SlideShare a Scribd company logo
13
CHAPTER 5
INITIAL MATERIAL BALANCE
14
15
5.1Assumptions :
1. In KA oil, K:A=2:1
2. Purity of cyclohexanone(K) in KA oil is 99.8%
3. Purity of cyclohexanol(A) in KA oil is 98%
4. In feed, HNO3 : KA oil = 3:1 and 60% HNO3 is used.
5. Acetic acid, acetaldehyde, acetone, ethyl acetate are present as impurity in KA oil and
each has 25% mole fraction in the impurity.
6. Single pass conversion in both reactors is 12%.
7. 10% excess air and 10% excess water are supplied to the NOx bleacher, HNO3 absorber
respectively.
8. 90% water is evaporated in the concentrator.
9. 0.45 mol% of inert, 0.7 mol% of adipic acid in the purge stream.
10. Amount of recycle = 90% of KA oil.
Basis: 100 Kmol/h of KA oil (cyclohexanone-cyclohexanol) in feed.
Now, in KA oil
Amount of actual cyclohexanone = 100 x (2/3) x 0.998 kmol/h = 66.53666 kmol/h
Amount of actual cyclohexanol = 100 x (1/3) x 0.98 kmol/h = 32.6634 kmol/h
Total impurity = 100 – (66.53666 + 32.6634) kmol/h = 0.79994 kmol/h
Since, acetic acid, acetaldehyde, acetone, ethyl acetate are present as impurity in KA oil and each
has 25% mole fraction in the impurity,
So amount of each component = 0.79994 x 0.25 kmol/h = 0.199985 kmol/h
In feed, HNO3 : KA oil = 3:1
Amount of HNO3 in feed = 3 x 100 kmol/h = 300 kmol/h
But, it is 60% concentrated, so actual amt. of HNO3 = 180 kmol/h
Amount of water = 120 kmol/h
16
5.2 balance over mixer
M1 M1
Fig 5.1: Balance over mixer
Two reactions are taking place in the reactors :
HNO3 + CH3COOC2H5 C2H5NO3 + CH3COOH----> 5.1
HNO3 + CH3COCH3 CH3NO2 + CH3COOH ---->5.2
Table 5.1.a: Composition of feed stream to the mixer(KA oil + HNO3 solution)
Components Kmol/h Kg/h
C5H10CO (K) 66.53666 6530.5771
C6H11OH (A) 32.6634 3271.2395
HNO3 180 11341.8
H2O 120 2161.8336
Impurity: Acetic acid
Acetaldehyde
Ethyl acetate
Acetone
0.199985
0.199985
0.199985
0.199985
12.0095
8.8093
17.6206
11.6151
Total 400 23355.5047 ≈23355.5
Mixer
KA oil = 100 kmol/h
HNO3 soln
= 300
kmol/h
17
Table 5.1.b: Composition of output stream (M1) Of mixer
Components Kmol/h Mole fraction Kg/h
C5H10CO (K) 66.53666 0.1663 6530.5771
C6H11OH (A) 32.6634 0.0817 3271.2395
HNO3 179.6003 0.4490 11316.59789
H2O 120 0.3 2161.8336
Inert: Acetaldehyde
Acetic acid
CH3NO2
C2H5NO3
0.199985
0.599985
0.199985
0.199985
0.003 8.8093
35.9973
12.1991
18.1896
Total 400 1 23355.45239 ≈23355.5
Table 5.1.c : Material balance over mixer
Input (kg/h) Output (kg/h)
23355.5 23355.5
5.3. calculation for recycle, purge stream:
I=0.003 M2 I=0
ML
Recycle (R)
Fig 5.2: Recycle, Purge stream
We know, amount of inert in the feed = amount of inert in the purge stream
So, 400 x 0.003 = P x 0.0045
Reactor Concentrator Crystallizer Centrifuge
M1= 400
kmol/h Crystal
I=0
Purge(P),I=0.0045
H2O =
0.3
H2O = 0.25
18
P = ( 400 x 0.003)/ 0.0045 = 266.64667 kmol/h
Again, amount of recycle = 90% of KA oil
R = 0.90 x 100 = 90 kmol/h
From the fig 4.2, ML = R+P
ML = (90 + 266.64667) kmol/h = 356.64667 kmol/h
Let, in the recycle stream (R), x, y, z, z1 are the mole fractions of cyclohexanone (K),
cyclohexanol(A), nitric acid, water respectively.
Now, x + y + z + z1 + 0.007 + 0.0045 = 1
x + y + z + z1 = 0.9885 ------------------------> eqn 5.3
From fig 4.2, M2 = M1 + R = 400 + 90 = 490 kmol/h
Doing H2O balance,
M2 x 0.25 = (M1 x 0.3) + (R x z1)
490 x 0.25 = (400 x 0.3) + (90 x z1)
z1 = (122.5 – 120)/ 90 = 0.0278
Mole fraction of water in recycle stream, z1 = 0.0278
5.4 balance over reactor1
Fig 5.3: balance over reactor 1
Reactor 1M2 = 400 kmol/h
H2O = 0.25 B
19
Table 5.2.a: Input stream(M2) of reactor 1
Component Kmol/h
C5H10CO (K) 66.53666 + 90x
C6H11OH (A) 32.6634 + 90y
HNO3 179.6003 + 90z
H2O 120 + (90 x 0.0278) = 122.5002
Inert 1.19991 + (0.0045x90) = 1.60491
Adipic acid 0.63
Here, C5H10CO + 1.5 HNO3 (CH2)4(COOH)2 + 0.75 N2O + 0.75 H2O---->5.4
Per pass conversion is 12%.
So, amount of cyclohexanone reacted = 0.12 x (66.53666 + 90x) = 7.98440 + 10.8x kmol/h
Amount of HNO3 reacted = (7.98440 + 10.8x) x 1.5 = 11.9766 + 16.2x kmol/h
Table 5.2.b: Output stream(B) of reactor 1
Components Kmol/h
C5H10CO (K) 58.55226 + 79.2
C6H11OH (A) 32.6634 + 90y
HNO3 167.62343 + 90z -16.2x
