Aro
 
Sample preparation techniques for biological sample
Sample preparation techniques for biological sampleSample preparation techniques for biological sample
Sample preparation techniques for biological sample
CSIR-Central Drug Research Institute
 
TOC Workshop-1
TOC Workshop-1TOC Workshop-1
TOC Workshop-1
nvasoya
 
inductively coupled plasma ICP techniques & applications
inductively coupled plasma ICP techniques &  applicationsinductively coupled plasma ICP techniques &  applications
inductively coupled plasma ICP techniques & applications
Gamal Abdel Hamid
 

What's hot (20)

Super critical fluid chromatography
Super critical fluid chromatographySuper critical fluid chromatography
Super critical fluid chromatography
 
Platforms for mAb Commercialization
Platforms for mAb Commercialization Platforms for mAb Commercialization
Platforms for mAb Commercialization
 
Lc ms
Lc msLc ms
Lc ms
 
Dissolved oxygen
Dissolved oxygenDissolved oxygen
Dissolved oxygen
 
MALDI-TOF Mass Spectrometry
MALDI-TOF Mass SpectrometryMALDI-TOF Mass Spectrometry
MALDI-TOF Mass Spectrometry
 
Cad introduction 2019 30 min
Cad introduction 2019 30 minCad introduction 2019 30 min
Cad introduction 2019 30 min
 
Waters Oligonucleotide Analysis Solutions
Waters Oligonucleotide Analysis SolutionsWaters Oligonucleotide Analysis Solutions
Waters Oligonucleotide Analysis Solutions
 
Routine Quantification of Pesticides in Food Matrices using UPLC APGC-MSMS - ...
Routine Quantification of Pesticides in Food Matrices using UPLC APGC-MSMS - ...Routine Quantification of Pesticides in Food Matrices using UPLC APGC-MSMS - ...
Routine Quantification of Pesticides in Food Matrices using UPLC APGC-MSMS - ...
 
Lateral Flow Assay
Lateral Flow AssayLateral Flow Assay
Lateral Flow Assay
 
MALDI-TOF: Pricinple and Its Application in Biochemistry and Biotechnology
MALDI-TOF: Pricinple  and Its Application in Biochemistry and BiotechnologyMALDI-TOF: Pricinple  and Its Application in Biochemistry and Biotechnology
MALDI-TOF: Pricinple and Its Application in Biochemistry and Biotechnology
 
Introduction to total organic carbon
Introduction to total organic carbonIntroduction to total organic carbon
Introduction to total organic carbon
 
A Beginner’s Guide to the Principles and Applications of FRET
A Beginner’s Guide to the Principles and Applications of FRETA Beginner’s Guide to the Principles and Applications of FRET
A Beginner’s Guide to the Principles and Applications of FRET
 
Maldi tof
Maldi tofMaldi tof
Maldi tof
 
Kaumil Hplc
Kaumil   HplcKaumil   Hplc
Kaumil Hplc
 
Sulfur dioxide monitoring
Sulfur dioxide monitoringSulfur dioxide monitoring
Sulfur dioxide monitoring
 
HPLC tips & tricks
HPLC tips & tricks HPLC tips & tricks
HPLC tips & tricks
 
Sample preparation techniques for biological sample
Sample preparation techniques for biological sampleSample preparation techniques for biological sample
Sample preparation techniques for biological sample
 
Water analysis from Metrohm
Water analysis from MetrohmWater analysis from Metrohm
Water analysis from Metrohm
 
TOC Workshop-1
TOC Workshop-1TOC Workshop-1
TOC Workshop-1
 
inductively coupled plasma ICP techniques & applications
inductively coupled plasma ICP techniques &  applicationsinductively coupled plasma ICP techniques &  applications
inductively coupled plasma ICP techniques & applications
 

Similar to Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

Determination of pesticide multi-residues in river water by LC-Orbitrap-MS
Determination of pesticide multi-residues in river water by LC-Orbitrap-MSDetermination of pesticide multi-residues in river water by LC-Orbitrap-MS
Determination of pesticide multi-residues in river water by LC-Orbitrap-MS
Jorge Casado Agrelo
 
Meeting Presentation Final_ju Fixed
Meeting Presentation Final_ju FixedMeeting Presentation Final_ju Fixed
Meeting Presentation Final_ju FixedTravis Tu
 
Finding the best separation for enantiomeric mixtures
Finding the best separation for enantiomeric mixturesFinding the best separation for enantiomeric mixtures
Finding the best separation for enantiomeric mixtures
Chiral Technologies Worldwide
 
ASMS 2014 poster final
ASMS 2014 poster finalASMS 2014 poster final
ASMS 2014 poster finalNathan Bond
 
Determination of benzotriazoles in water samples by polyethersulfone solid-ph...
Determination of benzotriazoles in water samples by polyethersulfone solid-ph...Determination of benzotriazoles in water samples by polyethersulfone solid-ph...
Determination of benzotriazoles in water samples by polyethersulfone solid-ph...
Jorge Casado Agrelo
 
Multiresidue analysis of pesticides in water by solid-phase extraction couple...
Multiresidue analysis of pesticides in water by solid-phase extraction couple...Multiresidue analysis of pesticides in water by solid-phase extraction couple...
Multiresidue analysis of pesticides in water by solid-phase extraction couple...
Jorge Casado Agrelo
 
Edwards - NMR Presentation
Edwards - NMR PresentationEdwards - NMR Presentation
Edwards - NMR PresentationJohn Edwards
 
Насосы серии ES Franklin Electric
Насосы серии ES Franklin ElectricНасосы серии ES Franklin Electric
Насосы серии ES Franklin Electric
Arve
 
postertemplate_plc_v36_final2
postertemplate_plc_v36_final2postertemplate_plc_v36_final2
postertemplate_plc_v36_final2Patrick Cavins
 
Using LC-MS/MS and Advanced Software Tools to Screen for unknown and Non-targ...
Using LC-MS/MS and Advanced Software Tools to Screen for unknown and Non-targ...Using LC-MS/MS and Advanced Software Tools to Screen for unknown and Non-targ...
Using LC-MS/MS and Advanced Software Tools to Screen for unknown and Non-targ...
AB SCIEX India
 
Presisi_Daily_Plan for mining area at halteng
Presisi_Daily_Plan for mining area at haltengPresisi_Daily_Plan for mining area at halteng
Presisi_Daily_Plan for mining area at halteng
ekaputradip
 
Determination of Common Counterions and Impurity Anions in Pharmaceuticals Us...
Determination of Common Counterions and Impurity Anions in Pharmaceuticals Us...Determination of Common Counterions and Impurity Anions in Pharmaceuticals Us...
Determination of Common Counterions and Impurity Anions in Pharmaceuticals Us...
Chromatography & Mass Spectrometry Solutions
 
Moeller proteomics course
Moeller proteomics courseMoeller proteomics course
Moeller proteomics course
UC Davis
 
Lab talk 020710 comparing bac r_rel 1 with e coli rrel 1 for use in fret assay
Lab talk 020710 comparing bac r_rel 1 with e coli rrel 1 for use in fret assayLab talk 020710 comparing bac r_rel 1 with e coli rrel 1 for use in fret assay
Lab talk 020710 comparing bac r_rel 1 with e coli rrel 1 for use in fret assay
Laurence Dawkins-Hall
 
Tabel Sifat-Sifat Thermodinamika Uap Air
Tabel Sifat-Sifat Thermodinamika Uap AirTabel Sifat-Sifat Thermodinamika Uap Air
Tabel Sifat-Sifat Thermodinamika Uap Airadelarasakti
 
Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...
Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...
Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...
Chromatography & Mass Spectrometry Solutions
 
Intelligent Real-time Water Level Forecast Models for Pumping Stations
Intelligent Real-time Water Level Forecast Models for Pumping StationsIntelligent Real-time Water Level Forecast Models for Pumping Stations
Intelligent Real-time Water Level Forecast Models for Pumping Stations
Yingray Lu
 

Similar to Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries (20)

Determination of pesticide multi-residues in river water by LC-Orbitrap-MS
Determination of pesticide multi-residues in river water by LC-Orbitrap-MSDetermination of pesticide multi-residues in river water by LC-Orbitrap-MS
Determination of pesticide multi-residues in river water by LC-Orbitrap-MS
 
Pres IF2
Pres IF2Pres IF2
Pres IF2
 
Meeting Presentation Final_ju Fixed
Meeting Presentation Final_ju FixedMeeting Presentation Final_ju Fixed
Meeting Presentation Final_ju Fixed
 
Finding the best separation for enantiomeric mixtures
Finding the best separation for enantiomeric mixturesFinding the best separation for enantiomeric mixtures
Finding the best separation for enantiomeric mixtures
 
ASMS 2014 poster final
ASMS 2014 poster finalASMS 2014 poster final
ASMS 2014 poster final
 
Determination of benzotriazoles in water samples by polyethersulfone solid-ph...
Determination of benzotriazoles in water samples by polyethersulfone solid-ph...Determination of benzotriazoles in water samples by polyethersulfone solid-ph...
Determination of benzotriazoles in water samples by polyethersulfone solid-ph...
 
Multiresidue analysis of pesticides in water by solid-phase extraction couple...
Multiresidue analysis of pesticides in water by solid-phase extraction couple...Multiresidue analysis of pesticides in water by solid-phase extraction couple...
Multiresidue analysis of pesticides in water by solid-phase extraction couple...
 
