SlideShare a Scribd company logo
Cells for Input
Cells for Auto calcs
Natural Gas Composition (mol%)
Methane 92
Ethane 2
Propane 2
Butane 1
Nitrogen 2
Carbondioxide 1
Total 100
Pressure 900
Temperature 120
Basis 100
Desired Production Rate 3000
Stream Factor 345
Operating hours 8280
Max. Hydrocarbon conc. in Steam reformer outlet gas 0.50%
Steam to hydrocarbon ratio in Primary Reformer 3
ells for Input
ells for Auto calcs
psig
°F
lbmol/hr of Natural Gas Feed
Tonnes/day
days
hours
Primary Reformer
Temperature 727
Pressure 900 psig
Pressure Drop 10 psig
HC to Steam Ratio 3
Natural Gas
Steam
Reactions in Primary Reformer
Reaction 1 CH4 + H2O = CO + 3H2 75%
Reaction 2 C2H6 + 2H2O = 2CO + 5H2 100%
Reaction 3 C3H8 + 3H2O = 3CO + 7H2 100%
Reaction 4 C4H10 + 4H2O = 4CO + 9H2 100%
Reaction 5 CO+H2O = CO2 + H2 40%
Components Mol. Wt
Stream 1 (Natural Gas)
Mol%
Methane 16 92 92 1472
Ethane 30 2 2 60
Propane 44 2 2 88
Butane 58 1 1 58
Nitrogen 28 2 2 56
Carbon dioxide 44 1 1 44
Carbon monoxide 28 - - -
Hydrogen 2 - - -
Oxygen 32 - - -
Steam 18 - - -
Total 100 100 1778
Total Primary Reformer Inlet 7016 lb/hr
CO Production
Reaction 1 69 lbmol/hr
Reaction 2 4 lbmol/hr
Reaction 3 6 lbmol/hr
Reaction 4 4 lbmol/hr
Total 83 lbmol/hr
CO Consume
°C
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
1
2
Reaction 5 33.2 lbmol/hr
CO2 Produced
Reaction 5 33.2 lbmol/hr
H2 Produced
Reaction 1 207 lbmol/hr
Reaction 2 10 lbmol/hr
Reaction 3 14 lbmol/hr
Reaction 4 9 lbmol/hr
Reaction 5 33.2 lbmol/hr
Total 273.2 lbmol/hr
Steam consumption
Reaction 1 69 lbmol/hr
Reaction 2 4 lbmol/hr
Reaction 3 6 lbmol/hr
Reaction 4 4 lbmol/hr
Reaction 5 33.2 lbmol/hr
Total 116.2 lbmol/hr
Secondary Reformer
Exit Temperature 1000
Pressure 890
Pressure Drop 10
Air
Reactions in Secondary Reform
based on CH4 Reaction 1 CH4 + H2O = CO + 3H2
based on C2H6 Reaction 2 CH4 + 2O2 = CO2 + 2H2O
based on C3H8 Reaction 3 2CO + O2 = 2CO2
based on C4H10 Reaction 4 CH4 + 2CO + 3O2 = 3CO2 + 2H2
based on CO
Stream 2 (Steam) Stream 3
Mol% Mol%
- - - 4.13 23.00
- - - 0.00 0.00
- - - 0.00 0.00
- - - 0.00 0.00
- - - 0.36 2.00
- - - 6.14 34.20
- - - 8.94 49.80
- - - 49.05 273.20
- - - - -
100 291 5238 31.38 174.8
100 291 5238 100 557
Total Secondary Reformer Inlet
Nitrogen in 113.83
Total air 144.09
O2 with Air 30.26
CH4 Consumption
Reaction 4 10.09
Reaction 1 10.98
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
Mole Flow
(mol/hr)
Primary
Reformer
Secondary
Reformer
4
3 5
CO Production
Reaction 1 10.98
CO Consumption
Reaction 4 20.17
CO2 Production
Reaction 4 30.26
H2 production
Reaction 1 32.93
Steam Consumption
Reaction 1 10.98
Steam Production
Reaction 4 20.17
psig
psig
Reactions in Secondary Reformer
CH4 + H2O = CO + 3H2 85% based on remaining CH4 after Reaction 4
CH4 + 2O2 = CO2 + 2H2O
2CO + O2 = 2CO2
CH4 + 2CO + 3O2 = 3CO2 + 2H2O 100% based on O2
eam 3 Stream 4 (Air) Stream 5
Mol% Mol%
368.00 - - - 0.27
0.00 - - - -
0.00 - - - -
0.00 - - - -
56.00 79 113.83 3187.33 16.25
1504.80 - - - 9.04
1394.40 - - - 5.70
546.40 - - - 42.94
- 21 30.26 968.30 0.00
3146.4 - - - 25.81
7016 100 144.09 4155.64 100
11171.64 lb/hr
lbmol/hr
lbmol/hr
lbmol/hr
lbmol/hr
lbmol/hr
°C
Mass Flow
(lb/hr)
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
lbmol/hr
lbmol/hr
lbmol/hr
lbmol/hr
lbmol/hr
lbmol/hr
after Reaction 4
Stream 5
1.94 30.99
- -
- -
- -
115.83 3243.33
64.46 2836.22
40.60 1136.90
306.13 612.26
0.00 0.00
184.00 3311.94
712.96 11171.64
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
High Temperature Shift Converter
Temperature 400
Pressure 880 psig
Pressure Drop 10 psig
SR outlet stream
Reactions in HTS
Reaction 1 CO+H2O = CO2 + H2 80%
Components Mol. Wt
Stream 5 (SR outlet)
Mol%
Methane 16 0.27 1.94 30.99
Nitrogen 28 16.25 115.83 3243.33
Carbon dioxide 44 9.04 64.46 2836.22
Carbon monoxide 28 5.70 40.60 1136.90
Hydrogen 2 42.94 306.13 612.26
Steam 18 25.81 184.00 3311.94
Total 100 713.0 11171.6
CO Consume
Reaction 1 32.48 lbmol/hr
CO2 Produced
Reaction 1 32.48 lbmol/hr
H2 Produced
Reaction 1 32.48 lbmol/hr
Steam Consume
Reaction 1 32.48 lbmol/hr
°C
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
5
Low Temperature Shift converter
Exit Temperature 200
Pressure 870
Pressure Drop 10
Reactions in LTS
based on CO Reaction 1 CO+H2O = CO2 + H2
Stream 6 (HTS outlet) Stream 7 (LTS outlet)
Mol% Mol%
0.27 1.94 30.99 0.27 1.94
16.25 115.83 3243.33 16.25 115.83
13.60 96.94 4265.46 14.51 103.44
1.14 8.12 227.38 0.23 1.62
47.49 338.61 677.22 48.41 345.11
21.25 151.51 2727.25 20.34 145.02
100 712.96 11171.64 100 712.96
CO Consume
Reaction 1 6.50 lbmol/hr
CO2 Produced
Reaction 1 6.50 lbmol/hr
H2 Produced
Reaction 1 6.50 lbmol/hr
Steam Consume
Reaction 1 6.50 lbmol/hr
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
Mole Flow
(mol/hr)
HTS LTS
6 7
psig
psig
80% based on CO
(LTS outlet)
30.99
3243.33
4551.31
45.48
690.22
2610.31
11171.64
°C
Mass Flow
(lb/hr)
Cooler Separator
Temperature 120
Pressure 860 psig LTS outlet stream
Pressure Drop 10 psig
Assumptions:
Water Condensed 100%
CO2 Solubility in Water 0%
Components Mol. Wt
Stream 8 (LTS outlet)
Mol%
Methane 16 0.27 1.94 30.99
Nitrogen 28 16.25 115.83 3243.33
Carbon dioxide 44 14.51 103.44 4551.31
Carbon monoxide 28 0.23 1.62 45.48
Hydrogen 2 48.41 345.11 690.22
Steam 18 20.34 145.02 2610.31
Total 100 713.0 11171.6
CO2 Removal
Temperature 120 Stream from
Pressure 850 psig Cooler Separator
Pressure Drop 10 psig
Lean Solvent
Assumptions:
Solvent Used K2CO3
Solvent Loading 2 lbmol of Acid gas /lbmol of pure solvent
Solution Strength 80% by weight
Components Mol. Wt
Stream 9 (Feed Gas)
Mol%
Methane 16 0.34 1.94 30.99
Nitrogen 28 20.40 115.83 3243.33
Carbon dioxide 44 18.21 103.44 4551.31
Carbon monoxide 28 0.29 1.62 45.48
Hydrogen 2 60.76 345.11 690.22
Potassium Carbonate 138 0.00 0.00 0.00
Water 18 0.00 0.00 0.00
Total 100.00 567.9 8561.3
°C
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
°C
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
8
9
11
Total Mass in 17482.93 lb/hr
Total Mass out 17482.93 lb/hr
Stream 9 Stream 10 (Condensed Water)
Mol% Mol%
0.34 1.94 30.99 0.00 0.00
20.40 115.83 3243.33 0.00 0.00
18.21 103.44 4551.31 0.00 0.00
0.29 1.62 45.48 0.00 0.00
60.76 345.11 690.22 0.00 0.00
0.00 0.00 0.00 100.00 145.02
100 567.94 8561.33 100 145.02
11171.64
Treated Gas
Rich Solvent
Stream 11 (Lean Solvent) Stream 12 (Treated Gas)
Mol% Mol%
0.00 0.00 0.00 0.42 1.94
0.00 0.00 0.00 24.94 115.83
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.35 1.62
0.00 0.00 0.00 74.30 345.11
34.29 51.72 7137.28 0.00 0.00
65.71 99.13 1784.32 0.00 0.00
100.00 150.85 8921.60 100 464.50
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
Mole Flow
(mol/hr)
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
Mole Flow
(mol/hr)
Cooler
Condenser
9
10
CO2 Removal
13
12
ondensed Water)
0.00
0.00
0.00
0.00
0.00
2610.31
2610.31
(Treated Gas) Stream 13 (Rich Solvent)
Mol%
30.99 0.00 0.00 0.00
3243.33 0.00 0.00 0.00
0.00 40.68 103.44 4551.31
45.48 0.00 0.00 0.00
690.22 0.00 0.00 0.00
0.00 20.34 51.72 7137.28
0 38.98 99.13 1784.32
4010.02 100 254.29 13472.91
Mass Flow
(lb/hr)
Mass Flow
(lb/hr)
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
Methanator
Temperature 400
Pressure 840 psig
Pressure Drop 10 psig
From CO2 Removal Unit
Reactions in Methanator
Reaction 1 CO+3H2 = CH4 +H2O 100%