H2O 128.4885 + 8.1x
Adipic acid 8.6144 + 10.8x
N2O 5.9883 + 8.1x
Inert 1.60491
5.5 balance for reactor 2
B1 C
Fig 5.4: Balance over reactor 2
Reactor 2
20
Table 5.3.a: Input stream(B1) of reactor 2
Components Kmol/h
C5H10CO (K) 58.55226 + 79.2x
C6H11OH (A) 32.6634 + 90y
HNO3 167.62343 + 90z -16.2x
H2O 128.4885 + 8.1x
Adipic acid 8.6144 + 10.8x
Inert 1.60491
In reactor 2,
C6H11OH + 2HNO3 (CH2)4(COOH)2 + N2O + 2 H2O---->5.5
Per pass conversion is 12%.
So, amount of cyclohexanol reacted = 0.12 x (32.6634 + 90y) = 3.91961+10.8y kmol/h
Amount of HNO3 reacted = (3.91961+10.8y) x 2 = 7.83922+21.6 kmol/h
Table 5.3.b: Output stream(C) of reactor 2
Components Kmol/h
C5H10CO (K) 58.55226 + 79.2x
C6H11OH (A) 28.74379 + 79.2y
HNO3 159.78421+90z-16.2x-21.6y
H2O 136.32772+8.1x+21.6y
Adipic acid 12.53401+10.8x+10.8y
N2O 3.91961 + 10.8y
Inert 1.60491
21
B1 C1
Fig 5.5: Balance for cyclohexanol, cyclohexanone and nitric acid
Doing cyclohexanone balance over envelop 1:
58.55226 + 79.2x = ML. x = (90+266.64667). x
X = 0.2110
Doing cyclohexanol balance over envelop 1:
28.74379 + 79.2y = ML. y = (90+266.64667). y
Y = 0.1036
From eqn 5.3, we get
x + y + z + z1 = 0.9885
0.2110 + 0.1036 + z + 0.0278 = 0.9885
z = 0.6461
Since mother liq., recycle and purging stream have same composition, so, mole fractions of
various components in these streams are:
Reactor 2 Concentrator Crystallizer Centrifuge
Crystal
K,A=0
H2O
Mother liq.(ML)
K=x,A=y
Envelop1
22
Table 5.4: components in mother liq.
Component Mole fraction
Cyclohexanone (K), x
Cyclohexanol (A), y
Nitric acid, z
Water, z1
Inert
Adipic acid
0.2110
0.1036
0.6461
0.0278
0.0045
0.007
Now putting these values in table 4.2.a, table 4.2.b, table 4.3.a, table 4.3.b, we get:
Table 5.5.a: Actual composition of input stream of reactor 1
Component Kmol/h Kg/h
C5H10CO (K) 85.52666 8394.44168
C6H11OH (A) 41.9874 4205.03811
HNO3 237.74903 14980.56638
H2O 122.5002 2206.875403
Inert 1.60491 100.58766
Adipic acid 0.63 92.0682
Total 489.9982 29979.57742
Table 5.5.b: Actual composition of output stream of reactor 1
Component Kmol/h Kg/h
C5H10CO (K) 75.26346 7387.10860
C6H11OH (A) 41.9874 4205.03811
HNO3 222.35423 14010.54003
H2O 130.1976 2345.54622
Adipic acid 10.8932 1591.93225
23
N2O 7.6974 338.78567
Inert 1.60491 100.58766
Total 489.9982 29979.53849
Table 5.5.c: Material balance over reactor 1
Input (kg/h) Output(kg/h)
29979.5 29979.5
Table 5.6.a: Actual composition of input stream of reactor 2
Component Kmol/h Kg/h
C5H10CO (K) 75.26346 7387.10860
C6H11OH (A) 41.9874 4205.03811
HNO3 222.35423 14010.54003
H2O 130.1976 2345.54622
Adipic acid 10.8932 1591.93225
Inert 1.60491 100.58766
Total 482.3008 29640.75282
Table 5.6.b: Actual composition of output stream of rector 2
Component Kmol/h Kg/h
C5H10CO (K) 75.26346 7387.10860
C6H11OH (A) 36.94891 3700.43334
HNO3 212.27725 13375.00668
H2O 140.27458 2527.08584
Adipic acid 15.93169 2328.25718
N2O 5.03849 222.21252
Inert 1.60491 100.58765
Total 487.33929 29640.69181≈ 29640.7
24
Table 5.6.c: Material balance over reactor 2
Input (kg/h) Output(kg/h)
29640.7 29640.7
5.6 balance over NOx bleacher
Fig 5.6: Balance over NOx bleacher
Amount of N2O coming to the bleacher = B2 + C2 = (5.03849+7.69740) kmol/h
= 12.73589 kmol/h
Reaction which is taking place in the bleacher is:
N2O + 1.5 O2 2NO2 ---->5.6
So, 1kmol N2O required = 1.5 kmol O2
12.73589 kmol N2O required = 1.5 x 12.73589 = 19.103835 kmol O2
0.21 kmol O2 = 1 kmol air
19.103835 kmol O2 = (19.103835/0.21) = 90.97064 kmol air
10% excess air (79% N2 and 21% O2) is supplied for complete conversion.
So, actual amount of air supplied = (1.1 x 90.97064) = 100.0677 kmol/h
NOx
Bleacher D
N2O
AIR
25
Table 5.7.a: Composition of input stream of NOx bleacher
Components Kmol/h Kg/h
N2 79.05348 2213.49744
O2 21.01422 672.45504
N2O 12.73589 560.54473
Total 112.80359 3446.49721
≈3446.5
Table 5.7.b: Composition of output stream(D) of NOx bleacher
Components Kmol/h Kg/h
N2 79.05348 2213.49744
O2 1.91039 61.13248
NO2 25.47178 1171.84198
Total 106.43565 3446.4719
≈3446.5
5.7. balance over HNO3 absorber
D1 H2O
Fig 5.7 : Balance over HNO3 Absorber
HNO3
absorber
D D2
26