Edwards - NMR Presentation
Edwards - NMR PresentationEdwards - NMR Presentation
Edwards - NMR Presentation
 
Насосы серии ES Franklin Electric
Насосы серии ES Franklin ElectricНасосы серии ES Franklin Electric
Насосы серии ES Franklin Electric
 
Lab 5 Report harith edit 8.32pm
Lab 5 Report harith edit 8.32pmLab 5 Report harith edit 8.32pm
Lab 5 Report harith edit 8.32pm
 
postertemplate_plc_v36_final2
postertemplate_plc_v36_final2postertemplate_plc_v36_final2
postertemplate_plc_v36_final2
 
Using LC-MS/MS and Advanced Software Tools to Screen for unknown and Non-targ...
Using LC-MS/MS and Advanced Software Tools to Screen for unknown and Non-targ...Using LC-MS/MS and Advanced Software Tools to Screen for unknown and Non-targ...
Using LC-MS/MS and Advanced Software Tools to Screen for unknown and Non-targ...
 
Presisi_Daily_Plan for mining area at halteng
Presisi_Daily_Plan for mining area at haltengPresisi_Daily_Plan for mining area at halteng
Presisi_Daily_Plan for mining area at halteng
 
Determination of Common Counterions and Impurity Anions in Pharmaceuticals Us...
Determination of Common Counterions and Impurity Anions in Pharmaceuticals Us...Determination of Common Counterions and Impurity Anions in Pharmaceuticals Us...
Determination of Common Counterions and Impurity Anions in Pharmaceuticals Us...
 
Moeller proteomics course
Moeller proteomics courseMoeller proteomics course
Moeller proteomics course
 
Lab talk 020710 comparing bac r_rel 1 with e coli rrel 1 for use in fret assay
Lab talk 020710 comparing bac r_rel 1 with e coli rrel 1 for use in fret assayLab talk 020710 comparing bac r_rel 1 with e coli rrel 1 for use in fret assay
Lab talk 020710 comparing bac r_rel 1 with e coli rrel 1 for use in fret assay
 
Tabel Sifat-Sifat Thermodinamika Uap Air
Tabel Sifat-Sifat Thermodinamika Uap AirTabel Sifat-Sifat Thermodinamika Uap Air
Tabel Sifat-Sifat Thermodinamika Uap Air
 
Kaizen Event formalized post-molding
Kaizen Event formalized post-molding Kaizen Event formalized post-molding
Kaizen Event formalized post-molding
 
Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...
Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...
Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...
 
Intelligent Real-time Water Level Forecast Models for Pumping Stations
Intelligent Real-time Water Level Forecast Models for Pumping StationsIntelligent Real-time Water Level Forecast Models for Pumping Stations
Intelligent Real-time Water Level Forecast Models for Pumping Stations
 

More from Chromatography & Mass Spectrometry Solutions

Chromatography: Part 4 of 4 Pesticide Residue Analysis Webinar Series - Late...
Chromatography: Part 4 of 4 Pesticide Residue Analysis Webinar Series -  Late...Chromatography: Part 4 of 4 Pesticide Residue Analysis Webinar Series -  Late...
Chromatography: Part 4 of 4 Pesticide Residue Analysis Webinar Series - Late...
Chromatography & Mass Spectrometry Solutions
 
What does USP Chapter 2232 on Elemental Contaminants in Dietary Supplements M...
What does USP Chapter 2232 on Elemental Contaminants in Dietary Supplements M...What does USP Chapter 2232 on Elemental Contaminants in Dietary Supplements M...
What does USP Chapter 2232 on Elemental Contaminants in Dietary Supplements M...
Chromatography & Mass Spectrometry Solutions
 
Chromatography: Pesticide Residue Analysis Webinar Series: Part 3 of 4: Maxi...
Chromatography: Pesticide Residue Analysis Webinar Series:  Part 3 of 4: Maxi...Chromatography: Pesticide Residue Analysis Webinar Series:  Part 3 of 4: Maxi...
Chromatography: Pesticide Residue Analysis Webinar Series: Part 3 of 4: Maxi...
Chromatography & Mass Spectrometry Solutions
 
High Resolution Mass Spectrometry in Clinical Research: from Targeted Quantif...
High Resolution Mass Spectrometry in Clinical Research: from Targeted Quantif...High Resolution Mass Spectrometry in Clinical Research: from Targeted Quantif...
High Resolution Mass Spectrometry in Clinical Research: from Targeted Quantif...
Chromatography & Mass Spectrometry Solutions
 
Pesticide Residue Analysis Webinar Series: Tips and Tricks for the Whole Work...
Pesticide Residue Analysis Webinar Series: Tips and Tricks for the Whole Work...Pesticide Residue Analysis Webinar Series: Tips and Tricks for the Whole Work...
Pesticide Residue Analysis Webinar Series: Tips and Tricks for the Whole Work...
Chromatography & Mass Spectrometry Solutions
 
Improve Analysis Precision for ICP-OES and ICP-MS for Environmental and Geolo...
Improve Analysis Precision for ICP-OES and ICP-MS for Environmental and Geolo...Improve Analysis Precision for ICP-OES and ICP-MS for Environmental and Geolo...
Improve Analysis Precision for ICP-OES and ICP-MS for Environmental and Geolo...
Chromatography & Mass Spectrometry Solutions
 
Chromatography: Pesticide Residue Analysis Webinar Series Pt 1 - Sample Prep ...
Chromatography: Pesticide Residue Analysis Webinar Series Pt 1 - Sample Prep ...Chromatography: Pesticide Residue Analysis Webinar Series Pt 1 - Sample Prep ...
Chromatography: Pesticide Residue Analysis Webinar Series Pt 1 - Sample Prep ...
Chromatography & Mass Spectrometry Solutions
 
Next Generation Ultra High Pressure Liquid Chromatography (UHPLC) Technologie...
Next Generation Ultra High Pressure Liquid Chromatography (UHPLC) Technologie...Next Generation Ultra High Pressure Liquid Chromatography (UHPLC) Technologie...
Next Generation Ultra High Pressure Liquid Chromatography (UHPLC) Technologie...
Chromatography & Mass Spectrometry Solutions
 
Use of Solid Core Chromatography for the Analysis of Pharmaceutical Compounds
Use of Solid Core Chromatography for the Analysis of Pharmaceutical CompoundsUse of Solid Core Chromatography for the Analysis of Pharmaceutical Compounds
Use of Solid Core Chromatography for the Analysis of Pharmaceutical Compounds
Chromatography & Mass Spectrometry Solutions
 
Stationary and mobile_phase_selection_m_ab_ph_gradient_analysis_33974
Stationary and mobile_phase_selection_m_ab_ph_gradient_analysis_33974Stationary and mobile_phase_selection_m_ab_ph_gradient_analysis_33974
Stationary and mobile_phase_selection_m_ab_ph_gradient_analysis_33974
Chromatography & Mass Spectrometry Solutions
 
Optimizing solid core_30955
Optimizing solid core_30955Optimizing solid core_30955
New Innovations in Ultra High Performance Liquid Chromatography and Liquid Ch...
New Innovations in Ultra High Performance Liquid Chromatography and Liquid Ch...New Innovations in Ultra High Performance Liquid Chromatography and Liquid Ch...
New Innovations in Ultra High Performance Liquid Chromatography and Liquid Ch...
Chromatography & Mass Spectrometry Solutions
 
Chromatography: Trends and Developments in MAb Screening and Characterization
Chromatography: Trends and Developments in MAb Screening and CharacterizationChromatography: Trends and Developments in MAb Screening and Characterization
Chromatography: Trends and Developments in MAb Screening and Characterization
Chromatography & Mass Spectrometry Solutions
 
Analysis of Disinfection Byproducts by Ion Chromatography
Analysis of Disinfection Byproducts by Ion ChromatographyAnalysis of Disinfection Byproducts by Ion Chromatography
Analysis of Disinfection Byproducts by Ion Chromatography
Chromatography & Mass Spectrometry Solutions
 
Analysis of Anions and Cations in Produced Water from Hydraulic Fracturing Us...
Analysis of Anions and Cations in Produced Water from Hydraulic Fracturing Us...Analysis of Anions and Cations in Produced Water from Hydraulic Fracturing Us...
Analysis of Anions and Cations in Produced Water from Hydraulic Fracturing Us...
Chromatography & Mass Spectrometry Solutions
 
Analysis of Cations in Hydraulic Fracturing Flowback Water from the Marcellus...
Analysis of Cations in Hydraulic Fracturing Flowback Water from the Marcellus...Analysis of Cations in Hydraulic Fracturing Flowback Water from the Marcellus...
Analysis of Cations in Hydraulic Fracturing Flowback Water from the Marcellus...
Chromatography & Mass Spectrometry Solutions
 
Determination of Carbohydrates in Various Matrices by Capillary High-Performa...
Determination of Carbohydrates in Various Matrices by Capillary High-Performa...Determination of Carbohydrates in Various Matrices by Capillary High-Performa...
Determination of Carbohydrates in Various Matrices by Capillary High-Performa...
Chromatography & Mass Spectrometry Solutions
 
Oligosaccharide Analysis Using High-Performance Anion-Exchange Chromatography...
Oligosaccharide Analysis Using High-Performance Anion-Exchange Chromatography...Oligosaccharide Analysis Using High-Performance Anion-Exchange Chromatography...
Oligosaccharide Analysis Using High-Performance Anion-Exchange Chromatography...
Chromatography & Mass Spectrometry Solutions
 
Using Solid-Phase Extraction to Concentrate Human Hormones in Drinking Water ...
Using Solid-Phase Extraction to Concentrate Human Hormones in Drinking Water ...Using Solid-Phase Extraction to Concentrate Human Hormones in Drinking Water ...
Using Solid-Phase Extraction to Concentrate Human Hormones in Drinking Water ...
Chromatography & Mass Spectrometry Solutions
 
Chromatography: Concentration of Human Hormones in Drinking Water Using a N...
Chromatography:   Concentration of Human Hormones in Drinking Water Using a N...Chromatography:   Concentration of Human Hormones in Drinking Water Using a N...
Chromatography: Concentration of Human Hormones in Drinking Water Using a N...
Chromatography & Mass Spectrometry Solutions
 

More from Chromatography & Mass Spectrometry Solutions (20)

Chromatography: Part 4 of 4 Pesticide Residue Analysis Webinar Series - Late...
Chromatography: Part 4 of 4 Pesticide Residue Analysis Webinar Series -  Late...Chromatography: Part 4 of 4 Pesticide Residue Analysis Webinar Series -  Late...
Chromatography: Part 4 of 4 Pesticide Residue Analysis Webinar Series - Late...
 