Components Mol. Wt
Stream 12 (CO2 Removal outlet)
Mol%
Methane 16 0.42 1.94 30.99
Nitrogen 28 24.94 115.83 3243.33
Carbon monoxide 28 0.35 1.62 45.48
Hydrogen 2 74.30 345.11 690.22
Steam 18 0.00 0.00 0.00
Total 100 464.5 4010.0
CO Consume
Reaction 1 1.62 lbmol/hr
H2 Consume
Reaction 1 4.87 lbmol/hr
CH4 Produced
Reaction 1 1.62 lbmol/hr
Steam Produced
Reaction 1 1.62 lbmol/hr
°C
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
12
based on CO
Stream 14 (Methanator outlet) Stream 16
Mol% Mol%
0.77 3.56 56.98 0.77 3.56
25.11 115.83 3243.33 25.20 115.83
0.00 0.00 0.00 0.00 0.00
73.76 340.24 680.47 74.02 340.24
0.35 1.62 29.23 0.00 0.00
100 461.25 4010.02 100 459.63
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
Mole Flow
(mol/hr)
Methanator
Cooler and
Separator
14 16
15
Knock out water
eam 16 Stream 15 (Knock out Water)
Mol%
56.98 0.00 0.00 0.00
3243.33 0.00 0.00 0.00
0.00 0.00 0.00 0.00
680.47 0.00 0.00 0.00
0 100.00 1.62 29.23
3980.78 100 1.62 29.23
Mass Flow
(lb/hr)
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
Ammonia Conversion Loop
Temperature 400
Pressure 840 psig
Pressure Drop 10 psig
From Methanator
Reactions in Ammonia Converter
Reaction 1 N2+3H2 = 2NH3 75%
Iteration No. 1
Components Mol. Wt
Stream 16 (Methanator Outlet)
Mol%
Methane 16 0.77 3.56 56.98
Nitrogen 28 25.20 115.83 3243.33
Hydrogen 2 74.02 340.24 680.47
Ammonia 17 0.00 0.00 0.00
Total 100 459.6 3980.8
H2 Consume Calculations for Purge stream 20 Rate
Reaction 1 255.18 lbmol/hr Feed Stream Flow
N2 Consume Feed Stream Inert
Reaction 1 85.06 lbmol/hr Required Inert Conc.
NH3 Produced Purge Stream 20 flow
Reaction 1 170.12 lbmol/hr Recycle Stream 21 Flow
Iteration No. 2
Components Mol. Wt
Stream 16 (Methanator Outlet)
Mol%
Methane 16 0.78 3.58 57.31
Nitrogen 28 25.20 116.01 3248.31
Hydrogen 2 74.02 340.73 681.45
Ammonia 17 0.00 0.00 0.00
Total 100 460.3 3987.1
H2 Consume Calculations for Purge stream 20 Rate
Reaction 1 255.55 lbmol/hr Feed Stream Flow
°C
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
16
21
N2 Consume Feed Stream Inert
Reaction 1 85.18 lbmol/hr Required Inert Conc.
NH3 Produced Purge Stream 20 flow
Reaction 1 170.36 lbmol/hr Recycle Stream 21 Flow
Iteration No. 3
Components Mol. Wt
Stream 16 (Methanator Outlet)
Mol%
Methane 16 0.78 3.59 57.40
Nitrogen 28 25.20 116.06 3249.76
Hydrogen 2 74.02 340.87 681.74
Ammonia 17 0.00 0.00 0.00
Total 100 460.5 3988.9
H2 Consume Calculations for Purge stream 20 Rate
Reaction 1 255.65 lbmol/hr Feed Stream Flow
N2 Consume Feed Stream Inert
Reaction 1 85.22 lbmol/hr Required Inert Conc.
NH3 Produced Purge Stream 20 flow
Reaction 1 170.44 lbmol/hr Recycle Stream 21 Flow
Iteration No. 4
Components Mol. Wt
Stream 16 (Methanator Outlet)
Mol%
Methane 16 0.78 3.59 57.43
Nitrogen 28 25.20 116.08 3250.19
Hydrogen 2 74.02 340.91 681.83
Ammonia 17 0.00 0.00 0.00
Total 100 460.6 3989.4
H2 Consume Calculations for Purge stream 20 Rate
Reaction 1 255.68 lbmol/hr Feed Stream Flow
N2 Consume Feed Stream Inert
Reaction 1 85.23 lbmol/hr Required Inert Conc.
NH3 Produced Purge Stream 20 flow
Reaction 1 170.46 lbmol/hr Recycle Stream 21 Flow
Note: This indicates that at the start-up, until the system get stabilized, recycle is required after that all the stream sh
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
Scale up Factor Calculations
NH3 production based on 100 lbmol/hr of Natural Gas Feed
Scale up Factor
All the stream flow should be multiplied by this factor to get the desired production rate.
Recycle Stream
based on H2
Stream 17 (Converter outlet) Stream 18
Mol% Mol%
1.23 3.56 56.98 2.98 3.56
10.63 30.77 861.68 25.78 30.77
29.38 85.06 170.12 71.24 85.06
58.76 170.12 2892.01 0.00 0.00
100 289.51 3980.78 100 119.39
stream 20 Rate Purge Stream 20
459.6 lbmol/hr Mol%
0.77 mol% Methane 2.98 3.54
3 mol% Nitrogen 25.78 30.60
118.71 lbmol/hr Hydrogen 71.24 84.57
0.69 lbmol/hr 100.00 118.71
Stream 17 (Converter outlet) Stream 18
Mol% Mol%
1.24 3.58 57.31 2.99 3.58
10.63 30.83 863.22 25.78 30.83
29.38 85.18 170.36 71.23 85.18
58.75 170.36 2896.18 0.00 0.00
100 289.96 3987.07 100 119.59
stream 20 Rate Purge Stream 20
460.3 lbmol/hr Mol%
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
Mole Flow
(mol/hr)
Mole Flow
(mol/hr)
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
Mole Flow
(mol/hr)
Mole Flow
(mol/hr)
Ammonia
Converter
Cooler and
Ammonia
Separator
17 18
19
20
0.78 mol% Methane 2.99 3.58
3 mol% Nitrogen 25.78 30.78
119.39 lbmol/hr Hydrogen 71.23 85.04
0.20 lbmol/hr 100.00 119.39
Stream 17 (Converter outlet) Stream 18
Mol% Mol%
1.24 3.59 57.40 3.00 3.59
10.63 30.85 863.67 25.78 30.85
29.38 85.22 170.44 71.22 85.22
58.75 170.44 2897.41 0.00 0.00
100 290.09 3988.91 100 119.65
stream 20 Rate Purge Stream 20
460.5 lbmol/hr Mol%
0.78 mol% Methane 3.00 3.59
3 mol% Nitrogen 25.78 30.83
119.59 lbmol/hr Hydrogen 71.22 85.18
0.06 lbmol/hr 100.00 119.59
Stream 17 (Converter outlet) Stream 18
Mol% Mol%
1.24 3.59 57.43 3.00 3.59
10.63 30.85 863.80 25.78 30.85
29.38 85.23 170.46 71.22 85.23
58.75 170.46 2897.76 0.00 0.00
100 290.12 3989.45 100 119.67
stream 20 Rate Purge Stream 20
460.6 lbmol/hr Mol%
0.78 mol% Methane 3.00 3.59
3 mol% Nitrogen 25.78 30.85
119.65 lbmol/hr Hydrogen 71.22 85.22
0.02 lbmol/hr 100.00 119.65
d after that all the stream should be purged.
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
Mole Flow
(mol/hr)
Mole Flow
(mol/hr)
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
Mole Flow
(mol/hr)
Mole Flow
(mol/hr)
2897.76 lb/hr
31.6 Tonnes/day
95.1
he desired production rate.
Purge Stream
Liquid Ammonia
eam 18 Stream 19 (Liquid Ammonia)
Mol%
56.98 0.00 0.00 0.00
861.68 0.00 0.00 0.00
170.12 0.00 0.00 0.00
0 100.00 170.12 2892.01
1088.78 100 170.12 2892.01
Stream 20 Recycle Stream 21
Mol%
56.65 2.98 0.02 0.33
856.71 25.78 0.18 4.97
169.14 71.24 0.49 0.98
1082.49 100.00 0.69 6.28
eam 18 Stream 19 (Liquid Ammonia)
Mol%
57.31 0.00 0.00 0.00
863.22 0.00 0.00 0.00
170.36 0.00 0.00 0.00
0 100.00 170.36 2896.18
1090.89 100 170.36 2896.18
Stream 20 Recycle Stream 21
Mol%
Mass Flow
(lb/hr)
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
Mass Flow
(lb/hr)
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
Mass Flow
(lb/hr)
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
Mass Flow
(lb/hr)
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
57.21 2.99 0.01 0.10
861.76 25.78 0.05 1.46
170.08 71.23 0.14 0.29
1089.04 100.00 0.20 1.84
eam 18 Stream 19 (Liquid Ammonia)
Mol%
57.40 0.00 0.00 0.00
863.67 0.00 0.00 0.00
170.44 0.00 0.00 0.00
0 100.00 170.44 2897.41
1091.51 100 170.44 2897.41
Stream 20 Recycle Stream 21
Mol%
57.38 3.00 0.00 0.03
863.24 25.78 0.02 0.42
170.35 71.22 0.04 0.08
1090.97 100.00 0.06 0.53
eam 18 Stream 19 (Liquid Ammonia)
Mol%
57.43 0.00 0.00 0.00
863.80 0.00 0.00 0.00
170.46 0.00 0.00 0.00
0 100.00 170.46 2897.76
1091.69 100 170.46 2897.76
Stream 20 Recycle Stream 21
Mol%
57.42 3.00 0.00 0.01
863.68 25.78 0.00 0.12
170.43 71.22 0.01 0.02
1091.53 100.00 0.02 0.15
Mass Flow
(lb/hr)
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
Mass Flow
(lb/hr)
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
Mass Flow
(lb/hr)
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
Mass Flow
(lb/hr)
Mole Flow
(mol/hr)
Mass Flow
(lb/hr)
3980.78
1088.78
Ammonia mass-balance
Ammonia mass-balance