Reaction: 3 NO2 + H2O 2HNO3 + NO ---->5.7
3 kmol NO2 required = 1 kmol H2O
So, 25.47178 kmol NO2 required = (25.47178/3) = 8.49059 kmol H2O
10% excess water is supplied for complete conversion.
Actual H2O supplied = (1.1 x 8.49059) = 9.339649 kmol H2O
Table 5.8.a: Composition of input stream of HNO3 absorber
Components Kmol/h Kg/h
N2 79.05348 2213.49744
O2 1.91039 61.13248
NO2 25.47178 1171.84198
H2O 9.339649 168.25641
Total 115.72830 3614.72831
≈3614.7
Table 5.8.b: Composition of output stream of HNO3 absorber
Components Kmol/h Kg/h
D1: N2
O2
NO
79.05348
1.91039
8.49059
2213.49744
61.13248
254.80261
D2: HNO3
H2O
16.98119
0.84906
1069.98478
15.29605
Total 107.28471 3614.71336
≈3614.7
H2O (v)
5.8 balance over concentrator Concentrator
D2
C1
E
27
Fig 5.8: Balance over concentrator
Table 5.9.a: Composition of input stream of concentrator
Components Kmol/h Kg/h
D2: HNO3
H2O
16.98119
0.84906
1069.98478
15.29605
C1: C5H10CO (K)
C6H11OH (A)
HNO3
H2O
Adipic acid
Inert
75.26346
36.94891
212.27725
140.27458
15.93169
1.60491
7387.10860
3700.43334
13375.00668
2527.08584
2328.25718
100.58765
Total 500.13105 30504.34296
90% water is evaporated.
Amount of water evaporated = (0.9 x 141.12364) = 127.011276 kmol/h = 2288.1437 kg/h
Water remaining in the solution = 14.112364 kmol/h = 254.23819 kg/h
Table 5.9.b: Composition of output stream of concentrator
Components Kmol/h Kg/h
H2O (v) 127.011276 2288.1437
E: C5H10CO (K)
C6H11OH (A)
HNO3
H2O
Adipic acid
75.26346
36.94891
212.27725
14.112364
15.93169
7387.10860
3700.43334
13375.00668
254.23819
2328.25718
28
Inert 1.60491 100.58765
Total 500.13105 30504.34296
5.9 balance over crystalliser
E Mother liq. (ML= E-W1)
Crystal (W1)
Fig 5.9: Balance over crystallizer
Table 5.10.a: Composition of input stream of crystallizer
Component Kmol/h Kg/h
C5H10CO (K) 75.26346 7387.10860
C6H11OH (A) 36.94891 3700.43334
HNO3 212.27725 13375.00668
H2O 14.112364 254.23819
Adipic acid 15.93169 2328.25718
Inert 1.60491 100.58765
Total 373.119774 28216.19926
Crystallization is taking place at 10˚C.
At 10˚C, solubility of adipic acid = 14 gm/ kg of water = 0.014 kg/ kg of water
Doing adipic acid balance over crystallizer,
2328.25718 = W1 + (28216.19926 – W1) x (0.014/1.014)
W1 = 1965.83256
So, crystals of adipic acid = 1965.83256 kg/h
Crystallizer
29
But crystals are 99.8 wt% pure.
Table 5.10.b: Composition of output stream of crystallizer
Component Kmol/h Kg/hr
Crystal: Adipic acid
HNO3
H2O
13.42480
0.0312
0.10912
1961.9009
1.96583
1.96583
Mother liq. : C5H10CO (K)
C6H11OH (A)
Adipic acid
H2O
HNO3
Inert
75.26346
36.94891
1.5752
13.89088
228.9688
1.60491
7387.10860
3700.43334
366.3569
252.27229
14443.60839
100.58765
Total 371.81028 28216.19973
Input stream of centrifuge is the output stream of crystallizer and it is given in table 4.10.b.
Centrifuge sepatates the crystals from mother liq.
Table 5.11.a: Composition of crystal stream from centrifuge
Component Kmol/h Kg/hr
Crystal: Adipic acid
HNO3
H2O
13.42480
0.0312
0.10912
1961.9009
1.96583
1.96583
Total 13.56512 1965.83256
30
Table 5.11.b: Composition of mother liq. stream from centrifuge
Component Kmol/h Kg/hr
C5H10CO (K)
C6H11OH (A)
Adipic acid
H2O
HNO3
Inert
75.26346
36.94891
1.5752
13.89088
228.9688
1.60491
7387.10860
3700.43334
366.3569
252.27229
14443.60839
100.58765
Total 358.24516 26250.36717
We know, purge = 266.64667 kmol/h
From table 4.4, we get the mole fractions of various components
So ,we can determine the composition of purge stream.
Table 5.12: Composition of purge stream
Component Mole fraction Kmol/h Kg/h
C5H10CO (K) 0.2110 56.26245 5522.15947
C6H11OH (A) 0.1036 27.6246 2766.60369
HNO3 0.6461 172.28041 10855.9929
H2O 0.0278 7.41278 133.54331
Adipic acid 0.007 1.86653 272.77469
Inert 0.0045 1.19991 75.2043
Total 1 266.64667 19626.27836
31
5.10 overall input – output balance
Table 5.13.a: Total input
Input Kg/h
KA oil + HNO3 solution 23355.5047
N2 2213.49744
O2 672.45504
H2O 168.25641
Total 26409.7
Table 5.13.b: Total output
Output Kg/h
Crystals 1965.83256
Purge 19626.27836
N2 2213.49744
O2 61.13248
NO 254.80261
H2O 2288.1437
Total 26409.7
Conversion of adipic acid = (15.30169/100) x 100% =15.3%