What does USP Chapter 2232 on Elemental Contaminants in Dietary Supplements M...
What does USP Chapter 2232 on Elemental Contaminants in Dietary Supplements M...What does USP Chapter 2232 on Elemental Contaminants in Dietary Supplements M...
What does USP Chapter 2232 on Elemental Contaminants in Dietary Supplements M...
 
Chromatography: Pesticide Residue Analysis Webinar Series: Part 3 of 4: Maxi...
Chromatography: Pesticide Residue Analysis Webinar Series:  Part 3 of 4: Maxi...Chromatography: Pesticide Residue Analysis Webinar Series:  Part 3 of 4: Maxi...
Chromatography: Pesticide Residue Analysis Webinar Series: Part 3 of 4: Maxi...
 
High Resolution Mass Spectrometry in Clinical Research: from Targeted Quantif...
High Resolution Mass Spectrometry in Clinical Research: from Targeted Quantif...High Resolution Mass Spectrometry in Clinical Research: from Targeted Quantif...
High Resolution Mass Spectrometry in Clinical Research: from Targeted Quantif...
 
Pesticide Residue Analysis Webinar Series: Tips and Tricks for the Whole Work...
Pesticide Residue Analysis Webinar Series: Tips and Tricks for the Whole Work...Pesticide Residue Analysis Webinar Series: Tips and Tricks for the Whole Work...
Pesticide Residue Analysis Webinar Series: Tips and Tricks for the Whole Work...
 
Improve Analysis Precision for ICP-OES and ICP-MS for Environmental and Geolo...
Improve Analysis Precision for ICP-OES and ICP-MS for Environmental and Geolo...Improve Analysis Precision for ICP-OES and ICP-MS for Environmental and Geolo...
Improve Analysis Precision for ICP-OES and ICP-MS for Environmental and Geolo...
 
Chromatography: Pesticide Residue Analysis Webinar Series Pt 1 - Sample Prep ...
Chromatography: Pesticide Residue Analysis Webinar Series Pt 1 - Sample Prep ...Chromatography: Pesticide Residue Analysis Webinar Series Pt 1 - Sample Prep ...
Chromatography: Pesticide Residue Analysis Webinar Series Pt 1 - Sample Prep ...
 
Next Generation Ultra High Pressure Liquid Chromatography (UHPLC) Technologie...
Next Generation Ultra High Pressure Liquid Chromatography (UHPLC) Technologie...Next Generation Ultra High Pressure Liquid Chromatography (UHPLC) Technologie...
Next Generation Ultra High Pressure Liquid Chromatography (UHPLC) Technologie...
 
Use of Solid Core Chromatography for the Analysis of Pharmaceutical Compounds
Use of Solid Core Chromatography for the Analysis of Pharmaceutical CompoundsUse of Solid Core Chromatography for the Analysis of Pharmaceutical Compounds
Use of Solid Core Chromatography for the Analysis of Pharmaceutical Compounds
 
Stationary and mobile_phase_selection_m_ab_ph_gradient_analysis_33974
Stationary and mobile_phase_selection_m_ab_ph_gradient_analysis_33974Stationary and mobile_phase_selection_m_ab_ph_gradient_analysis_33974
Stationary and mobile_phase_selection_m_ab_ph_gradient_analysis_33974
 
Optimizing solid core_30955
Optimizing solid core_30955Optimizing solid core_30955
Optimizing solid core_30955
 
New Innovations in Ultra High Performance Liquid Chromatography and Liquid Ch...
New Innovations in Ultra High Performance Liquid Chromatography and Liquid Ch...New Innovations in Ultra High Performance Liquid Chromatography and Liquid Ch...
New Innovations in Ultra High Performance Liquid Chromatography and Liquid Ch...
 
Chromatography: Trends and Developments in MAb Screening and Characterization
Chromatography: Trends and Developments in MAb Screening and CharacterizationChromatography: Trends and Developments in MAb Screening and Characterization
Chromatography: Trends and Developments in MAb Screening and Characterization
 
Analysis of Disinfection Byproducts by Ion Chromatography
Analysis of Disinfection Byproducts by Ion ChromatographyAnalysis of Disinfection Byproducts by Ion Chromatography
Analysis of Disinfection Byproducts by Ion Chromatography
 
Analysis of Anions and Cations in Produced Water from Hydraulic Fracturing Us...
Analysis of Anions and Cations in Produced Water from Hydraulic Fracturing Us...Analysis of Anions and Cations in Produced Water from Hydraulic Fracturing Us...
Analysis of Anions and Cations in Produced Water from Hydraulic Fracturing Us...
 
Analysis of Cations in Hydraulic Fracturing Flowback Water from the Marcellus...
Analysis of Cations in Hydraulic Fracturing Flowback Water from the Marcellus...Analysis of Cations in Hydraulic Fracturing Flowback Water from the Marcellus...
Analysis of Cations in Hydraulic Fracturing Flowback Water from the Marcellus...
 
Determination of Carbohydrates in Various Matrices by Capillary High-Performa...
Determination of Carbohydrates in Various Matrices by Capillary High-Performa...Determination of Carbohydrates in Various Matrices by Capillary High-Performa...
Determination of Carbohydrates in Various Matrices by Capillary High-Performa...
 
Oligosaccharide Analysis Using High-Performance Anion-Exchange Chromatography...
Oligosaccharide Analysis Using High-Performance Anion-Exchange Chromatography...Oligosaccharide Analysis Using High-Performance Anion-Exchange Chromatography...
Oligosaccharide Analysis Using High-Performance Anion-Exchange Chromatography...
 
Using Solid-Phase Extraction to Concentrate Human Hormones in Drinking Water ...
Using Solid-Phase Extraction to Concentrate Human Hormones in Drinking Water ...Using Solid-Phase Extraction to Concentrate Human Hormones in Drinking Water ...
Using Solid-Phase Extraction to Concentrate Human Hormones in Drinking Water ...
 
Chromatography: Concentration of Human Hormones in Drinking Water Using a N...
Chromatography:   Concentration of Human Hormones in Drinking Water Using a N...Chromatography:   Concentration of Human Hormones in Drinking Water Using a N...
Chromatography: Concentration of Human Hormones in Drinking Water Using a N...
 

Recently uploaded

Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Richard Gill
 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
Health Advances
 
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
NathanBaughman3
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
muralinath2
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
Areesha Ahmad
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
Richard Gill
 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
anitaento25
 
general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
IqrimaNabilatulhusni
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
AlaminAfendy1
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
kumarmathi863
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
IvanMallco1
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
ossaicprecious19
 
4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
ssuserbfdca9
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
ChetanK57
 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
YOGESH DOGRA
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
Areesha Ahmad
 
Structural Classification Of Protein (SCOP)
Structural Classification Of Protein  (SCOP)Structural Classification Of Protein  (SCOP)
Structural Classification Of Protein (SCOP)
aishnasrivastava
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
sachin783648
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
yusufzako14
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
Sérgio Sacani
 

Recently uploaded (20)

Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
 
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
 
general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
 
4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
 
Structural Classification Of Protein (SCOP)
Structural Classification Of Protein  (SCOP)Structural Classification Of Protein  (SCOP)
Structural Classification Of Protein (SCOP)
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 

Chromatography: Analysis of Phosphate and Manganese degradation Products in Aged lithium Ion Batteries