More Related Content

What's hot

Theory and Operation VSG-A101 Ammonia Synthesis Catalyst
Theory and Operation VSG-A101 Ammonia Synthesis CatalystTheory and Operation VSG-A101 Ammonia Synthesis Catalyst
Theory and Operation VSG-A101 Ammonia Synthesis Catalyst
Gerard B. Hawkins
 
Various ammonia technology
Various ammonia technologyVarious ammonia technology
Various ammonia technology
Prem Baboo
 
Secondary Reforming Flowsheets
Secondary Reforming FlowsheetsSecondary Reforming Flowsheets
Secondary Reforming Flowsheets
Gerard B. Hawkins
 
Amm plant description
Amm plant descriptionAmm plant description
Amm plant description
ameermudasar
 
Ammonia Plant - Methanation Operations
Ammonia Plant - Methanation OperationsAmmonia Plant - Methanation Operations
Ammonia Plant - Methanation Operations
Gerard B. Hawkins
 
Ammonia Synthesis Flowsheet - Operator training
Ammonia Synthesis Flowsheet - Operator trainingAmmonia Synthesis Flowsheet - Operator training
Ammonia Synthesis Flowsheet - Operator training
Gerard B. Hawkins
 
Kbr
KbrKbr
Theory and Practice of Steam Reforming
Theory and Practice of Steam ReformingTheory and Practice of Steam Reforming
Theory and Practice of Steam Reforming
Gerard B. Hawkins
 