More Related Content

What's hot

Diethyl Ether (DEE): Energy Balance
Diethyl Ether (DEE): Energy BalanceDiethyl Ether (DEE): Energy Balance
Diethyl Ether (DEE): Energy Balance
Pratik Patel
 
Acetic Acid Process Plant Design
Acetic Acid Process Plant DesignAcetic Acid Process Plant Design
Acetic Acid Process Plant Design
Sinthujan Pushpakaran
 
Benzene manufacturing
Benzene manufacturingBenzene manufacturing
Benzene manufacturing
Naveen Choudhary
 
BE Chemical Engineering Design Project Production Of Propylene Oxide
BE Chemical Engineering Design Project   Production Of Propylene OxideBE Chemical Engineering Design Project   Production Of Propylene Oxide
BE Chemical Engineering Design Project Production Of Propylene Oxide
patrickconneran
 
Diesel Production: Equipments Design
Diesel Production: Equipments DesignDiesel Production: Equipments Design
Diesel Production: Equipments Design
Pratik Patel
 
Methanol synthesis from industrial CO2 sources
Methanol synthesis from industrial CO2 sourcesMethanol synthesis from industrial CO2 sources
Methanol synthesis from industrial CO2 sources
Kishan Kasundra
 
ChE184b Final Design
ChE184b Final DesignChE184b Final Design
ChE184b Final DesignRussell Wong
 
Project paper on Chlor-Alkali process
Project paper on Chlor-Alkali processProject paper on Chlor-Alkali process
Project paper on Chlor-Alkali processJ. S. M. Mahedi
 
Introduction to multicomponent distillation
Introduction to multicomponent distillationIntroduction to multicomponent distillation
Introduction to multicomponent distillation
Sujeet TAMBE
 
Petroleum refining (3 of 3)
Petroleum refining (3 of 3)Petroleum refining (3 of 3)
Petroleum refining (3 of 3)
Chemical Engineering Guy
 
Ethylene Glycol plant design
Ethylene Glycol plant designEthylene Glycol plant design
Ethylene Glycol plant design
Ahmed Kun
 
Hysys simulation
Hysys simulationHysys simulation
Hysys simulation
Zin Eddine Dadach
 
Design and Simulation of Divided Wall Column - Design of the Column
Design and Simulation of Divided Wall Column - Design of the ColumnDesign and Simulation of Divided Wall Column - Design of the Column
Design and Simulation of Divided Wall Column - Design of the Column
HariKirant29
 
Diethyl Ether (DEE): Literature Review
Diethyl Ether (DEE): Literature ReviewDiethyl Ether (DEE): Literature Review
Diethyl Ether (DEE): Literature Review
Pratik Patel
 
Reactor and Catalyst Design
Reactor and Catalyst DesignReactor and Catalyst Design
Reactor and Catalyst Design
Gerard B. Hawkins
 
Co2 removal through solvent and membrane
Co2 removal through solvent and membraneCo2 removal through solvent and membrane
Co2 removal through solvent and membrane
Rashesh Shah
 
289109277 design-project-1-final
289109277 design-project-1-final289109277 design-project-1-final
289109277 design-project-1-final
Siphiwe Molly Sithole
 
Visbreaking and Delayed coking
Visbreaking and Delayed cokingVisbreaking and Delayed coking
Visbreaking and Delayed coking
Sanyam Jain
 

What's hot (20)

Diethyl Ether (DEE): Energy Balance
Diethyl Ether (DEE): Energy BalanceDiethyl Ether (DEE): Energy Balance
Diethyl Ether (DEE): Energy Balance
 
Acetic Acid Process Plant Design
Acetic Acid Process Plant DesignAcetic Acid Process Plant Design
Acetic Acid Process Plant Design
 
Benzene manufacturing
Benzene manufacturingBenzene manufacturing
Benzene manufacturing
 
FCC-Ch-21
FCC-Ch-21FCC-Ch-21
FCC-Ch-21
 
BE Chemical Engineering Design Project Production Of Propylene Oxide
BE Chemical Engineering Design Project   Production Of Propylene OxideBE Chemical Engineering Design Project   Production Of Propylene Oxide
BE Chemical Engineering Design Project Production Of Propylene Oxide
 
Design 1
Design 1Design 1
Design 1
 
Diesel Production: Equipments Design
Diesel Production: Equipments DesignDiesel Production: Equipments Design
Diesel Production: Equipments Design
 
Methanol synthesis from industrial CO2 sources
Methanol synthesis from industrial CO2 sourcesMethanol synthesis from industrial CO2 sources
Methanol synthesis from industrial CO2 sources
 
ChE184b Final Design
ChE184b Final DesignChE184b Final Design
ChE184b Final Design
 
Project paper on Chlor-Alkali process
Project paper on Chlor-Alkali processProject paper on Chlor-Alkali process
Project paper on Chlor-Alkali process
 
Introduction to multicomponent distillation
Introduction to multicomponent distillationIntroduction to multicomponent distillation
Introduction to multicomponent distillation
 
Petroleum refining (3 of 3)
Petroleum refining (3 of 3)Petroleum refining (3 of 3)
Petroleum refining (3 of 3)
 
Ethylene Glycol plant design
Ethylene Glycol plant designEthylene Glycol plant design
Ethylene Glycol plant design
 
Hysys simulation
Hysys simulationHysys simulation
Hysys simulation
 
Design and Simulation of Divided Wall Column - Design of the Column
Design and Simulation of Divided Wall Column - Design of the ColumnDesign and Simulation of Divided Wall Column - Design of the Column
Design and Simulation of Divided Wall Column - Design of the Column
 
Diethyl Ether (DEE): Literature Review
Diethyl Ether (DEE): Literature ReviewDiethyl Ether (DEE): Literature Review
Diethyl Ether (DEE): Literature Review
 
Reactor and Catalyst Design
Reactor and Catalyst DesignReactor and Catalyst Design
Reactor and Catalyst Design
 
Co2 removal through solvent and membrane
Co2 removal through solvent and membraneCo2 removal through solvent and membrane
Co2 removal through solvent and membrane
 
289109277 design-project-1-final
289109277 design-project-1-final289109277 design-project-1-final
289109277 design-project-1-final
 
Visbreaking and Delayed coking
Visbreaking and Delayed cokingVisbreaking and Delayed coking
Visbreaking and Delayed coking
 

Similar to Material Balance of Adipic Acid Plant

Ammonia mass-balance
Ammonia mass-balanceAmmonia mass-balance
Ammonia mass-balance
balas1943
 
Manufacture of acetonitrile 2015
Manufacture of acetonitrile 2015Manufacture of acetonitrile 2015
Manufacture of acetonitrile 2015
Aliasgar Mandsaurwala
 
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...
Lawrence kok
 
reactor design.pptx
reactor design.pptxreactor design.pptx
reactor design.pptx
Ashutoshsutar3
 
An Minh Tran - Cheg 407 - Case 1
An Minh Tran - Cheg 407 - Case 1An Minh Tran - Cheg 407 - Case 1
An Minh Tran - Cheg 407 - Case 1AN TRAN
 