  • 1. 1 The world leader in serving science Rosanne Slingsby, Kate Comstock, and Paul Voelker March 18, 2015 Analysis of Phosphate and Manganese Degradation Products in Aged Lithium Ion Batteries Part #: PP71583-EN 0315S
  • 2. 2 Li-ion Battery Analysis: IC-HRMS What Steps Are Involved? IC-HRMS Thermo Scientific™ Q Exactive™ Orbitrap™ MS • Component Identification in Untargeted and Unknown Workflows IC-CD Time (min) 125 135 145 155 165 175 185 m/z 0 100 169.0272 C 4 H 10 O 5 P 155.0115 C 3H8O5P 125.0009 C2H6O4P 139.0166 C3H8O4P Phosphate esters Chemical formula Exact mass Delta ppm C2H6O4P 125.0009 -0.1 C3H8O4P 139.0166 0.2 C3H8O5P 155.0115 0.1 C4H10O5P 169.0272 0.4 Relativeabundance 1.  IC Separation using a KOH eluent 2.  Full scan MS/MS acquisition 3.  Component ID based on HRAM Data 4.  Propose Structure Source for Dimethyl phosphate image: CSID:2982799, http://www.chemspider.com/Chemical-Structure.2982799.html (accessed 00:59, Feb 5, 2015)
  • 3. 3 Ion Chromatography Coupled to High Resolution Mass Spectrometry Eluent Generator (OH– or H+) Conductivity Detector High- Pressure Non-Metallic Pump H2O Autosampler Electrolytic Eluent Suppressor CR-TC Separation column Pump Solvent /H2O CD Thermo Scientific Q ExactiveTM HRMS C-trap HCD Cell Segmented Quadrupole RF Lens Injection flatapole Electrospray inlet
  • 4. 4 Methods •  IC Parameters Column: Thermo Scientific™ Dionex™ IonPac™AG11, AS11 (2 mm) Eluent: 1mM KOH from 0 to 5 minutes, 1-30 mM KOH from 5 to 25 minutes 30-65 mM KOH from 25.1-45 minutes Eluent Source: Thermo Scientific Dionex EGC 500 KOH Cartridge Flow Rate: 0.25 mL/min Inj. Volume: 2.5 µL Temperature: 30 ˚C Detection: Suppressed Conductivity, Thermo Scientific™ Dionex™ AERS™ 500 (2 mm) Suppressor AutoSuppression, recycle mode Post column solvent: 90/10 Acetonitrile/water, 0.25 mL/min •  MS Parameters HRAM full scan MS and data dependent top 3 MS/MS were collected at resolution 70K and 17.5K, respectively Stepped NCE setting were: 30, 40, 60.
  • 5. 5 7. Methylsulfonate 8. Pyruvate 9. Chlorite 10. Valerate 11. Monochloroacetate 12. Bromate 13. Chloride 14. Nitrite 15. Trifluoroacetate 16. Bromide 17. Nitrate 18. Chlorate 19. Selenite 20. Carbonate 21. Malonate 22. Maleate 23. Sulfate 24. Oxalate 25. Ketomalonate 26. Tungstate 27. Phthalate 28. Phosphate 29. Chromate 30. Citrate 31. Tricarballylate 32. Isocitrate 33. cis-Aconitate 34. trans-Aconitate Peaks: 1. Isopropylmethylphosphonate mg/L 2. Quinate 3. Fluoride 4. Acetate 5. Propionate 6. Formate 0 10 µS 5 15Minutes 10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 3421 20 22 23 24 25 26 27 28 29 30 31 32 33 Monovalent Divalent Trivalent Anion Exchange Gradients: Dionex IonPac AS11 Separation of Anions
  • 6. 6 Lithium Ion Battery (LiB) Samples •  Overall Objectives •  Screen samples to identify changes among sample types •  Use ion exchange separation to help identify analyte properties •  Identify as many components as possible •  Samples •  Control •  Calendar aged 20% loss in capacity •  Cycle Aged 20% loss in capacity •  Additional Cycle Aged 45% loss in capacity •  Other Injections •  DI water blank •  Process control blank
  • 7. 7 Preparation of LiB Anode Samples • Anodes were cut to known weight • Samples were sonicated and rinsed in deionized water • Extracts were filtered thru Whatman PP 0.45 µm filters • Weight losses were calculated • Filtered extracts were injected into the IC-CD-HRMS system
  • 8. 8 IC-CD Chromatograms of Anode Samples e:libnov20-runva-3-pp 11/20/14 21:49:03 AS11 2mm 250ul/min RT: 0.00 - 55.00 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 Time (min) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 µS 3.77 4.07 15.924.91 5.27 17.92 15.56 9.78 10.73 27.71 49.1524.688.15 14.94 26.675.81 23.01 54.8250.66 53.58 NL: 1.19E1 ECD_1 UV MA-0-PP RT: 0.00 - 54.99 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 Time (min) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 µS 4.91 16.1415.89 22.94 14.21 17.925.22 27.79 24.10 49.1448.5710.73 26.66 41.6613.867.00 9.76 50.65 51.53 53.1919.66 28.64 NL: 1.54E1 ECD_1 UV UA-1-PP RT: 0.00 - 54.99 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 Time (min) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 µS 4.91 16.14 15.87 22.95 14.20 27.77 17.92 5.17 49.7249.0226.6724.1313.86 50.67 NL: 3.21E1 ECD_1 UV va-3-pp Control Calendar Aged 20% Loss Cycle Aged 45% Loss Sulfate 17.12 Phosphate Monovalent Divalent Trivalent components
  • 9. 9 IC-HRMS Chromatograms of Anode Samples e:libnov20-runva-3-pp 11/20/14 21:49:03 AS11 2mm 250ul/min RT: 0.04 - 55.00 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 Time (min) 0 5 10 15 20 RelativeAbundance 5.32 9.82 8.21 4.11 16.2211.07 15.593.93 27.7424.7514.06 NL: 3.09E9 Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS MA-0-PP RT: 0.00 - 54.99 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 Time (min) 0 5 10 15 20 RelativeAbundance 23.02 4.16 5.31 16.19 14.237.04 8.163.76 9.81 15.576.22 27.77 24.13 41.7217.9911.07 24.30 49.7513.99 NL: 2.57E9 Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS UA-1-PP RT: 0.09 - 55.00 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 Time (min) 0 5 10 15 20 RelativeAbundance 23.00 14.24 5.294.20 16.19 27.7315.553.59 27.868.15 3.32 9.80 7.01 49.7926.7317.98 24.16 49.1913.95 41.7910.63 53.27 NL: 2.79E9 Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS va-3-pp Monovalent Divalent Trivalent components Control Calendar Aged 20% Loss Cycle Aged 45% Loss
  • 10. 10 Anionic Compounds and Classes Found in LiB Samples to Date • Solvents- Methyl carbonate • Inorganic Anions- sulfate, phosphate, hexafluorophosphate etc • Carboxylic acids- succinate, malate, malonate, oxalate etc • Organic sulfonates – propylsulfonate • Sulfate esters • Phosphate esters • Fluorophosphate esters
  • 11. 11 Example Data Analysis - Identify Methyl Carbonate E:LiBNov20-RunVA-3-PP 11/20/14 21:49:03 AS11 2mm 250ul/min RT: 0.04 - 55.00 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 Time (min) 0 5 10 15 RelativeAbundance 23.00 14.24 5.294.20 16.19 27.7315.553.59 27.868.153.32 9.80 7.01 49.7926.7317.98 24.16 49.1913.95 41.7910.63 53.2728.2118.86 47.442.23 37.581.26 38.48 50.6136.4529.7822.53 31.87 46.0833.04 42.33 NL: 2.79E 9 B as e  P eak  F :   F T MS  -­‐  p  E S I  F ull   ms  [50.00-­‐750.00]     MS  VA -­‐3-­‐P P VA-3-PP #1865 RT: 4.21 AV: 1 NL: 1.41E8 T: FTMS - p ESI Full ms [50.00-750.00] 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 m/z 0 50 100 RelativeAbundance 75.0087 C2 H3 O3 122.9853 C2 H4 O4 P89.0245 C3 H5 O3 60.9930 C H O3 59.0137 C2 H3 O2 RT: 0.00 - 55.00 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 Time (min) 0 20 40 60 80 100 RelativeAbundance 4.20 17.11 NL:  1.75E 8 m/z=  74.38-­‐75.38  F :   F T MS  -­‐  p  E S I  F ull   ms  [50.00-­‐750.00]     MS  VA -­‐3-­‐P P VA-3-PP #1854 RT: 4.19 AV: 1 NL: 2.21E7 F: FTMS - p ESI d Full ms2 75.01@hcd45.00 [50.00-100.00] 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 m/z 0 50 100 RelativeAbundance 75.0088 C2 H3 O3 Full Scan c-gram Peak at 4.20 minutes EIC of 75.0088 m/z Delta 0.4 ppm MS2 at 4.20 min. C2H3O3