(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev Overview
(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev Overview(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev Overview
(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev Overview
Gerard B. Hawkins
 
Ammonia CO2 Removal Systems
Ammonia CO2 Removal SystemsAmmonia CO2 Removal Systems
Ammonia CO2 Removal Systems
Gerard B. Hawkins
 
A case study on Process Condensate Stripper in Ammonia Plant by Prem Baboo.pdf
A case study on Process Condensate Stripper in Ammonia Plant by Prem Baboo.pdfA case study on Process Condensate Stripper in Ammonia Plant by Prem Baboo.pdf
A case study on Process Condensate Stripper in Ammonia Plant by Prem Baboo.pdf
PremBaboo4
 
Introduction To Syngas Plant Flowsheet Options
Introduction To Syngas Plant Flowsheet OptionsIntroduction To Syngas Plant Flowsheet Options
Introduction To Syngas Plant Flowsheet Options
Gerard B. Hawkins
 
Normal Operation of Steam Reformers on Hydrogen Plants
Normal Operation of Steam Reformers on Hydrogen PlantsNormal Operation of Steam Reformers on Hydrogen Plants
Normal Operation of Steam Reformers on Hydrogen Plants
Gerard B. Hawkins
 
Amonia manufacturing process
Amonia manufacturing process Amonia manufacturing process
Amonia manufacturing process
Ashvani Shukla
 
Ammonia plant GSFC by Vishal Tapiawala
Ammonia plant GSFC by Vishal TapiawalaAmmonia plant GSFC by Vishal Tapiawala
Ammonia plant GSFC by Vishal Tapiawala
Vishal Tapiawala
 
Feedstock Purfication in Hydrogen Plants
Feedstock Purfication in Hydrogen PlantsFeedstock Purfication in Hydrogen Plants
Feedstock Purfication in Hydrogen Plants
Gerard B. Hawkins
 
Steam reforming - The Basics of Reforming
Steam reforming  - The Basics of ReformingSteam reforming  - The Basics of Reforming
Steam reforming - The Basics of Reforming
Gerard B. Hawkins
 
Principles of Pre-reforming Technology
Principles of Pre-reforming TechnologyPrinciples of Pre-reforming Technology
Principles of Pre-reforming Technology
Gerard B. Hawkins
 
Pre-reformer Operations Technical Supplement
Pre-reformer Operations Technical SupplementPre-reformer Operations Technical Supplement
Pre-reformer Operations Technical Supplement
Gerard B. Hawkins
 
Ammonia Industries
Ammonia IndustriesAmmonia Industries
Ammonia Industries
SAFFI Ud Din Ahmad
 

What's hot (20)

Theory and Operation VSG-A101 Ammonia Synthesis Catalyst
Theory and Operation VSG-A101 Ammonia Synthesis CatalystTheory and Operation VSG-A101 Ammonia Synthesis Catalyst
Theory and Operation VSG-A101 Ammonia Synthesis Catalyst
 
Various ammonia technology
Various ammonia technologyVarious ammonia technology
Various ammonia technology
 
Secondary Reforming Flowsheets
Secondary Reforming FlowsheetsSecondary Reforming Flowsheets
Secondary Reforming Flowsheets
 
Amm plant description
Amm plant descriptionAmm plant description
Amm plant description
 
Ammonia Plant - Methanation Operations
Ammonia Plant - Methanation OperationsAmmonia Plant - Methanation Operations
Ammonia Plant - Methanation Operations
 
Ammonia Synthesis Flowsheet - Operator training
Ammonia Synthesis Flowsheet - Operator trainingAmmonia Synthesis Flowsheet - Operator training
Ammonia Synthesis Flowsheet - Operator training
 
Kbr
KbrKbr
Kbr
 
Theory and Practice of Steam Reforming
Theory and Practice of Steam ReformingTheory and Practice of Steam Reforming
Theory and Practice of Steam Reforming
 
(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev Overview
(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev Overview(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev Overview
(HTS) High Temperature Shift Catalyst (VSG-F101) - Comprehensiev Overview
 
Ammonia CO2 Removal Systems
Ammonia CO2 Removal SystemsAmmonia CO2 Removal Systems
Ammonia CO2 Removal Systems
 
A case study on Process Condensate Stripper in Ammonia Plant by Prem Baboo.pdf
A case study on Process Condensate Stripper in Ammonia Plant by Prem Baboo.pdfA case study on Process Condensate Stripper in Ammonia Plant by Prem Baboo.pdf
A case study on Process Condensate Stripper in Ammonia Plant by Prem Baboo.pdf
 
Introduction To Syngas Plant Flowsheet Options
Introduction To Syngas Plant Flowsheet OptionsIntroduction To Syngas Plant Flowsheet Options
Introduction To Syngas Plant Flowsheet Options
 
Normal Operation of Steam Reformers on Hydrogen Plants
Normal Operation of Steam Reformers on Hydrogen PlantsNormal Operation of Steam Reformers on Hydrogen Plants
Normal Operation of Steam Reformers on Hydrogen Plants
 
Amonia manufacturing process
Amonia manufacturing process Amonia manufacturing process
Amonia manufacturing process
 
Ammonia plant GSFC by Vishal Tapiawala
Ammonia plant GSFC by Vishal TapiawalaAmmonia plant GSFC by Vishal Tapiawala
Ammonia plant GSFC by Vishal Tapiawala
 
Feedstock Purfication in Hydrogen Plants
Feedstock Purfication in Hydrogen PlantsFeedstock Purfication in Hydrogen Plants
Feedstock Purfication in Hydrogen Plants
 
Steam reforming - The Basics of Reforming
Steam reforming  - The Basics of ReformingSteam reforming  - The Basics of Reforming
Steam reforming - The Basics of Reforming
 
Principles of Pre-reforming Technology
Principles of Pre-reforming TechnologyPrinciples of Pre-reforming Technology
Principles of Pre-reforming Technology
 
Pre-reformer Operations Technical Supplement
Pre-reformer Operations Technical SupplementPre-reformer Operations Technical Supplement
Pre-reformer Operations Technical Supplement
 
Ammonia Industries
Ammonia IndustriesAmmonia Industries
Ammonia Industries
 

Similar to Ammonia mass-balance

sru-presentation.pptx
sru-presentation.pptxsru-presentation.pptx
sru-presentation.pptx
Raul79654
 
Design and balance : Styrene Oxide Production
Design and balance : Styrene Oxide ProductionDesign and balance : Styrene Oxide Production
Design and balance : Styrene Oxide Production
ARITRA MUKHERJEE
 
RDF Power Plant Configuration 62.pptx
RDF Power Plant Configuration 62.pptxRDF Power Plant Configuration 62.pptx
RDF Power Plant Configuration 62.pptx
rasmusestherian
 
Sces2340 p3 hydrogen_synthesis_041218
Sces2340 p3 hydrogen_synthesis_041218Sces2340 p3 hydrogen_synthesis_041218
Sces2340 p3 hydrogen_synthesis_041218Nazrul Amin Muhammad
 
reactor design.pptx
reactor design.pptxreactor design.pptx
reactor design.pptx
Ashutoshsutar3
 
Production of 1-Tetradecene at 100 tons per year
Production of 1-Tetradecene at 100 tons per yearProduction of 1-Tetradecene at 100 tons per year
Production of 1-Tetradecene at 100 tons per year
aman_hb
 