Biofuels semester project third presentation
Biofuels semester project third presentationBiofuels semester project third presentation
Biofuels semester project third presentation
Matteo Marsullo
 
Oxalate complexes
Oxalate complexes Oxalate complexes
Oxalate complexes
Sidkarkhanis
 
CBE 250 Process Design Report
CBE 250 Process Design ReportCBE 250 Process Design Report
CBE 250 Process Design ReportPaul Meyers
 
Balance de flotacion por el metodo computacional
Balance de flotacion por el metodo computacionalBalance de flotacion por el metodo computacional
Balance de flotacion por el metodo computacional
Javier Garcia Rodriguez
 
Biofuels semester project second presentation
Biofuels semester project second presentationBiofuels semester project second presentation
Biofuels semester project second presentation
Matteo Marsullo
 
Combustion
Combustion Combustion
Combustion
Jowett Millan
 
Section 7 organic practicals exam questions
Section 7 organic practicals exam questionsSection 7 organic practicals exam questions
Section 7 organic practicals exam questionsMartin Brown
 
Section 7 organic practicals exam questions
Section 7 organic practicals exam questionsSection 7 organic practicals exam questions
Section 7 organic practicals exam questionsMartin Brown
 
Excercise pc 20172018
Excercise pc 20172018Excercise pc 20172018
Excercise pc 20172018
Darman Nordin
 
Workshop ghg mitigation bilbao (mohamed taher kahil)
Workshop ghg mitigation bilbao (mohamed taher kahil)Workshop ghg mitigation bilbao (mohamed taher kahil)
Workshop ghg mitigation bilbao (mohamed taher kahil)
REMEDIAnetwork
 
L pac presentation
L pac presentationL pac presentation
L pac presentation
Sonia Patel
 
Idp presentation
Idp presentationIdp presentation
Idp presentation
Abhishek Yadav
 
Section 6 multistage separation processes
Section 6   multistage separation processesSection 6   multistage separation processes
Section 6 multistage separation processes
Amal Magdy
 

Similar to Material Balance of Adipic Acid Plant (20)

Ammonia mass-balance
Ammonia mass-balanceAmmonia mass-balance
Ammonia mass-balance
 
Manufacture of acetonitrile 2015
Manufacture of acetonitrile 2015Manufacture of acetonitrile 2015
Manufacture of acetonitrile 2015
 
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...
IB Exam Question on Titration, Uncertainty calculation, Ideal Gas and Open En...
 
reactor design.pptx
reactor design.pptxreactor design.pptx
reactor design.pptx
 
An Minh Tran - Cheg 407 - Case 1
An Minh Tran - Cheg 407 - Case 1An Minh Tran - Cheg 407 - Case 1
An Minh Tran - Cheg 407 - Case 1
 
Biofuels semester project third presentation
Biofuels semester project third presentationBiofuels semester project third presentation
Biofuels semester project third presentation
 
Oxalate complexes
Oxalate complexes Oxalate complexes
Oxalate complexes
 
CBE 250 Process Design Report
CBE 250 Process Design ReportCBE 250 Process Design Report
CBE 250 Process Design Report
 
Balance de flotacion por el metodo computacional
Balance de flotacion por el metodo computacionalBalance de flotacion por el metodo computacional
Balance de flotacion por el metodo computacional
 
Biofuels semester project second presentation
Biofuels semester project second presentationBiofuels semester project second presentation
Biofuels semester project second presentation
 
329 Kandavel
329 Kandavel329 Kandavel
329 Kandavel
 
Combustion
Combustion Combustion
Combustion
 
Section 7 organic practicals exam questions
Section 7 organic practicals exam questionsSection 7 organic practicals exam questions
Section 7 organic practicals exam questions
 
Section 7 organic practicals exam questions
Section 7 organic practicals exam questionsSection 7 organic practicals exam questions
Section 7 organic practicals exam questions
 
Excercise pc 20172018
Excercise pc 20172018Excercise pc 20172018
Excercise pc 20172018
 
Workshop ghg mitigation bilbao (mohamed taher kahil)
Workshop ghg mitigation bilbao (mohamed taher kahil)Workshop ghg mitigation bilbao (mohamed taher kahil)
Workshop ghg mitigation bilbao (mohamed taher kahil)
 
#10 Key
#10 Key#10 Key
#10 Key
 
L pac presentation
L pac presentationL pac presentation
L pac presentation
 
Idp presentation
Idp presentationIdp presentation
Idp presentation
 
Section 6 multistage separation processes
Section 6   multistage separation processesSection 6   multistage separation processes
Section 6 multistage separation processes
 

More from IshaneeSharma

Artificial neural network
Artificial neural networkArtificial neural network
Artificial neural network
IshaneeSharma
 
ISA 75.01.01-2007 notes
ISA 75.01.01-2007 notesISA 75.01.01-2007 notes
ISA 75.01.01-2007 notes
IshaneeSharma
 
Why every control valve is a flow control valve?
Why every control valve is a flow control valve?Why every control valve is a flow control valve?
Why every control valve is a flow control valve?
IshaneeSharma
 
Rotary drilling rig (onshore)
Rotary drilling rig (onshore)Rotary drilling rig (onshore)
Rotary drilling rig (onshore)
IshaneeSharma
 
Use of biofilters for air pollution control
Use of biofilters for air pollution controlUse of biofilters for air pollution control
Use of biofilters for air pollution control
IshaneeSharma
 
Production of Dextran
Production of DextranProduction of Dextran
Production of Dextran
IshaneeSharma
 
Social Ills that ail Indian Society: Child Labour
Social Ills that ail Indian Society: Child LabourSocial Ills that ail Indian Society: Child Labour
Social Ills that ail Indian Society: Child Labour
IshaneeSharma
 
Applications of polymers in everyday life
Applications of polymers in everyday lifeApplications of polymers in everyday life
Applications of polymers in everyday life
IshaneeSharma
 

More from IshaneeSharma (8)

Artificial neural network
Artificial neural networkArtificial neural network
Artificial neural network
 
ISA 75.01.01-2007 notes
ISA 75.01.01-2007 notesISA 75.01.01-2007 notes
ISA 75.01.01-2007 notes
 
Why every control valve is a flow control valve?
Why every control valve is a flow control valve?Why every control valve is a flow control valve?
Why every control valve is a flow control valve?
 
