This document discusses time series forecasting techniques for multivariate and hierarchical time series data. It presents several cases involving energy consumption forecasting, sales forecasting, and freight transportation forecasting. For each case, it describes the time series data and components, discusses feature generation methods like nonparametric transformations and the Haar wavelet transform to extract features, and evaluates different forecasting models and their ability to generate consistent forecasts while respecting any hierarchical relationships in the data. The focus is on generating accurate forecasts while maintaining properties like consistency, minimizing errors, and handling complex time series structures.