Mass balance: Single-phase System (ideal gas and real gases)
Mass balance: Single-phase System (ideal gas and real gases)Mass balance: Single-phase System (ideal gas and real gases)
Mass balance: Single-phase System (ideal gas and real gases)
nhalieza
 
Manufacture of acetonitrile 2015
Manufacture of acetonitrile 2015Manufacture of acetonitrile 2015
Manufacture of acetonitrile 2015
Aliasgar Mandsaurwala
 
a159314777297.pdf
a159314777297.pdfa159314777297.pdf
a159314777297.pdf
farkhandasaadat67
 
Material Balance of Adipic Acid Plant
Material Balance of Adipic Acid PlantMaterial Balance of Adipic Acid Plant
Material Balance of Adipic Acid Plant
IshaneeSharma
 
ammoniaproduction-131113173051-phpapp02 (1).pptx
ammoniaproduction-131113173051-phpapp02 (1).pptxammoniaproduction-131113173051-phpapp02 (1).pptx
ammoniaproduction-131113173051-phpapp02 (1).pptx
sadafmunir4
 
chapter 5 intial material balance from slide share.pdf
chapter 5 intial material balance from slide share.pdfchapter 5 intial material balance from slide share.pdf
chapter 5 intial material balance from slide share.pdf
trialaccountforme
 
Lecture 6combustion at higher temperatures.pptx
Lecture 6combustion at higher temperatures.pptxLecture 6combustion at higher temperatures.pptx
Lecture 6combustion at higher temperatures.pptx
SphesihleLungani
 
Ammonia-PPT GTEs.pptx
Ammonia-PPT GTEs.pptxAmmonia-PPT GTEs.pptx
Ammonia-PPT GTEs.pptx
SheikhSaad18
 
Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...
Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...
Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...
CRL Asia
 
02 - Group 3 - P&ID - Piping and Instrumentation Diagrams
02 - Group 3 - P&ID - Piping and Instrumentation Diagrams02 - Group 3 - P&ID - Piping and Instrumentation Diagrams
02 - Group 3 - P&ID - Piping and Instrumentation DiagramsShakeel Vakkil
 
Experimental and Process Modelling Study of Integration of a Micro-turbine wi...
Experimental and Process Modelling Study of Integration of a Micro-turbine wi...Experimental and Process Modelling Study of Integration of a Micro-turbine wi...
Experimental and Process Modelling Study of Integration of a Micro-turbine wi...
UK Carbon Capture and Storage Research Centre
 
CO2QUEST Typical Impurities in Captured CO2 Streams - Richard T. J. Porter at...
CO2QUEST Typical Impurities in Captured CO2 Streams - Richard T. J. Porter at...CO2QUEST Typical Impurities in Captured CO2 Streams - Richard T. J. Porter at...
CO2QUEST Typical Impurities in Captured CO2 Streams - Richard T. J. Porter at...
UK Carbon Capture and Storage Research Centre
 
Assessment of boiler performance
Assessment of boiler performanceAssessment of boiler performance
Assessment of boiler performance
Ashish Kumar Jain
 
IB Chemistry Titration Techniques and IA on Titration
IB Chemistry Titration Techniques and IA on TitrationIB Chemistry Titration Techniques and IA on Titration
IB Chemistry Titration Techniques and IA on Titration
Lawrence kok
 

Similar to Ammonia mass-balance (20)

sru-presentation.pptx
sru-presentation.pptxsru-presentation.pptx
sru-presentation.pptx
 
Design and balance : Styrene Oxide Production
Design and balance : Styrene Oxide ProductionDesign and balance : Styrene Oxide Production
Design and balance : Styrene Oxide Production
 
RDF Power Plant Configuration 62.pptx
RDF Power Plant Configuration 62.pptxRDF Power Plant Configuration 62.pptx
RDF Power Plant Configuration 62.pptx
 
Sces2340 p3 hydrogen_synthesis_041218
Sces2340 p3 hydrogen_synthesis_041218Sces2340 p3 hydrogen_synthesis_041218
Sces2340 p3 hydrogen_synthesis_041218
 
reactor design.pptx
reactor design.pptxreactor design.pptx
reactor design.pptx
 
Production of 1-Tetradecene at 100 tons per year
Production of 1-Tetradecene at 100 tons per yearProduction of 1-Tetradecene at 100 tons per year
Production of 1-Tetradecene at 100 tons per year
 
Mass balance: Single-phase System (ideal gas and real gases)
Mass balance: Single-phase System (ideal gas and real gases)Mass balance: Single-phase System (ideal gas and real gases)
Mass balance: Single-phase System (ideal gas and real gases)
 
Manufacture of acetonitrile 2015
Manufacture of acetonitrile 2015Manufacture of acetonitrile 2015
Manufacture of acetonitrile 2015
 
a159314777297.pdf
a159314777297.pdfa159314777297.pdf
a159314777297.pdf
 
Material Balance of Adipic Acid Plant
Material Balance of Adipic Acid PlantMaterial Balance of Adipic Acid Plant
Material Balance of Adipic Acid Plant
 
ammoniaproduction-131113173051-phpapp02 (1).pptx
ammoniaproduction-131113173051-phpapp02 (1).pptxammoniaproduction-131113173051-phpapp02 (1).pptx
ammoniaproduction-131113173051-phpapp02 (1).pptx
 
chapter 5 intial material balance from slide share.pdf
chapter 5 intial material balance from slide share.pdfchapter 5 intial material balance from slide share.pdf
chapter 5 intial material balance from slide share.pdf
 
Lecture 6combustion at higher temperatures.pptx
Lecture 6combustion at higher temperatures.pptxLecture 6combustion at higher temperatures.pptx
Lecture 6combustion at higher temperatures.pptx
 
Ammonia-PPT GTEs.pptx
Ammonia-PPT GTEs.pptxAmmonia-PPT GTEs.pptx
Ammonia-PPT GTEs.pptx
 
Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...
Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...
Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...
 
02 - Group 3 - P&ID - Piping and Instrumentation Diagrams
02 - Group 3 - P&ID - Piping and Instrumentation Diagrams02 - Group 3 - P&ID - Piping and Instrumentation Diagrams
02 - Group 3 - P&ID - Piping and Instrumentation Diagrams
 
Experimental and Process Modelling Study of Integration of a Micro-turbine wi...
Experimental and Process Modelling Study of Integration of a Micro-turbine wi...Experimental and Process Modelling Study of Integration of a Micro-turbine wi...
Experimental and Process Modelling Study of Integration of a Micro-turbine wi...
 
CO2QUEST Typical Impurities in Captured CO2 Streams - Richard T. J. Porter at...
CO2QUEST Typical Impurities in Captured CO2 Streams - Richard T. J. Porter at...CO2QUEST Typical Impurities in Captured CO2 Streams - Richard T. J. Porter at...
CO2QUEST Typical Impurities in Captured CO2 Streams - Richard T. J. Porter at...
 