Rotary drilling rig (onshore)
Rotary drilling rig (onshore)Rotary drilling rig (onshore)
Rotary drilling rig (onshore)
 
Use of biofilters for air pollution control
Use of biofilters for air pollution controlUse of biofilters for air pollution control
Use of biofilters for air pollution control
 
Production of Dextran
Production of DextranProduction of Dextran
Production of Dextran
 
Social Ills that ail Indian Society: Child Labour
Social Ills that ail Indian Society: Child LabourSocial Ills that ail Indian Society: Child Labour
Social Ills that ail Indian Society: Child Labour
 
Applications of polymers in everyday life
Applications of polymers in everyday lifeApplications of polymers in everyday life
Applications of polymers in everyday life
 

Recently uploaded

CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
SupreethSP4
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
Vijay Dialani, PhD
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 

Recently uploaded (20)

CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 

Material Balance of Adipic Acid Plant

  • 2. 14
  • 3. 15 5.1Assumptions : 1. In KA oil, K:A=2:1 2. Purity of cyclohexanone(K) in KA oil is 99.8% 3. Purity of cyclohexanol(A) in KA oil is 98% 4. In feed, HNO3 : KA oil = 3:1 and 60% HNO3 is used. 5. Acetic acid, acetaldehyde, acetone, ethyl acetate are present as impurity in KA oil and each has 25% mole fraction in the impurity. 6. Single pass conversion in both reactors is 12%. 7. 10% excess air and 10% excess water are supplied to the NOx bleacher, HNO3 absorber respectively. 8. 90% water is evaporated in the concentrator. 9. 0.45 mol% of inert, 0.7 mol% of adipic acid in the purge stream. 10. Amount of recycle = 90% of KA oil. Basis: 100 Kmol/h of KA oil (cyclohexanone-cyclohexanol) in feed. Now, in KA oil Amount of actual cyclohexanone = 100 x (2/3) x 0.998 kmol/h = 66.53666 kmol/h Amount of actual cyclohexanol = 100 x (1/3) x 0.98 kmol/h = 32.6634 kmol/h Total impurity = 100 – (66.53666 + 32.6634) kmol/h = 0.79994 kmol/h Since, acetic acid, acetaldehyde, acetone, ethyl acetate are present as impurity in KA oil and each has 25% mole fraction in the impurity, So amount of each component = 0.79994 x 0.25 kmol/h = 0.199985 kmol/h In feed, HNO3 : KA oil = 3:1 Amount of HNO3 in feed = 3 x 100 kmol/h = 300 kmol/h But, it is 60% concentrated, so actual amt. of HNO3 = 180 kmol/h Amount of water = 120 kmol/h
  • 4. 16 5.2 balance over mixer M1 M1 Fig 5.1: Balance over mixer Two reactions are taking place in the reactors : HNO3 + CH3COOC2H5 C2H5NO3 + CH3COOH----> 5.1 HNO3 + CH3COCH3 CH3NO2 + CH3COOH ---->5.2 Table 5.1.a: Composition of feed stream to the mixer(KA oil + HNO3 solution) Components Kmol/h Kg/h C5H10CO (K) 66.53666 6530.5771 C6H11OH (A) 32.6634 3271.2395 HNO3 180 11341.8 H2O 120 2161.8336 Impurity: Acetic acid Acetaldehyde Ethyl acetate Acetone 0.199985 0.199985 0.199985 0.199985 12.0095 8.8093 17.6206 11.6151 Total 400 23355.5047 ≈23355.5 Mixer KA oil = 100 kmol/h HNO3 soln = 300 kmol/h
  • 5. 17 Table 5.1.b: Composition of output stream (M1) Of mixer Components Kmol/h Mole fraction Kg/h C5H10CO (K) 66.53666 0.1663 6530.5771 C6H11OH (A) 32.6634 0.0817 3271.2395 HNO3 179.6003 0.4490 11316.59789 H2O 120 0.3 2161.8336 Inert: Acetaldehyde Acetic acid CH3NO2 C2H5NO3 0.199985 0.599985 0.199985 0.199985 0.003 8.8093 35.9973 12.1991 18.1896 Total 400 1 23355.45239 ≈23355.5 Table 5.1.c : Material balance over mixer Input (kg/h) Output (kg/h) 23355.5 23355.5 5.3. calculation for recycle, purge stream: I=0.003 M2 I=0 ML Recycle (R) Fig 5.2: Recycle, Purge stream We know, amount of inert in the feed = amount of inert in the purge stream So, 400 x 0.003 = P x 0.0045 Reactor Concentrator Crystallizer Centrifuge M1= 400 kmol/h Crystal I=0 Purge(P),I=0.0045 H2O = 0.3 H2O = 0.25
  • 6. 18 P = ( 400 x 0.003)/ 0.0045 = 266.64667 kmol/h Again, amount of recycle = 90% of KA oil R = 0.90 x 100 = 90 kmol/h From the fig 4.2, ML = R+P ML = (90 + 266.64667) kmol/h = 356.64667 kmol/h Let, in the recycle stream (R), x, y, z, z1 are the mole fractions of cyclohexanone (K), cyclohexanol(A), nitric acid, water respectively. Now, x + y + z + z1 + 0.007 + 0.0045 = 1 x + y + z + z1 = 0.9885 ------------------------> eqn 5.3 From fig 4.2, M2 = M1 + R = 400 + 90 = 490 kmol/h Doing H2O balance, M2 x 0.25 = (M1 x 0.3) + (R x z1) 490 x 0.25 = (400 x 0.3) + (90 x z1) z1 = (122.5 – 120)/ 90 = 0.0278 Mole fraction of water in recycle stream, z1 = 0.0278 5.4 balance over reactor1 Fig 5.3: balance over reactor 1 Reactor 1M2 = 400 kmol/h H2O = 0.25 B