  • 12. 12 E:LiBNov20-RunVA-3-PP 11/20/14 21:49:03 AS11 2mm 250ul/min RT: 0.09 - 55.00 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 Time (min) 0 2 4 6 8 10 12 14 16 RelativeAbundance 23.00 14.24 5.29 4.20 16.19 27.7315.553.59 27.868.15 3.32 9.803.24 7.01 49.7926.7317.98 24.16 49.1913.95 41.7910.63 53.2718.31 18.48 28.21 47.442.23 37.581.26 38.48 50.6136.4529.78 31.87 44.9633.04 42.33 NL: 2.79E9 Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS VA-3-PP VA-3-PP #1568-1694 RT: 3.58-3.84 AV: 32 NL: 5.89E7 T: FTMS - p ESI Full ms [50.00-750.00] 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 m/z 0 20 40 60 80 100 RelativeAbundance 169.0272 C4 H10 O5 P 139.0166 C3 H8 O4 P 125.0009 C2 H6 O4 P 155.0115 C3 H8 O5 P 185.0222 C11 H5 O360.9930 C H O3 153.0323 C4 H10 O4 P 119.0349 C4 H7 O4 133.0507 C5 H9 O4 89.0245 C3 H5 O3 179.0562 C6 H11 O6 110.9853 C H4 O4 P 163.0613 C6 H11 O5 103.0401 C4 H7 O3 RT: 0.00 - 55.00 SM: 7B 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 Time (min) 0 20 40 60 80 100 RelativeAbundance 5.30 3.87 5.63 NL: 1.70E8 m/z= 138.51-139.51 F: FTMS - p ESI Full ms [50.00-750.00] MS VA-3-PP Early Eluting Phosphate Esters Phosphate esters Chemical formula Exact mass Delta ppm C2H6O4P 125.0009 -0.1 C3H8O4P 139.0166 0.2 C3H8O5P 155.0115 0.1 C4H10O5P 169.0272 0.4 (RT 3.6-3.8 minutes) EIC of 139.01 m/z RT 3.6-3.8 minutes Base peak chromatogram
  • 13. 13 Later Eluting Phosphate Esters e:libnov20-runva-3-pp 11/20/14 21:49:03 AS11 2mm 250ul/min RT: 0.00 - 55.00 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 Time (min) 0 50 100 0 50 100 0 50 100 17.16 23.0014.245.294.20 16.19 27.733.59 8.15 9.80 49.7926.7317.9813.95 41.79 53.27 14.24 3.65 17.065.94 23.03 28.94 30.9226.152.78 38.5335.459.80 52.9046.5313.78 41.0721.93 45.378.68 49.8019.24 33.70 41.99 14.39 24.333.36 27.0114.85 22.993.74 17.2310.01 47.1938.53 54.2640.0922.1211.97 49.420.86 36.8635.3130.26 43.50 45.56 50.9733.578.256.96 NL: 2.79E9 Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS va-3-pp NL: 3.23E7 Base Peak m/z= 282.49-283.49 F: FTMS - p ESI Full ms [50.00-750.00] MS va-3-pp NL: 2.70E7 Base Peak m/z= 212.51-213.51 F: FTMS - p ESI Full ms [50.00-750.00] MS va-3-pp va-3-pp #6257-6338 RT: 14.19-14.36 AV: 21 SB: 129 14.50-15.08 , 13.35-13.92 NL: 1.22E8 T: FTMS - p ESI Full ms [50.00-750.00] 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 m/z 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance 140.9958 C2 H6 O5 P 125.0009 C2 H6 O4 P 110.9852 C H4 O4 P 78.9590 O3 P 282.9991 C4 H13 O10 P2 267.0039 C4 H13 O9 P2 121.0295 C7 H5 O2 213.0170 C5 H10 O7 P 236.9935 C3 H11 O8 P2 96.9600 H O4 S (RT14.2-14.4 minutes)
  • 14. 14 Analysis of an Unknown- Ethanetricarboxylate e:libnov20-runva-3-pp 11/20/14 21:49:03 AS11 2mm 250ul/min RT: 0.04 - 55.00 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 Time (min) 0 2 4 6 8 10 12 14 16 18 20 RelativeAbundance 23.00 14.24 5.294.20 16.19 27.733.59 8.15 3.32 9.80 7.01 49.7926.7317.98 24.16 49.1913.95 41.799.97 53.27 NL: 2.79E9 Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS va-3-pp va-3-pp #12253-12393 RT: 27.65-27.96 AV: 36 SB: 131 28.41-29.16 , 26.94-27.39 NL: 5.27E7 T: FTMS - p ESI Full ms [50.00-750.00] 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 m/z 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance 117.0193 C4 H5 O4 103.0037 C3 H3 O4 161.0092 C5 H5 O6 59.0137 C2 H3 O2 118.9986 C3 H3 O5 133.0143 C4 H5 O5 73.0295 C3 H5 O2 60.9929 C H O3 178.9317 H2 O6 F P2 149.0092 C4 H5 O6 99.0088 C4 H3 O3 173.0092 C6 H5 O6 115.0037 C4 H3 O4 Delta 0.2 ppm Trivalent elution region C5H5O6
  • 15. 15 Simple Case - Propylsulfonate e:libnov20-runva-3-pp 11/20/14 21:49:03 AS11 2mm 250ul/min RT: 0.04 - 55.00 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 Time (min) 0 2 4 6 8 10 12 14 16 18 20 RelativeAbundance 23.00 14.24 5.294.20 16.19 27.733.59 8.15 3.32 9.80 7.01 49.7926.7317.98 24.16 49.1913.95 41.799.97 53.27 NL: 2.79E9 Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS va-3-pp va-3-pp #3544-3662 RT: 8.00-8.26 AV: 30 SB: 131 28.41-29.16 , 26.94-27.39 NL: 6.20E7 T: FTMS - p ESI Full ms [50.00-750.00] 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 m/z 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance 123.0121 C3 H7 O3 S 79.9572 O3 S
  • 16. 16 Chemical Formula for Propylsulfonate Help from HRMS Data Chemical formulae, Mass 123.01 Chemical formulae, Mass 123.0121 Formula Delta, ppm Formula Delta, ppm 1 C6H3O3 10.0 1 C3H7O3S -0.3 2 C3H7O3S -17.4 2 C6H3O3 27.1
  • 17. 17 Summary: ESI(-) Mode Peaks from Sample VA RT: 0.44 - 55.00 5 10 15 20 25 30 35 40 45 50 55 Time (min) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 RelativeAbundance 5.29 4.20 16.19 27.73 3.59 27.86 8.15 3.32 9.80 7.01 49.79 26.73 17.98 24.16 49.19 13.95 41.79 53.2718.21 18.66 47.4428.792.23 47.1537.58 50.6136.4529.78 41.34 NL: 2.79E9 Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS VA-3-PP 6.21   14.24 15.55 17.22 23.03 Retention time Masses Delta (ppm) Possible ID 3.3-3.8 several Phosphate esters 4.20 75.0088 0.4 CH3O3 Methyl carbonate 6.21 112.9810 0.6 CH3O3FP Methylfluorophosphate 8.15 123.0121 -0.3 C3H7O3S Propylsulfonate 14.24 several Phosphate esters 15.55 117.0193 0.3 C4H5O4 Succinate 16.19 103.0036 -0.2 C3H3O4 Malonate 15.62 133.0137 0.4 C4H5O5 Malate 17.22 98.9601 0 HSO4 23.03 98.9696 -0.2 H2PO4 27.73 161.0092 0.2 C5H5O6 41.79 176.9360 0.3 H3P2O7 49.19 175.0249 0.5 C6H7O6
  • 18. 18 Summary • Ion chromatography provides ion exchange separations of anionic (or cationic) sample components • The IC with a conductivity detector is coupled to HRMS to provide information in the elucidation of unknowns • Analytes are eluted in the order of monovalent<divalent<trivalent<higher by ion exchange separation so information is provided on key structural features • To date we have found components from the aging of LiB anodes in several chemical classes including carboxylic acids, esters, phosphate esters, fluorophosphate esters, sulfate esters, as well as inorganic anions
  • 19. 19 Lithium Ion Battery Anode Samples Analysis •  Anode samples •  Control Cell Shelf Aged. •  Calendar Aged. Exhibited 20% loss in capacity. •  Cycle Aged. Exhibited 20% loss in capacity. •  Additional Cycle Aged. Exhibited 45% loss in capacity. •  Objective •  To identify the impurity and degradant present in the sample group. •  To correlate the analysis results with the batteries performance. •  IC-HRMS Analysis and software •  Thermo Scientific Dionex IC combined with the Q Exactive HRMS was used for separation and identification. •  Thermo Scientific™ SIEVE™ software used for component extraction and differential analysis. The Chem Spider report with the high resolution data base for known component screening. Thermo Scientific™ Mass Frontier™ was used for structural elucidation.
  • 20. 20 Comprehensive Li-ion Battery Analysis Workflow : IC-HRMS HR MS Analysis Full Scan-MS/MS Ion Separation Components Identified . _________________ . _________________ . _________________ . _________________ . _________________ . _________________ Component ID (Chem Spider and high resolution ion database) Sample Preparation Thermo Scientific high resolution accurate mass ion database contains accurate masses for common anions and elemental compositions. Users can quickly identify the common anions by database search. Report Thermo Scientific Dionex ICS-2100 System Q Exactive MS SIEVE Software Component Extraction Differential Analysis High Resolution Anion Database . __________ .__________ . __________ .__________ . __________ .__________
  • 21. 21 Schematic of Q Exactive Benchtop LC-MS/MS
  • 22. 22 Q Exactive MS Specifications •  Max resolution: 140,000 at m/z 200 •  Scan speed: up to 12 HZ (at 17.5K) •  Mass Accuracy •  < 3 ppm external •  < 1 ppm internal •  Mass range for full scans: 50 < m/z < 6000 •  Intra-scan dynamic range: > 5000:1 •  Sensitivity •  Full MS: 500 fg Buspirone on column S/N 100:1 •  SIM: 50 fg Buspirone on column S/N 100:1 •  Polarity Switching •  One full cycle in < 1 sec (one full scan positive mode and one full scan negative mode at resolution setting of 35,000) Resolution at m/z 200 Max. Scan Speed (Hz) 17.500 12 35.000 7 70.000 3 140.000 1.5