Assessment of boiler performance
Assessment of boiler performanceAssessment of boiler performance
Assessment of boiler performance
 
IB Chemistry Titration Techniques and IA on Titration
IB Chemistry Titration Techniques and IA on TitrationIB Chemistry Titration Techniques and IA on Titration
IB Chemistry Titration Techniques and IA on Titration
 

Recently uploaded

UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
DianaGray10
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Ramesh Iyer
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
Ana-Maria Mihalceanu
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
Thijs Feryn
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
Dorra BARTAGUIZ
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
Product School
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
Elena Simperl
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
RTTS
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
Sri Ambati
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
Paul Groth
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
Product School
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
Product School
 

Recently uploaded (20)

UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
 

Ammonia mass-balance

  • 1. Cells for Input Cells for Auto calcs Natural Gas Composition (mol%) Methane 92 Ethane 2 Propane 2 Butane 1 Nitrogen 2 Carbondioxide 1 Total 100 Pressure 900 Temperature 120 Basis 100 Desired Production Rate 3000 Stream Factor 345 Operating hours 8280 Max. Hydrocarbon conc. in Steam reformer outlet gas 0.50% Steam to hydrocarbon ratio in Primary Reformer 3
  • 2. ells for Input ells for Auto calcs psig °F lbmol/hr of Natural Gas Feed Tonnes/day days hours
  • 3. Primary Reformer Temperature 727 Pressure 900 psig Pressure Drop 10 psig HC to Steam Ratio 3 Natural Gas Steam Reactions in Primary Reformer Reaction 1 CH4 + H2O = CO + 3H2 75% Reaction 2 C2H6 + 2H2O = 2CO + 5H2 100% Reaction 3 C3H8 + 3H2O = 3CO + 7H2 100% Reaction 4 C4H10 + 4H2O = 4CO + 9H2 100% Reaction 5 CO+H2O = CO2 + H2 40% Components Mol. Wt Stream 1 (Natural Gas) Mol% Methane 16 92 92 1472 Ethane 30 2 2 60 Propane 44 2 2 88 Butane 58 1 1 58 Nitrogen 28 2 2 56 Carbon dioxide 44 1 1 44 Carbon monoxide 28 - - - Hydrogen 2 - - - Oxygen 32 - - - Steam 18 - - - Total 100 100 1778 Total Primary Reformer Inlet 7016 lb/hr CO Production Reaction 1 69 lbmol/hr Reaction 2 4 lbmol/hr Reaction 3 6 lbmol/hr Reaction 4 4 lbmol/hr Total 83 lbmol/hr CO Consume °C Mole Flow (mol/hr) Mass Flow (lb/hr) 1 2
  • 4. Reaction 5 33.2 lbmol/hr CO2 Produced Reaction 5 33.2 lbmol/hr H2 Produced Reaction 1 207 lbmol/hr Reaction 2 10 lbmol/hr Reaction 3 14 lbmol/hr Reaction 4 9 lbmol/hr Reaction 5 33.2 lbmol/hr Total 273.2 lbmol/hr Steam consumption Reaction 1 69 lbmol/hr Reaction 2 4 lbmol/hr Reaction 3 6 lbmol/hr Reaction 4 4 lbmol/hr Reaction 5 33.2 lbmol/hr Total 116.2 lbmol/hr
  • 5. Secondary Reformer Exit Temperature 1000 Pressure 890 Pressure Drop 10 Air Reactions in Secondary Reform based on CH4 Reaction 1 CH4 + H2O = CO + 3H2 based on C2H6 Reaction 2 CH4 + 2O2 = CO2 + 2H2O based on C3H8 Reaction 3 2CO + O2 = 2CO2 based on C4H10 Reaction 4 CH4 + 2CO + 3O2 = 3CO2 + 2H2 based on CO Stream 2 (Steam) Stream 3 Mol% Mol% - - - 4.13 23.00 - - - 0.00 0.00 - - - 0.00 0.00 - - - 0.00 0.00 - - - 0.36 2.00 - - - 6.14 34.20 - - - 8.94 49.80 - - - 49.05 273.20 - - - - - 100 291 5238 31.38 174.8 100 291 5238 100 557 Total Secondary Reformer Inlet Nitrogen in 113.83 Total air 144.09 O2 with Air 30.26 CH4 Consumption Reaction 4 10.09 Reaction 1 10.98 Mole Flow (mol/hr) Mass Flow (lb/hr) Mole Flow (mol/hr) Primary Reformer Secondary Reformer 4 3 5
  • 6. CO Production Reaction 1 10.98 CO Consumption Reaction 4 20.17 CO2 Production Reaction 4 30.26 H2 production Reaction 1 32.93 Steam Consumption Reaction 1 10.98 Steam Production Reaction 4 20.17
  • 7. psig psig Reactions in Secondary Reformer CH4 + H2O = CO + 3H2 85% based on remaining CH4 after Reaction 4 CH4 + 2O2 = CO2 + 2H2O 2CO + O2 = 2CO2 CH4 + 2CO + 3O2 = 3CO2 + 2H2O 100% based on O2 eam 3 Stream 4 (Air) Stream 5 Mol% Mol% 368.00 - - - 0.27 0.00 - - - - 0.00 - - - - 0.00 - - - - 56.00 79 113.83 3187.33 16.25 1504.80 - - - 9.04 1394.40 - - - 5.70 546.40 - - - 42.94 - 21 30.26 968.30 0.00 3146.4 - - - 25.81 7016 100 144.09 4155.64 100 11171.64 lb/hr lbmol/hr lbmol/hr lbmol/hr lbmol/hr lbmol/hr °C Mass Flow (lb/hr) Mole Flow (mol/hr) Mass Flow (lb/hr)
  • 9. after Reaction 4 Stream 5 1.94 30.99 - - - - - - 115.83 3243.33 64.46 2836.22 40.60 1136.90 306.13 612.26 0.00 0.00 184.00 3311.94 712.96 11171.64 Mole Flow (mol/hr) Mass Flow (lb/hr)
  • 10.
  • 11. High Temperature Shift Converter Temperature 400 Pressure 880 psig Pressure Drop 10 psig SR outlet stream Reactions in HTS Reaction 1 CO+H2O = CO2 + H2 80% Components Mol. Wt Stream 5 (SR outlet) Mol% Methane 16 0.27 1.94 30.99 Nitrogen 28 16.25 115.83 3243.33 Carbon dioxide 44 9.04 64.46 2836.22 Carbon monoxide 28 5.70 40.60 1136.90 Hydrogen 2 42.94 306.13 612.26 Steam 18 25.81 184.00 3311.94 Total 100 713.0 11171.6 CO Consume Reaction 1 32.48 lbmol/hr CO2 Produced Reaction 1 32.48 lbmol/hr H2 Produced Reaction 1 32.48 lbmol/hr Steam Consume Reaction 1 32.48 lbmol/hr °C Mole Flow (mol/hr) Mass Flow (lb/hr) 5