  • 7. 19 Table 5.2.a: Input stream(M2) of reactor 1 Component Kmol/h C5H10CO (K) 66.53666 + 90x C6H11OH (A) 32.6634 + 90y HNO3 179.6003 + 90z H2O 120 + (90 x 0.0278) = 122.5002 Inert 1.19991 + (0.0045x90) = 1.60491 Adipic acid 0.63 Here, C5H10CO + 1.5 HNO3 (CH2)4(COOH)2 + 0.75 N2O + 0.75 H2O---->5.4 Per pass conversion is 12%. So, amount of cyclohexanone reacted = 0.12 x (66.53666 + 90x) = 7.98440 + 10.8x kmol/h Amount of HNO3 reacted = (7.98440 + 10.8x) x 1.5 = 11.9766 + 16.2x kmol/h Table 5.2.b: Output stream(B) of reactor 1 Components Kmol/h C5H10CO (K) 58.55226 + 79.2 C6H11OH (A) 32.6634 + 90y HNO3 167.62343 + 90z -16.2x H2O 128.4885 + 8.1x Adipic acid 8.6144 + 10.8x N2O 5.9883 + 8.1x Inert 1.60491 5.5 balance for reactor 2 B1 C Fig 5.4: Balance over reactor 2 Reactor 2
  • 8. 20 Table 5.3.a: Input stream(B1) of reactor 2 Components Kmol/h C5H10CO (K) 58.55226 + 79.2x C6H11OH (A) 32.6634 + 90y HNO3 167.62343 + 90z -16.2x H2O 128.4885 + 8.1x Adipic acid 8.6144 + 10.8x Inert 1.60491 In reactor 2, C6H11OH + 2HNO3 (CH2)4(COOH)2 + N2O + 2 H2O---->5.5 Per pass conversion is 12%. So, amount of cyclohexanol reacted = 0.12 x (32.6634 + 90y) = 3.91961+10.8y kmol/h Amount of HNO3 reacted = (3.91961+10.8y) x 2 = 7.83922+21.6 kmol/h Table 5.3.b: Output stream(C) of reactor 2 Components Kmol/h C5H10CO (K) 58.55226 + 79.2x C6H11OH (A) 28.74379 + 79.2y HNO3 159.78421+90z-16.2x-21.6y H2O 136.32772+8.1x+21.6y Adipic acid 12.53401+10.8x+10.8y N2O 3.91961 + 10.8y Inert 1.60491
  • 9. 21 B1 C1 Fig 5.5: Balance for cyclohexanol, cyclohexanone and nitric acid Doing cyclohexanone balance over envelop 1: 58.55226 + 79.2x = ML. x = (90+266.64667). x X = 0.2110 Doing cyclohexanol balance over envelop 1: 28.74379 + 79.2y = ML. y = (90+266.64667). y Y = 0.1036 From eqn 5.3, we get x + y + z + z1 = 0.9885 0.2110 + 0.1036 + z + 0.0278 = 0.9885 z = 0.6461 Since mother liq., recycle and purging stream have same composition, so, mole fractions of various components in these streams are: Reactor 2 Concentrator Crystallizer Centrifuge Crystal K,A=0 H2O Mother liq.(ML) K=x,A=y Envelop1
  • 10. 22 Table 5.4: components in mother liq. Component Mole fraction Cyclohexanone (K), x Cyclohexanol (A), y Nitric acid, z Water, z1 Inert Adipic acid 0.2110 0.1036 0.6461 0.0278 0.0045 0.007 Now putting these values in table 4.2.a, table 4.2.b, table 4.3.a, table 4.3.b, we get: Table 5.5.a: Actual composition of input stream of reactor 1 Component Kmol/h Kg/h C5H10CO (K) 85.52666 8394.44168 C6H11OH (A) 41.9874 4205.03811 HNO3 237.74903 14980.56638 H2O 122.5002 2206.875403 Inert 1.60491 100.58766 Adipic acid 0.63 92.0682 Total 489.9982 29979.57742 Table 5.5.b: Actual composition of output stream of reactor 1 Component Kmol/h Kg/h C5H10CO (K) 75.26346 7387.10860 C6H11OH (A) 41.9874 4205.03811 HNO3 222.35423 14010.54003 H2O 130.1976 2345.54622 Adipic acid 10.8932 1591.93225
  • 11. 23 N2O 7.6974 338.78567 Inert 1.60491 100.58766 Total 489.9982 29979.53849 Table 5.5.c: Material balance over reactor 1 Input (kg/h) Output(kg/h) 29979.5 29979.5 Table 5.6.a: Actual composition of input stream of reactor 2 Component Kmol/h Kg/h C5H10CO (K) 75.26346 7387.10860 C6H11OH (A) 41.9874 4205.03811 HNO3 222.35423 14010.54003 H2O 130.1976 2345.54622 Adipic acid 10.8932 1591.93225 Inert 1.60491 100.58766 Total 482.3008 29640.75282 Table 5.6.b: Actual composition of output stream of rector 2 Component Kmol/h Kg/h C5H10CO (K) 75.26346 7387.10860 C6H11OH (A) 36.94891 3700.43334 HNO3 212.27725 13375.00668 H2O 140.27458 2527.08584 Adipic acid 15.93169 2328.25718 N2O 5.03849 222.21252 Inert 1.60491 100.58765 Total 487.33929 29640.69181≈ 29640.7
  • 12. 24 Table 5.6.c: Material balance over reactor 2 Input (kg/h) Output(kg/h) 29640.7 29640.7 5.6 balance over NOx bleacher Fig 5.6: Balance over NOx bleacher Amount of N2O coming to the bleacher = B2 + C2 = (5.03849+7.69740) kmol/h = 12.73589 kmol/h Reaction which is taking place in the bleacher is: N2O + 1.5 O2 2NO2 ---->5.6 So, 1kmol N2O required = 1.5 kmol O2 12.73589 kmol N2O required = 1.5 x 12.73589 = 19.103835 kmol O2 0.21 kmol O2 = 1 kmol air 19.103835 kmol O2 = (19.103835/0.21) = 90.97064 kmol air 10% excess air (79% N2 and 21% O2) is supplied for complete conversion. So, actual amount of air supplied = (1.1 x 90.97064) = 100.0677 kmol/h NOx Bleacher D N2O AIR