  • 23. 23 Why Use Q Exactive HRMS? • Q Exactive High Resolution Accurate Mass (HRAM) data provides ultimate confidence for qualitative and quantitative analysis. • High sensitivity, rapid polarity switching ensure detection of structurally diverse compounds at all level. • The HRAM full scan and MS/MS provide rich information for component identification and structure elucidation • Coupled with SIEVE and other Thermo Scientific software, QExactive MS is best suited for known and unknown impurity and degradant analysis for Li-ion battery and other industrial applications.
  • 24. 24 Q Exactive Instrument Method • MS Method •  ESI negative ion mode •  AGC target 1e6 •  Full scan MS and data dependent top 3 MS/MS at resolution 70K and 17.5K •  Stepped NCE: 30, 45, 60 •  Scan range: 50 to 750 m/z
  • 25. 25 HR-MS for Lithium Ion Battery Anode Analysis • HR-MS unambiguously identifies ion species based on HRAM data •  Unit mass vs. high resolution accurate mass m/z  (-­‐)   Unit  mass   m/z  (-­‐)   HRAM   Formula  (-­‐)   Ionic  Species   97   96.9601   HSO4   Hydrogen  Sulfate   97   96.9696   H2PO4   DiHydrogen  Phosphate   139   139.0166   C3H8O4P   Phosphate  Ester   139   139.0071   C3H7O4S   Sulfate  Ester  
  • 26. 26 90 100 110 120 130 140 150 160 170 180 190 m/z 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance 139.0166 133.0507 110.9853 120 130 140 150 160 170 180 m/z 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance 139.0071 141.0029 UA-1-PP#1634 RT: 3.73 T: 50 60 70 80 90 100 110 120 130 140 150 160 m/z 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance 78.9591 O3 P 0.8 ppm 110.9853 C H4 O4 P 0.5 ppm 139.0166 C3 H8 O4 P 0.5 ppm 62.9642 O2 P 0.3 ppm UA-1-PP#2322 RT: 5.26 AV: 1 NL: 2.84E7 T: 50 60 70 80 90 100 110 120 130 140 150 160 m/z 0 10 20 30 40 50 60 70 80 90 100RelativeAbundance 139.0072 C3 H7 O4 S 1.0 ppm 79.9575 O3 S 1.3 ppm 81.953264.9702 HO2 S -1.4873 ppm 120.9965 C3 H5 O3 S -0.1060 ppm HRAM MS/MS Fragments for Structure Elucidation (M-H)-(M-H)- C3H7O4S m/z (-) 139.0071 0.3 ppm (-) C3H8O4P m/z (-) 139.0166 0.4 ppm MS/MS MS/MS S O O OOH OH P O O O •  HRAM MS/MS fragments for confident structure characterization
  • 27. 27 HRAM MS/MS Fragments for Structure Elucidation The structures of co-eluting peaks were identified by MS/MS fragments O P O O O O P O O O OH O P O O O OH O P O O O OH OH ua-1-pp #1521 RT: 3.48 AV: 1 NL: 5.71E7 T: FTMS - p ESI Full ms [50.00-750.00] 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 m/z 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance 169.0272 155.0116 185.0222 125.0009 139.0166 183.012296.9601 112.9856 121.0295 163.0613 200.986589.024579.9574 190.9916 172.9915 133.0507 149.0456 255.2331217.0256101.0608 237.0148 283.2644274.9611 293.0074 ua-1-pp #1510 RT: 3.46 AV: 1 NL: 2.72E6 T: FTMS - p ESI d Full ms2 125.00@hcd45.00 [50.00-150.00] 60 80 100 120 140 m/z 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance 125.0010 62.9641 78.9591 111.9568 94.9905 ua-1-pp #1518 RT: 3.48 AV: 1 NL: 8.32E6 T: FTMS - p ESI d Full ms2 155.01@hcd45.00 [50.00-180.00] 60 80 100 120 140 160 180 m/z 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance 78.9591 110.9853 155.0117 122.9854 ua-1-pp #1502 RT: 3.44 AV: 1 NL: 1.82E7 T: FTMS - p ESI d Full ms2 169.03@hcd45.00 [50.00-195.00] 60 80 100 120 140 160 180 m/z 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance 78.9591 140.9960 169.0273 125.0010 ua-1-pp #1496 RT: 3.43 AV: 1 NL: 6.67E6 T: FTMS - p ESI d Full ms2 184.99@hcd45.00 [50.00-210.00] 50 100 150 200 m/z 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance 78.9591 122.9854 185.0223 140.9960
  • 28. 28 IC-HRMS Result for Aged Anode F:Li-Battary-PaulNov20-RunVA-3-PP 11/20/14 21:49:03 AS11 2mm 250ul/min RT: 0.0 - 55.0 SM: 5G 0 5 10 15 20 25 30 35 40 45 50 55 Time (min) 10 20 30 40 50 60 70 80 90 100 RelativeAbundance 0 5 10 15 20 25 30 µS 4.0 17.1 4.9 16.1 22.914.2 27.817.95.2 49.748.626.724.113.9 50.7 17.2 23.0 14.25.34.2 16.2 27.73.6 27.88.1 9.83.3 49.87.0 26.718.0 24.2 49.213.9 41.810.6 53.3 NL: 3.21E1 ECD_1 UV VA-3-PP NL: 2.73E9 Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS VA-3-PP IC Chromatogram MS Base Peak Chromatogram Cycle Aged Sample 45% Loss
  • 29. 29 IC Chromatograms for All Samples f:li-battary-paulnov20-runma-0-pp 11/20/14 23:59:15 AS11 2mm 250ul/min RT: 0.0 - 30.0 SM: 7G 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Time (min) 0 10 20 µS 0 10 20 µS 0 10 20 µS 0 10 20 µS 0 10 20 µS 0 10 20 µS 17.1 3.8 4.1 15.94.9 3.9 17.1 4.9 16.1 22.9 3.9 17.1 4.9 15.9 17.1 4.9 16.1 22.914.2 27.8 NL: 2.50E1 ECD_1 UV blk_1411202 25409 NL: 2.50E1 ECD_1 UV pc-2-pp NL: 2.50E1 ECD_1 UV ma-0-pp NL: 2.50E1 ECD_1 UV ua-1-pp NL: 2.50E1 ECD_1 UV xa-2-pp NL: 2.50E1 ECD_1 UV VA-3-PP Solvent Blank Control Cell shelf aged Calendar-aged 20% loss in capacity Cycle aged 20% loss in capacity Process Control Cycle aged 45% loss in capacity The IC chromatograms show the differences between samples
  • 30. 30 HRMS Base Peak Chromatograph f:li-battary-paul...blk_141120225409 11/20/14 22:54:09 AS11 2mm 250ul/min RT: 0.0 - 55.0 SM: 5G 0 5 10 15 20 25 30 35 40 45 50 55 Time (min) 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 5.3 9.88.24.1 16.211.1 15.63.9 27.824.7 17.2 23.04.2 5.3 16.214.27.0 8.23.8 9.8 27.824.1 41.711.1 49.8 17.2 23.014.24.2 5.3 16.23.5 27.88.2 9.8 49.826.77.1 13.9 23.014.25.34.2 16.2 27.73.6 8.1 9.8 49.87.0 26.718.013.9 41.8 NL: 2.60E9 Base Peak m/z= 50.0000-6000.0000 F: FTMS - p ESI Full ms [50.00-750.00] - m/z= 144.9640-144.9654 MS blk_141120225409 NL: 2.60E9 Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS pc-2-pp NL: 2.60E9 Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS ma-0-pp NL: 2.60E9 Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS ua-1-pp NL: 2.60E9 Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS xa-2-pp NL: 2.60E9 Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS VA-3-PP Solvent Blank Control cell shelf aged Calendar-aged 20% loss in capacity Cycle aged 20% loss in capacity Process Control Cycle aged 45% loss in capacity See zoomed-in view in next slide (Full Scan Negative mode)
  • 31. 31 F:Li-Battary-PaulNov20-RunVA-3-PP 11/20/14 21:49:03 AS11 2mm 250ul/min RT: 0.2 - 54.5 SM: 5G 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 Time (min) 0 20 40 60 80 100 RelativeAbundance 0 20 40 60 80 100 RelativeAbundance 0 20 40 60 80 100 RelativeAbundance 0 20 40 60 80 100 RelativeAbundance 9.8 8.2 4.1 16.211.1 15.63.9 27.824.713.812.9 18.33.6 26.7 23.0 4.2 5.3 16.2 14.27.0 8.2 4.0 9.83.5 6.2 15.6 27.8 24.1 41.711.1 24.3 49.814.0 18.1 49.228.1 23.014.2 4.2 5.3 16.2 4.0 3.5 27.815.68.2 9.8 49.826.77.1 13.913.2 24.2 49.218.2 14.2 5.34.2 16.2 27.73.6 15.5 27.88.1 9.83.3 49.87.0 26.718.0 24.2 49.213.9 41.813.4 53.318.6 NL: 2.60E8 Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS ma-0-pp NL: 2.60E8 Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS ua-1-pp NL: 2.60E8 Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS xa-2-pp NL: 2.60E8 Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS VA-3-PP Yellow –new or increasing MS Base Peak Chromatograph Blue – Decrease or disappearing Control cell shelf aged Calendar-aged 20% loss in capacity Cycle aged 20% loss in capacity Cycle aged 45% loss in capacity MS show different profiles and more peaks Zoomed-in View
  • 32. 32 SIEVE Base Peak Alignments (MS Data) 0-30 min Zoom In View 40-55 min
  • 33. 33 SIEVE - Trend Intensities and XIC Trend Intensities RT =11 min XIC RT =11 min Component m/z 124.9912 at RT 11.0 min with Elemental Formula C2H5O4S, Ethyl sulfate. The Shelf aged control has high intensity.