  • 12. Low Temperature Shift converter Exit Temperature 200 Pressure 870 Pressure Drop 10 Reactions in LTS based on CO Reaction 1 CO+H2O = CO2 + H2 Stream 6 (HTS outlet) Stream 7 (LTS outlet) Mol% Mol% 0.27 1.94 30.99 0.27 1.94 16.25 115.83 3243.33 16.25 115.83 13.60 96.94 4265.46 14.51 103.44 1.14 8.12 227.38 0.23 1.62 47.49 338.61 677.22 48.41 345.11 21.25 151.51 2727.25 20.34 145.02 100 712.96 11171.64 100 712.96 CO Consume Reaction 1 6.50 lbmol/hr CO2 Produced Reaction 1 6.50 lbmol/hr H2 Produced Reaction 1 6.50 lbmol/hr Steam Consume Reaction 1 6.50 lbmol/hr Mole Flow (mol/hr) Mass Flow (lb/hr) Mole Flow (mol/hr) HTS LTS 6 7
  • 13. psig psig 80% based on CO (LTS outlet) 30.99 3243.33 4551.31 45.48 690.22 2610.31 11171.64 °C Mass Flow (lb/hr)
  • 14. Cooler Separator Temperature 120 Pressure 860 psig LTS outlet stream Pressure Drop 10 psig Assumptions: Water Condensed 100% CO2 Solubility in Water 0% Components Mol. Wt Stream 8 (LTS outlet) Mol% Methane 16 0.27 1.94 30.99 Nitrogen 28 16.25 115.83 3243.33 Carbon dioxide 44 14.51 103.44 4551.31 Carbon monoxide 28 0.23 1.62 45.48 Hydrogen 2 48.41 345.11 690.22 Steam 18 20.34 145.02 2610.31 Total 100 713.0 11171.6 CO2 Removal Temperature 120 Stream from Pressure 850 psig Cooler Separator Pressure Drop 10 psig Lean Solvent Assumptions: Solvent Used K2CO3 Solvent Loading 2 lbmol of Acid gas /lbmol of pure solvent Solution Strength 80% by weight Components Mol. Wt Stream 9 (Feed Gas) Mol% Methane 16 0.34 1.94 30.99 Nitrogen 28 20.40 115.83 3243.33 Carbon dioxide 44 18.21 103.44 4551.31 Carbon monoxide 28 0.29 1.62 45.48 Hydrogen 2 60.76 345.11 690.22 Potassium Carbonate 138 0.00 0.00 0.00 Water 18 0.00 0.00 0.00 Total 100.00 567.9 8561.3 °C Mole Flow (mol/hr) Mass Flow (lb/hr) °C Mole Flow (mol/hr) Mass Flow (lb/hr) 8 9 11
  • 15. Total Mass in 17482.93 lb/hr Total Mass out 17482.93 lb/hr
  • 16. Stream 9 Stream 10 (Condensed Water) Mol% Mol% 0.34 1.94 30.99 0.00 0.00 20.40 115.83 3243.33 0.00 0.00 18.21 103.44 4551.31 0.00 0.00 0.29 1.62 45.48 0.00 0.00 60.76 345.11 690.22 0.00 0.00 0.00 0.00 0.00 100.00 145.02 100 567.94 8561.33 100 145.02 11171.64 Treated Gas Rich Solvent Stream 11 (Lean Solvent) Stream 12 (Treated Gas) Mol% Mol% 0.00 0.00 0.00 0.42 1.94 0.00 0.00 0.00 24.94 115.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.35 1.62 0.00 0.00 0.00 74.30 345.11 34.29 51.72 7137.28 0.00 0.00 65.71 99.13 1784.32 0.00 0.00 100.00 150.85 8921.60 100 464.50 Mole Flow (mol/hr) Mass Flow (lb/hr) Mole Flow (mol/hr) Mole Flow (mol/hr) Mass Flow (lb/hr) Mole Flow (mol/hr) Cooler Condenser 9 10 CO2 Removal 13 12
  • 17.
  • 18. ondensed Water) 0.00 0.00 0.00 0.00 0.00 2610.31 2610.31 (Treated Gas) Stream 13 (Rich Solvent) Mol% 30.99 0.00 0.00 0.00 3243.33 0.00 0.00 0.00 0.00 40.68 103.44 4551.31 45.48 0.00 0.00 0.00 690.22 0.00 0.00 0.00 0.00 20.34 51.72 7137.28 0 38.98 99.13 1784.32 4010.02 100 254.29 13472.91 Mass Flow (lb/hr) Mass Flow (lb/hr) Mole Flow (mol/hr) Mass Flow (lb/hr)
  • 19.
  • 20. Methanator Temperature 400 Pressure 840 psig Pressure Drop 10 psig From CO2 Removal Unit Reactions in Methanator Reaction 1 CO+3H2 = CH4 +H2O 100% Components Mol. Wt Stream 12 (CO2 Removal outlet) Mol% Methane 16 0.42 1.94 30.99 Nitrogen 28 24.94 115.83 3243.33 Carbon monoxide 28 0.35 1.62 45.48 Hydrogen 2 74.30 345.11 690.22 Steam 18 0.00 0.00 0.00 Total 100 464.5 4010.0 CO Consume Reaction 1 1.62 lbmol/hr H2 Consume Reaction 1 4.87 lbmol/hr CH4 Produced Reaction 1 1.62 lbmol/hr Steam Produced Reaction 1 1.62 lbmol/hr °C Mole Flow (mol/hr) Mass Flow (lb/hr) 12
  • 21. based on CO Stream 14 (Methanator outlet) Stream 16 Mol% Mol% 0.77 3.56 56.98 0.77 3.56 25.11 115.83 3243.33 25.20 115.83 0.00 0.00 0.00 0.00 0.00 73.76 340.24 680.47 74.02 340.24 0.35 1.62 29.23 0.00 0.00 100 461.25 4010.02 100 459.63 Mole Flow (mol/hr) Mass Flow (lb/hr) Mole Flow (mol/hr) Methanator Cooler and Separator 14 16 15
  • 22. Knock out water eam 16 Stream 15 (Knock out Water) Mol% 56.98 0.00 0.00 0.00 3243.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 680.47 0.00 0.00 0.00 0 100.00 1.62 29.23 3980.78 100 1.62 29.23 Mass Flow (lb/hr) Mole Flow (mol/hr) Mass Flow (lb/hr)
  • 23. Ammonia Conversion Loop Temperature 400 Pressure 840 psig Pressure Drop 10 psig From Methanator Reactions in Ammonia Converter Reaction 1 N2+3H2 = 2NH3 75% Iteration No. 1 Components Mol. Wt Stream 16 (Methanator Outlet) Mol% Methane 16 0.77 3.56 56.98 Nitrogen 28 25.20 115.83 3243.33 Hydrogen 2 74.02 340.24 680.47 Ammonia 17 0.00 0.00 0.00 Total 100 459.6 3980.8 H2 Consume Calculations for Purge stream 20 Rate Reaction 1 255.18 lbmol/hr Feed Stream Flow N2 Consume Feed Stream Inert Reaction 1 85.06 lbmol/hr Required Inert Conc. NH3 Produced Purge Stream 20 flow Reaction 1 170.12 lbmol/hr Recycle Stream 21 Flow Iteration No. 2 Components Mol. Wt Stream 16 (Methanator Outlet) Mol% Methane 16 0.78 3.58 57.31 Nitrogen 28 25.20 116.01 3248.31 Hydrogen 2 74.02 340.73 681.45 Ammonia 17 0.00 0.00 0.00 Total 100 460.3 3987.1 H2 Consume Calculations for Purge stream 20 Rate Reaction 1 255.55 lbmol/hr Feed Stream Flow °C Mole Flow (mol/hr) Mass Flow (lb/hr) Mole Flow (mol/hr) Mass Flow (lb/hr) 16 21