  • 13. 25 Table 5.7.a: Composition of input stream of NOx bleacher Components Kmol/h Kg/h N2 79.05348 2213.49744 O2 21.01422 672.45504 N2O 12.73589 560.54473 Total 112.80359 3446.49721 ≈3446.5 Table 5.7.b: Composition of output stream(D) of NOx bleacher Components Kmol/h Kg/h N2 79.05348 2213.49744 O2 1.91039 61.13248 NO2 25.47178 1171.84198 Total 106.43565 3446.4719 ≈3446.5 5.7. balance over HNO3 absorber D1 H2O Fig 5.7 : Balance over HNO3 Absorber HNO3 absorber D D2
  • 14. 26 Reaction: 3 NO2 + H2O 2HNO3 + NO ---->5.7 3 kmol NO2 required = 1 kmol H2O So, 25.47178 kmol NO2 required = (25.47178/3) = 8.49059 kmol H2O 10% excess water is supplied for complete conversion. Actual H2O supplied = (1.1 x 8.49059) = 9.339649 kmol H2O Table 5.8.a: Composition of input stream of HNO3 absorber Components Kmol/h Kg/h N2 79.05348 2213.49744 O2 1.91039 61.13248 NO2 25.47178 1171.84198 H2O 9.339649 168.25641 Total 115.72830 3614.72831 ≈3614.7 Table 5.8.b: Composition of output stream of HNO3 absorber Components Kmol/h Kg/h D1: N2 O2 NO 79.05348 1.91039 8.49059 2213.49744 61.13248 254.80261 D2: HNO3 H2O 16.98119 0.84906 1069.98478 15.29605 Total 107.28471 3614.71336 ≈3614.7 H2O (v) 5.8 balance over concentrator Concentrator D2 C1 E
  • 15. 27 Fig 5.8: Balance over concentrator Table 5.9.a: Composition of input stream of concentrator Components Kmol/h Kg/h D2: HNO3 H2O 16.98119 0.84906 1069.98478 15.29605 C1: C5H10CO (K) C6H11OH (A) HNO3 H2O Adipic acid Inert 75.26346 36.94891 212.27725 140.27458 15.93169 1.60491 7387.10860 3700.43334 13375.00668 2527.08584 2328.25718 100.58765 Total 500.13105 30504.34296 90% water is evaporated. Amount of water evaporated = (0.9 x 141.12364) = 127.011276 kmol/h = 2288.1437 kg/h Water remaining in the solution = 14.112364 kmol/h = 254.23819 kg/h Table 5.9.b: Composition of output stream of concentrator Components Kmol/h Kg/h H2O (v) 127.011276 2288.1437 E: C5H10CO (K) C6H11OH (A) HNO3 H2O Adipic acid 75.26346 36.94891 212.27725 14.112364 15.93169 7387.10860 3700.43334 13375.00668 254.23819 2328.25718
  • 16. 28 Inert 1.60491 100.58765 Total 500.13105 30504.34296 5.9 balance over crystalliser E Mother liq. (ML= E-W1) Crystal (W1) Fig 5.9: Balance over crystallizer Table 5.10.a: Composition of input stream of crystallizer Component Kmol/h Kg/h C5H10CO (K) 75.26346 7387.10860 C6H11OH (A) 36.94891 3700.43334 HNO3 212.27725 13375.00668 H2O 14.112364 254.23819 Adipic acid 15.93169 2328.25718 Inert 1.60491 100.58765 Total 373.119774 28216.19926 Crystallization is taking place at 10˚C. At 10˚C, solubility of adipic acid = 14 gm/ kg of water = 0.014 kg/ kg of water Doing adipic acid balance over crystallizer, 2328.25718 = W1 + (28216.19926 – W1) x (0.014/1.014) W1 = 1965.83256 So, crystals of adipic acid = 1965.83256 kg/h Crystallizer
  • 17. 29 But crystals are 99.8 wt% pure. Table 5.10.b: Composition of output stream of crystallizer Component Kmol/h Kg/hr Crystal: Adipic acid HNO3 H2O 13.42480 0.0312 0.10912 1961.9009 1.96583 1.96583 Mother liq. : C5H10CO (K) C6H11OH (A) Adipic acid H2O HNO3 Inert 75.26346 36.94891 1.5752 13.89088 228.9688 1.60491 7387.10860 3700.43334 366.3569 252.27229 14443.60839 100.58765 Total 371.81028 28216.19973 Input stream of centrifuge is the output stream of crystallizer and it is given in table 4.10.b. Centrifuge sepatates the crystals from mother liq. Table 5.11.a: Composition of crystal stream from centrifuge Component Kmol/h Kg/hr Crystal: Adipic acid HNO3 H2O 13.42480 0.0312 0.10912 1961.9009 1.96583 1.96583 Total 13.56512 1965.83256
  • 18. 30 Table 5.11.b: Composition of mother liq. stream from centrifuge Component Kmol/h Kg/hr C5H10CO (K) C6H11OH (A) Adipic acid H2O HNO3 Inert 75.26346 36.94891 1.5752 13.89088 228.9688 1.60491 7387.10860 3700.43334 366.3569 252.27229 14443.60839 100.58765 Total 358.24516 26250.36717 We know, purge = 266.64667 kmol/h From table 4.4, we get the mole fractions of various components So ,we can determine the composition of purge stream. Table 5.12: Composition of purge stream Component Mole fraction Kmol/h Kg/h C5H10CO (K) 0.2110 56.26245 5522.15947 C6H11OH (A) 0.1036 27.6246 2766.60369 HNO3 0.6461 172.28041 10855.9929 H2O 0.0278 7.41278 133.54331 Adipic acid 0.007 1.86653 272.77469 Inert 0.0045 1.19991 75.2043 Total 1 266.64667 19626.27836
  • 19. 31 5.10 overall input – output balance Table 5.13.a: Total input Input Kg/h KA oil + HNO3 solution 23355.5047 N2 2213.49744 O2 672.45504 H2O 168.25641 Total 26409.7 Table 5.13.b: Total output Output Kg/h Crystals 1965.83256 Purge 19626.27836 N2 2213.49744 O2 61.13248 NO 254.80261 H2O 2288.1437 Total 26409.7 Conversion of adipic acid = (15.30169/100) x 100% =15.3%