  • 34. 34 SIEVE PCA Showing Differences Between Sample Groups Trend Intensities at RT =11 min m/z 124.9912 PCA plot for all six samples
  • 35. 35 Control Cell Shelf Aged E:GM-Li BatteryNov20-RunMA-0-PP 11/20/14 23:59:15 AS11 2mm 250ul/min RT: 0.0 - 55.0 SM: 5G 0 5 10 15 20 25 30 35 40 45 50 55 Time (min) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 RelativeAbundance 5.3 9.8 8.2 4.1 16.2 11.1 15.63.9 27.8 24.713.8 NL: 2.95E9 Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS MA-0-PP HRMS Base Peak Chromatogram 1 2 3 4 5 6 7 8 9 10 11 12 13
  • 36. 36 Component Identified from “Control Cell Shelf Aged” Components  idenPfied  in  Control  Sample   Peak  #   RT  (min)   m/z   Formula  (-­‐)   Delta  ppm   Name*  (Based  on  MS  results)**   1   3.9   89.0244   105.0193   119.0350   C3H5O3   C3H5O4   C4H7O4   0.3   -­‐0.4   -­‐0.3   lactate   2   4.1   75.0087   C2H3O3   -­‐0.4   Methyl  carbonate   3   5.3   139.0070   C3H7O4S   0   Propyl  sulfate   4   8.2   123.0121   C3H7O3S   -­‐0.1   Propyl  sulfonate   5   9.8   140.9864   C2H5O5S   0.3   2-­‐hydroxyethyl  sulfate   6   11.1   124.9914   C2H5O4S   -­‐0.3   Ethyl  sulfate   7   15.6   117.0193   C4H5O4   0.2   methyl  malonate   8   15.7   133.0143   C4H5O5   0.2   3-­‐carboxy-­‐3-­‐hydroxypropanoate   9   16.2   103.0037   C3H3O4   0   2-­‐carboxyacetate   10   17.2   96.9601   HO4S   -­‐0.2   hydrogen  sulfate   11   24.7   218.9639   C3H7O7S2   0.2   2-­‐hydroxy-­‐3-­‐sulfopropane-­‐1-­‐sulfonate   12   26.7   175.0249   C6H7O6   0.3   13   27.8   117.0193   C4H5O4   0.1   2-­‐carboxy-­‐propanoate   *            The  compounds  are  proposed  based  on  database  search  using  HRAM  data  .  The  other  possible  structures  are  not  show. **      The  MS  data  were  acquired  in  ESI  negaPve  ion  mode.  The  ions  reported  there  are  all  HRAM  single  charged  negaPve  ions.                  The  names  listed  here  are  corresponding  to  the  single  charge  ionic  species.   ***  The  notes  here  apply  to  other  samples  in  this  experiment.  
  • 37. 37 Calendar Aged 20% Capacity Loss E:GM-Li BatteryNov20-RunUA-1-PP 11/21/14 02:09:29 AS11 2mm 250ul/min RT: 1.9 - 50.9 SM: 5G 5 10 15 20 25 30 35 40 45 50 Time (min) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 RelativeAbundance 23.0 4.2 5.3 16.2 14.27.0 8.2 3.8 9.8 6.2 15.6 27.8 24.1 NL: 2.53E9 Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS UA-1-PP MS Base Peak Chromatogram 1 2, 3 8 4 5 6 7 9 10 11 12, 13, 14 19 23 20 22 18 21 15,16, 17 24 25 29 26 28 27 30 31
  • 38. 38 Component Identified from Calendar Aged Sample 45% Capacity Loss Components  IdenPfied  in  Calendar  Aged    Sample   Peak  #   RT  (min)   m/z   Formula  (-­‐)   Delta  ppm   Name  (Based  on  MS  results)*   1   3.4   To   3.6   125.0009   155.0116   169.0272   185.0222   C2H6O4P   C3H8O5P   C4H10O5P   C4H10O6P   0   0.6   0.6   0.6   Phosphate  Esters   2   3.7   139.0166   C3H8O4P   0.5   Phosphoric acid   3   3.9   153.0323   C4H10O4P   0.5   Phosphate   4   4.2   75.0088   C2H3O3   -­‐0.2   Methyl  Carbonate   5   5.3   139.0071   C3H7O4S   0.4   Propyl  sulfate   6   6.2   112.9810   CH3O3FP   0.3   Methyl  Phosphorofluoridate     7   7.0   126.9966   C2H5O3FP   0.1   Ethyl  phosphorofluoridate   8   8.2   123.0122   C3H7O3S   0.3   Propyl  sulfonate   9   9.8   140.9864   C2H5O5S   0.3   2-­‐hydroxyethyl  sulfate   10   10.7   110.9757   CH3O4S   -­‐0.3   methyl  sulfate   11   11.1   124.9914   C2H5O4S   0.1   Ethyl  sulfate   12   14.2   140.9958   C2H6O5P   0.1   2-­‐hydroxyethyl  hydrogen  phosphate   13   14.3   125.0009   C2H6O4P   -­‐0.1   ethyl  hydrogen  phosphate   14   14.4   110.9853   CH4O4P   -­‐0.2   methyl  hydrogenphosphate   15   15.3   131.0350   C5H7O4   0   3-­‐carboxy-­‐2-­‐methylpropanoate   16   15.6   117.0193   C4H5O4   0.2   Methyl  Malonate   17   15.7   133.0143   C4H5O5   0.2   3-­‐carboxy-­‐3-­‐hydroxypropanoate   18   15.9   117.0194   C4H5O4   0.2   Succinate   19   16.2   103.0037   C3H3O4   0.3   2-­‐carboxyacetate   20   16.6   98.9653   HO3FP   0.2   hydrogen  phosphorofluoridate   21   17.2   96.9601   HO4S   -­‐0.2   hydrogen  sulfate   22   23.0   96.9696   H2O4P   -­‐0.5   dihydrogen  phosphate   23   24.1   204.9674   C2H7O7P2   0.7   hydrogen  (1-­‐hydroxy-­‐1-­‐phosphono-­‐ethyl)-­‐phosphonate   24   24.3   190.9517   CH5O7P2   1.1   Methyl  trihydrogen  diphosphate   25   26.7   175.0249   C6H7O6   0.3   Ascorbate   26   27.8   161.0092   C5H5O6   0.1   Ethanetricarboxylate   27   27.9   103.0037   C3H3O4   0.3   28   28.1   133.0143   C4H5O5   0.4   29   41.7   176.9361   H3O7P2   0.9   Trihydrogen  diphosphate   30   49.2   175.0249   C6H7O6   0.6   Tricarballylate   31   49.8   204.9990   C6H5O8   0.1   Yellow –new or increasing Blue –Decrease or disappearing
  • 39. 39 Cycle Aged Sample 20% Capacity Loss F:Li-Battary-PaulNov20-RunXA-2-PP 11/20/14 19:38:48 AS11 2mm 250ul/min RT: 0.0 - 55.0 SM: 5G 0 5 10 15 20 25 30 35 40 45 50 55 Time (min) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 RelativeAbundance 23.0 14.2 4.2 5.3 16.2 4.0 3.5 27.8 15.6 8.2 9.8 49.826.7 7.1 13.9 13.4 24.2 49.2 18.211.9 24.4 NL: 1.96E9 Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS XA-2-PP MS Base Peak Chromatogram 1 2 4 5 6 8 9 3 19 26 14 18 21 24 30 31 29 10 11, 12, 13 15, 16, 17 20 7 23 25 28 22 32 27
  • 40. 40 Component Identified from Cycle Aged 20% Loss in Capacity Components  IdenPfied  in  Cycle  Aged  Sample   Peak  #   RT  (min)   m/z   Formula  (-­‐)   Delta  ppm   Name  (Based  on  MS  results)*   1   3.2-­‐3.6   125.0009   155.0116   169.0272   185.0222   C2H6O4P   C3H8O5P   C4H10O5P   C4H10O6P   0   0.6   0.6   0.6   Phosphate  Esters   2   3.8   139.0166   C3H8O4P   0.4   Phosphoric acid   3   4.0   89.0244   C3H5O3   0.1   4   4.2   75.0088   C2H3O3   -­‐0.2   Methyl  Carbonate     5   5.3   139.0071   C3H7O4S   0.4   Propyl  sulfate   6   6.2   112.9810   CH3O3FP   0.3   Methyl  Phosphorofluoridate     7   7.1   126.9966   C2H5O3FP   0.1   Ethyl  phosphorofluoridate   8   8.2   123.0122   C3H7O3S   0.3   Propyl  sulfonate   9   9.8   140.9864   C2H5O5S   0.3   2-­‐hydroxyethyl  sulfate   10   10.0   155.0020   C3H7O5S   -­‐0.3   11   14.2   140.9958   C2H6O5P   0.1   2-­‐hydroxyethyl  hydrogen  phosphate   12   14.3   125.0009   C2H6O4P   -­‐0.1   ethyl  hydrogen  phosphate   13   14.4   110.9853   CH4O4P   -­‐0.2   methyl  hydrogenphosphate   14   15.3   131.0350   C5H7O4   0   3-­‐carboxy-­‐2-­‐methylpropanoate   15   15.6   117.0193   C4H5O4   0.2   methyl  malonate   16   15.7   133.0143   C4H5O5   0.2   3-­‐carboxy-­‐3-­‐hydroxypropanoate   17   15.9   117.0194   C4H5O4   0.2   Succinate   18   16.2   103.0037   C3H3O4   0.3   2-­‐carboxyacetate   19   16.6   98.9653   HO3FP   0   hydrogen  phosphorofluoridate   20   17.1   118.9986   C3H3O5   21   17.2   96.9601   HO4S   -­‐0.2   hydrogen  sulfate   22   23.0   96.9696   H2O4P   -­‐0.5   dihydrogen  phosphate   23   24.2   204.9674   C2H7O7P2   0.7   hydrogen  (1-­‐hydroxy-­‐1-­‐phosphono-­‐ethyl)-­‐phosphonate   24   24.4   190.9517   CH5O7P2   1.1   Methyl  trihydrogen  diphosphate   25   26.1   131.0349   C5H7O4   -­‐0.4   26   26.7   175.0249   C6H7O6   0.3   27   26.9   147.0299   C5H7O5   0.3   4-­‐carboxy-­‐3-­‐hydroxybutanoate   28   27.8   161.0092   C5H5O6   0.1   Ethanetricarboxylate   29   27.9   103.0037   C3H3O4   0   30   41.7   176.9360   H3O7P2   0.3   Trihydrogen  diphosphate   31   49.2   175.0249   C6H7O6   0.3   Tricarballyllate   32   49.8   204.9312   C6H5O8   0.1   Yellow –new or increasing Blue –Decrease or disappearing