  • 24. N2 Consume Feed Stream Inert Reaction 1 85.18 lbmol/hr Required Inert Conc. NH3 Produced Purge Stream 20 flow Reaction 1 170.36 lbmol/hr Recycle Stream 21 Flow Iteration No. 3 Components Mol. Wt Stream 16 (Methanator Outlet) Mol% Methane 16 0.78 3.59 57.40 Nitrogen 28 25.20 116.06 3249.76 Hydrogen 2 74.02 340.87 681.74 Ammonia 17 0.00 0.00 0.00 Total 100 460.5 3988.9 H2 Consume Calculations for Purge stream 20 Rate Reaction 1 255.65 lbmol/hr Feed Stream Flow N2 Consume Feed Stream Inert Reaction 1 85.22 lbmol/hr Required Inert Conc. NH3 Produced Purge Stream 20 flow Reaction 1 170.44 lbmol/hr Recycle Stream 21 Flow Iteration No. 4 Components Mol. Wt Stream 16 (Methanator Outlet) Mol% Methane 16 0.78 3.59 57.43 Nitrogen 28 25.20 116.08 3250.19 Hydrogen 2 74.02 340.91 681.83 Ammonia 17 0.00 0.00 0.00 Total 100 460.6 3989.4 H2 Consume Calculations for Purge stream 20 Rate Reaction 1 255.68 lbmol/hr Feed Stream Flow N2 Consume Feed Stream Inert Reaction 1 85.23 lbmol/hr Required Inert Conc. NH3 Produced Purge Stream 20 flow Reaction 1 170.46 lbmol/hr Recycle Stream 21 Flow Note: This indicates that at the start-up, until the system get stabilized, recycle is required after that all the stream sh Mole Flow (mol/hr) Mass Flow (lb/hr) Mole Flow (mol/hr) Mass Flow (lb/hr)
  • 25. Scale up Factor Calculations NH3 production based on 100 lbmol/hr of Natural Gas Feed Scale up Factor All the stream flow should be multiplied by this factor to get the desired production rate.
  • 26. Recycle Stream based on H2 Stream 17 (Converter outlet) Stream 18 Mol% Mol% 1.23 3.56 56.98 2.98 3.56 10.63 30.77 861.68 25.78 30.77 29.38 85.06 170.12 71.24 85.06 58.76 170.12 2892.01 0.00 0.00 100 289.51 3980.78 100 119.39 stream 20 Rate Purge Stream 20 459.6 lbmol/hr Mol% 0.77 mol% Methane 2.98 3.54 3 mol% Nitrogen 25.78 30.60 118.71 lbmol/hr Hydrogen 71.24 84.57 0.69 lbmol/hr 100.00 118.71 Stream 17 (Converter outlet) Stream 18 Mol% Mol% 1.24 3.58 57.31 2.99 3.58 10.63 30.83 863.22 25.78 30.83 29.38 85.18 170.36 71.23 85.18 58.75 170.36 2896.18 0.00 0.00 100 289.96 3987.07 100 119.59 stream 20 Rate Purge Stream 20 460.3 lbmol/hr Mol% Mole Flow (mol/hr) Mass Flow (lb/hr) Mole Flow (mol/hr) Mole Flow (mol/hr) Mole Flow (mol/hr) Mass Flow (lb/hr) Mole Flow (mol/hr) Mole Flow (mol/hr) Ammonia Converter Cooler and Ammonia Separator 17 18 19 20
  • 27. 0.78 mol% Methane 2.99 3.58 3 mol% Nitrogen 25.78 30.78 119.39 lbmol/hr Hydrogen 71.23 85.04 0.20 lbmol/hr 100.00 119.39 Stream 17 (Converter outlet) Stream 18 Mol% Mol% 1.24 3.59 57.40 3.00 3.59 10.63 30.85 863.67 25.78 30.85 29.38 85.22 170.44 71.22 85.22 58.75 170.44 2897.41 0.00 0.00 100 290.09 3988.91 100 119.65 stream 20 Rate Purge Stream 20 460.5 lbmol/hr Mol% 0.78 mol% Methane 3.00 3.59 3 mol% Nitrogen 25.78 30.83 119.59 lbmol/hr Hydrogen 71.22 85.18 0.06 lbmol/hr 100.00 119.59 Stream 17 (Converter outlet) Stream 18 Mol% Mol% 1.24 3.59 57.43 3.00 3.59 10.63 30.85 863.80 25.78 30.85 29.38 85.23 170.46 71.22 85.23 58.75 170.46 2897.76 0.00 0.00 100 290.12 3989.45 100 119.67 stream 20 Rate Purge Stream 20 460.6 lbmol/hr Mol% 0.78 mol% Methane 3.00 3.59 3 mol% Nitrogen 25.78 30.85 119.65 lbmol/hr Hydrogen 71.22 85.22 0.02 lbmol/hr 100.00 119.65 d after that all the stream should be purged. Mole Flow (mol/hr) Mass Flow (lb/hr) Mole Flow (mol/hr) Mole Flow (mol/hr) Mole Flow (mol/hr) Mass Flow (lb/hr) Mole Flow (mol/hr) Mole Flow (mol/hr)
  • 28. 2897.76 lb/hr 31.6 Tonnes/day 95.1 he desired production rate.
  • 29. Purge Stream Liquid Ammonia eam 18 Stream 19 (Liquid Ammonia) Mol% 56.98 0.00 0.00 0.00 861.68 0.00 0.00 0.00 170.12 0.00 0.00 0.00 0 100.00 170.12 2892.01 1088.78 100 170.12 2892.01 Stream 20 Recycle Stream 21 Mol% 56.65 2.98 0.02 0.33 856.71 25.78 0.18 4.97 169.14 71.24 0.49 0.98 1082.49 100.00 0.69 6.28 eam 18 Stream 19 (Liquid Ammonia) Mol% 57.31 0.00 0.00 0.00 863.22 0.00 0.00 0.00 170.36 0.00 0.00 0.00 0 100.00 170.36 2896.18 1090.89 100 170.36 2896.18 Stream 20 Recycle Stream 21 Mol% Mass Flow (lb/hr) Mole Flow (mol/hr) Mass Flow (lb/hr) Mass Flow (lb/hr) Mole Flow (mol/hr) Mass Flow (lb/hr) Mass Flow (lb/hr) Mole Flow (mol/hr) Mass Flow (lb/hr) Mass Flow (lb/hr) Mole Flow (mol/hr) Mass Flow (lb/hr)
  • 30. 57.21 2.99 0.01 0.10 861.76 25.78 0.05 1.46 170.08 71.23 0.14 0.29 1089.04 100.00 0.20 1.84 eam 18 Stream 19 (Liquid Ammonia) Mol% 57.40 0.00 0.00 0.00 863.67 0.00 0.00 0.00 170.44 0.00 0.00 0.00 0 100.00 170.44 2897.41 1091.51 100 170.44 2897.41 Stream 20 Recycle Stream 21 Mol% 57.38 3.00 0.00 0.03 863.24 25.78 0.02 0.42 170.35 71.22 0.04 0.08 1090.97 100.00 0.06 0.53 eam 18 Stream 19 (Liquid Ammonia) Mol% 57.43 0.00 0.00 0.00 863.80 0.00 0.00 0.00 170.46 0.00 0.00 0.00 0 100.00 170.46 2897.76 1091.69 100 170.46 2897.76 Stream 20 Recycle Stream 21 Mol% 57.42 3.00 0.00 0.01 863.68 25.78 0.00 0.12 170.43 71.22 0.01 0.02 1091.53 100.00 0.02 0.15 Mass Flow (lb/hr) Mole Flow (mol/hr) Mass Flow (lb/hr) Mass Flow (lb/hr) Mole Flow (mol/hr) Mass Flow (lb/hr) Mass Flow (lb/hr) Mole Flow (mol/hr) Mass Flow (lb/hr) Mass Flow (lb/hr) Mole Flow (mol/hr) Mass Flow (lb/hr)
  • 31.