  • 41. 41 Cycle Aged 45% Loss in Capacity F:Li-Battary-PaulNov20-RunVA-3-PP 11/20/14 21:49:03 AS11 2mm 250ul/min RT: 0.0 - 55.0 SM: 5G 0 5 10 15 20 25 30 35 40 45 50 55 Time (min) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 RelativeAbundance 23.0 14.2 5.34.2 16.2 27.7 3.6 15.5 27.8 8.1 9.83.3 49.87.0 26.7 18.0 24.2 49.224.313.9 41.810.6 53.318.3 NL: 2.73E9 Base Peak F: FTMS - p ESI Full ms [50.00-750.00] MS VA-3-PP MS Base Peak Chromatogram 1 2 4 5 6 8 9 3 18 19 21 10 12, 13, 14 15, 16, 17 20 7 22 11 23 24 25 26 27 29 28 30 31 32 33 34
  • 42. 42 Component Identified from Cycle Aged 45% Loss in Capacity Components  IdenPfied  in  Cycle  Aged   Peak  #   RT  (min)   m/z  (-­‐)     Measured   m/z  (-­‐)   Calculated   Delta  ppm   Formula  (-­‐)   Name  (Based  on  MS  results)*   1   3.2   To   3.6   125.0009   155.0116   169.0272   185.0222   125.0009   155.0115   169.0271   185.0220   0   0.6   0.6   0.6   C2H6O4P   C3H8O5P   C4H10O5P   C4H10O6P   Phosphate  Esters   2   3.9   139.0166   139.0166   0.4   C3H8O4P   Phosphoric acid   3   4.2   75.0088   75.0088   -­‐0.2   C2H3O3   Methyl  Carbonate     4   5.3   139.0071   139.0071   0   C3H7O4S   Propyl  sulfate   5   6.2   112.9810   112.9809   0.2   CH3O3FP   Methyl  Phosphorofluoridate     6   7.0   126.9966   126.9966   0.1   C2H5O3FP   Ethyl  Phosphorofluoridate   7   7.4   120.9965   120.9965   -­‐0.1   C3H5O3S   2-­‐Propene-­‐1-­‐sulfonic  acid   8   8.2   123.0122   123.0121   0.2   C3H7O3S   Propyl  sulfonate   9   9.8   140.9864   140.9863   0.3   C2H5O5S   2-­‐hydroxyethyl  sulfate   10   10.7   110.9757   110.9758   -­‐0.3   CH3O4S   methyl  sulfate   11   11.1   124.9914   124.9914   0.1   C2H5O4S   Ethyl  sulfate   12   14.2   140.9958   140.9958   0.1   C2H6O5P   2-­‐hydroxyethyl  hydrogen  phosphate   13   14.3   125.0009   125.0009   -­‐0.1   C2H6O4P   ethyl  hydrogen  phosphate   14   14.4   110.9853   110.9853   0   CH4O4P   methyl  hydrogenphosphate   15   15.3   131.0350   131.0350   0   C5H7O4   3-­‐carboxy-­‐2-­‐methylpropanoate   16   15.5   117.0193   117.0193   0.2   C4H5O4   methyl  malonate   17   15.7   133.0143   133.0143   0.2   C4H5O5   3-­‐carboxy-­‐3-­‐hydroxypropanoate   18   15.9   117.0194   117.0194   0.2   C4H5O4   Succinate   19   16.2   103.0037   103.0037   0.3   C3H3O4   2-­‐carboxyacetate   20   16.6   98.9653   98.9653   0   HO3FP   hydrogen  phosphorofluoridate   21   17.2   96.9601   96.9601   -­‐0.2   HO4S   hydrogen  sulfate   22   23.00   96.9696   96.9696   -­‐0.5   H2O4P   dihydrogen  phosphate   23   24.1   204.9674   204.9674   0.7   C2H7O7P2   hydrogen  (1-­‐hydroxy-­‐1-­‐phosphono-­‐ethyl)-­‐phosphonate   24   24.3   190.9517   190.9517   1.1   CH5O7P2   Methyl  trihydrogen  diphosphate   25   24.7   218.9639   218.9639   0.2   C3H7O7S2   2-­‐hydroxy-­‐3-­‐sulfopropane-­‐1-­‐sulfonate   26   26.1   175.0249   175.0249   0.5   C6H7O6   Ascorbate   27   26.7   175.0249   175.0249   0.3   C6H7O6   28   26.9   147.0299   147.0299   0.3   C5H7O5   4-­‐carboxy-­‐3-­‐hydroxybutanoate   29   27.7   161.0092   161.0092   0   C5H5O6   Ethanetricarboxylate   30   27.8   103.0037   103.0037   0   C3H3O4   31   41.8   176.9360   176.9360   0.3   H3O7P2   trihydrogen  diphosphate   32   49.2   175.0249   175.0249   0.3   C6H7O6   tricarballylate   33   49.8   204.9990   204.9990   0   C6H5O8   34   53.3   224.9312   224.9312   0.   HO3F6P2   F5P-­‐PO3H2F   Yellow –new or increasing Blue –Decrease or disappearing
  • 43. 43 Summary • Ion chromatography coupled with the Orbitrap Q Exactive mass spectrometer provides a powerful platform for Li-ion battery anode impurity and degradant analysis. • The HRAM full scan and ms/ms data with polarity switching allows for unambiguous ionic species identification and structure characterization. • This IC-HR/AM MS-based platform provides comprehensive results which can be used for QA/QC for Lithium-ion battery manufacturers and performance evaluations.
  • 44. 44 IC-ICP-MS, 55Mn •  Amount of irreversibly formed Mn species is correlated to aging Zheng, H.; Sun, Q.; Liu, G.; Song, X.; Battaglia, V.S. Correlation between Dissolution Behavior and Electrochemical Cycling Performance for LiNi1/3Co1/3Mn1/3O2-Based Cells. J. Power Sources 2012, 207, 134–140.
  • 45. 45 MnxOy z- Mn2+ Cycle- or Calendar-Aged LiB H+ Mn2+ CathodeAnode Anion Analysis of Cathode Dissolution LiNi0.42Mn0.42Co0.16O2 Mechanistic Pathway -Mn3+ Mn4+ + Anode* Cathode** * Mn2+ sol .in electrolyte, migrates to anode ** Mn4+ insol .in electolyte, remains on cathode Manganese IC-ICP-MS Analysis of Aged Li-ion Batteries Acid-Catalyzed Dissolution of Mn to Mn3+ and Disproportionation to Mn2+ and Mn4+
  • 47. 47 Control Anode and Calendar-Aged Anode Sample Anion Analysis Chromatographic Conditions: Column: Dionex IonPac AS11, 2 × 250 mm Eluent: 1 mM KOH 0–5 minutes,1–30 mM KOH 5–25 minutes Eluent Source: Dionex EGC 500 KOH Cartridge Flow Rate: 0.25 mL/min Injection Volume: 2.5 µL Temperature: 30 ˚C Detection: Suppressed conductivity, Dionex AERS 500 (2 mm) Suppressor, AutoSuppression, recycle mode
  • 48. 48 Manganate, Permanganate, Anion Standards, and Calendar-Aged Anode Samples 100 ppm Manganate 100 ppm Permanganate Anion Standard Fluoride Chlorite Bromate Chloride Nitrite Sulfate Carbonate Bromide, Nitrate, Chlorate 0 10 20 30 -10 10 µS Minutes Aged Anode Sample
  • 49. 49 IC Anion-Exchange Analysis of Aged Li-ion Battery Samples Summary: •  Neither manganate nor permanganate are stable on the anion exchange column •  They may be reacting on the column and degradation products may be eluting in the vicinity of carbonate as well as earlier •  It is possible that carbonate is produced during a reaction on the column
  • 50. 50 Permanganate Standard • Positive response to direct infusion HRMS in –ESI mode • Negative response to IC-HRMS O Mn O O O Theoretical Simulation Experimental Result 116 117 118 119 120 121 122 123 m/z 0 20 40 60 80 100 0 20 40 60 80 100 RelativeAbundance 118.9181 116.9287 120.9221118.9541 119.9219117.9288 118.7880115.9206 118.9183 120.9225119.9225 122.9267121.9267
  • 51. 51 Proposed Mechanism for Anionic Mn Species •  Compound 1 formed by the reaction of permanganate with a succinic acid adduct, a plausible degradation product •  Compound 1 degrades under acidic conditions Tetrahedron 65 (2009) 707–739 ?
  • 52. 52 Cycle Aged (45% Capacity Loss): IC-HRMS •  Positive response to a Mn containing product •  Proposed Mn species consistent with a retention time of 16-33 min •  pH 10-11 of the aq anode extract •  2 decimal point m/z accuracy supports proposed species •  4 decimal point m/z accuracy disputes proposed species Experimental   m/z Calculated   m/z 234.98 234.93 Experimental   m/z Calculated   m/z 234.9779 234.9281 2 Decimal Point Accuracy 4 Decimal Point Accuracy
  • 53. 53 IC-HRMS and Direct Infusion HRMS Analysis of Aged Li- ion Battery Samples Conclusions: •  Permanganate Standard •  Detected by direct infusion HRMS in –ESI mode •  Not detected by anion exchange IC-HRMS •  Proposed Mn Oxide complex •  Positive response by IC-HRMS for aged 40% capacity loss sample •  Proposed species was disproved by direct infusion HRMS in –ESI mode with 4 decimal point accuracy •  No anionic Mn containing products observed by IC-HRMS •  Next Steps •  Cation exchange IC with +ESI mode HRMS to validate presence of Mn2+ from the degradation of permanganate
  • 54. 54 Acknowledgement •  Chris Pohl, Thermo Fisher Scientific, Sunnyvale, CA, USA •  Charanjit Saini, Thermo Fisher Scientific, Sunnyvale CA, USA