SlideShare a Scribd company logo
23・24卒向け夏季勉強会
2022/8/22(月)
MicroAd inc. システム開発本部
福島大祐
自己紹介
福島 大祐
株式会社マイクロアド システム開発本部 機械学習エンジニア
【担当領域】
• CTR/CVR 予測
• ダイナミックレコメンド
• 入札戦略
【略歴】
• 金沢大学
• 名古屋工業大学大学院
▶ 機械学習, 病理画像解析
• マイクロアド 2020 年新卒入社 (3 年目)
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 1 / 37
Contents
1 Real Time Bidding (RTB) とは
2 RTB の入札戦略
3 CTR/CVR 予測
4 入札制御
5 MLOps
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 2 / 37
Contents
1 Real Time Bidding (RTB) とは
2 RTB の入札戦略
3 CTR/CVR 予測
4 入札制御
5 MLOps
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 3 / 37
基本用語
広告主 : 広告を出すことで製品の認知度をあげたりブランド形成を行いたい
媒体主 : 運営しているメディア (Web サイトなど) に広告を掲載して利益を得たい
インプレッション : 広告の表示のこと
クリック : 広告クリックのこと
コンバージョン : 広告により成果を達成 (商品の購買, 申し込みなど) すること
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 4 / 37
Real Time Bidding (RTB)
RTB
1 インプレッションに対してリアルタイムで入札を行う仕組み
オークション
SSP DSP
できるだけ収益を多くしたい できるだけ
効率よく配信したい
メディア 広告
• SSP(Supply Side Platform) : メディアの収益を最大化するプラットフォーム
• DSP(Demand Side Platform) : 広告配信を最適化するプラットフォーム
広告主と媒体主の利害を一致するべく開発された取引形態
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 5 / 37
RTB の仕組み
広告枠
サイト訪問
SSP
DSP1
DSP3
DSP2
Step 1
• ユーザーがサイトに訪問し, SSP に広告リクエストを送信
•
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 6 / 37
RTB の仕組み
広告枠
サイト訪問
SSP
DSP1
DSP3
DSP2
Step 1
• ユーザーがサイトに訪問し, SSP に広告リクエストを送信
• SSP は接続している DSP に広告の入札をリクエスト
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 7 / 37
RTB の仕組み
広告枠
サイト訪問
SSP
DSP1
DSP3
DSP2
旅行広告
転職広告
車広告
10円
15円
20円
Step 2
• DSP はそれぞれ入札する広告と入札額を決定
▶ 入札する広告や入札額の決定は DSP ごとの入札ロジックに依存
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 8 / 37
RTB の仕組み
広告枠
サイト訪問
SSP
DSP1
DSP3
DSP2
旅行広告
転職広告
車広告
10円
15円
20円
Step 3
• DSP は SSP にレスポンスを返す
•
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 9 / 37
RTB の仕組み
サイト訪問
SSP
DSP1
DSP3
DSP2
旅行広告
転職広告
車広告
10円
15円
20円
転職広告
Step 3
• DSP は SSP にレスポンスを返す
• SSP はその中から最も高い値段のついた広告を選択し表示
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 10 / 37
Contents
1 Real Time Bidding (RTB) とは
2 RTB の入札戦略
3 CTR/CVR 予測
4 入札制御
5 MLOps
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 11 / 37
入札の最適化
DSP
ログ蓄積
SSP
機械学習
入札戦略
広告
広告候補
1600億件/月
メディア
入札
リクエスト/フィードバック
入札額
ad
• 蓄積される膨大なログから配信を最適化していく
▶ 入札広告の選択
▶ 入札金額の計算
▶ ect..
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 12 / 37
入札戦略
■ DSP は入札リクエストに対して, いくらで入札するのが良いのか?
入札戦略
入札リクエスト
広告, 入札額
入札額決定
(ユーザー, ページ情報, ...)
広告の選択
• 直感的には
▶ 広告効果が高い ⇒ 高い入札額
▶ 広告効果が低い ⇒ 低い入札額
入札戦略の目的
• 目標値 (広告主の期待する広告効果) の達成
• スムーズな予算消化
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 13 / 37
Contents
1 Real Time Bidding (RTB) とは
2 RTB の入札戦略
3 CTR/CVR 予測
4 入札制御
5 MLOps
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 14 / 37
RTB における CTR/CVR 予測
CTR/CVR 予測 = インプレッションの価値の推定
入札金額の算出方法の例
入札額 ∝
{
CPC × CTR (CPC 目標の場合)
CPA × CVR (CPA 目標の場合)
(1)
CPC (Cost per Click) : 1 クリックあたりのコスト
CPA (Cost per Action) : 1 コンバージョン (購買, 申込 . . .) あたりのコスト
より適切な入札額を求めるために, 正確な CTR/CVR 予測が必要
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 15 / 37
問題設定
■ 入札リクエストに対する, クリック (or コンバージョン) するかどうかの二値分類問題
• 学習データセット : {(xi, yi)}N
i=1
▶ x : 特徴ベクトル
▶ y ∈ {0, 1} : 正解ラベル (クリックされた場合 1)
広告ID URL ユーザーID 曜日 クリック
http://aaa.co.jp/hoge
http://bbb.com/fuga
xxxxxxxxxx
yyyyyyyyy
34345
11671
金曜日
木曜日
0
1
• CTR = P(y = 1|x)
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 16 / 37
問題設定
■ データセットの特徴
• ほとんどの特徴量がカテゴリ変数
• 非常に不均衡
▶ インプレッション : 数億 / day  に対し, クリックはせいぜい数%程度
• カーディナリティの高い特徴量が多数
▶ URL, タグ ID ect...
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 17 / 37
予測モデル
■ 以下の制約を満たせる 2 クラス分類モデルであれば利用可能
• RTB のレスポンス時間は 100ms 程度
▶ ネットワークの通信時間も考慮すれば, アプリケーションで使える時間は 50ms 程度
▶ その中で, CTR/CVR 予測に使える時間は数 ms ⇒ 推論速度に制約
■ 以前は扱いやすさや推論が高速なメリットからロジスティック回帰が主流
p(y = 1|x) =
1
1 + e−w⊤x
(2)
• 昨今では, ロジスティック回帰以外にも多数提案・実用されている
▶ factorization machine ベース
▶ Deep learnining ベース
▶ GBDT ベース
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 18 / 37
マイクロアドでの予測モデル
マイクロアドでは, GBDT フレームワークの 1 つである, LightGBM を利用
• カテゴリ変数の扱いが容易
• 高い識別性能
Table: マイクロアドの RTB ログを用いた比較実験の結果
手法  Normalized Entropy PR-AUC
Entity Embedding1 + logistic redression 0.890435 0.030371
Entity Embedding + XGBoost   0.842168 0.041808
LightGBM   0.832628 0.046433
1
Entity Embeddings of Categorical Variables, [Cheng Guo, 2016]
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 19 / 37
確率補正
■ 以下の理由から, 予測モデルの出力をそのまま CTR として扱うことは不適切
• 学習データから負例のアンダーサンプリングを行っている.
▶ 学習時間の短縮や使用メモリの制限から, 負例をランダムにアンダーサンプリングして使用
=⇒ 学習データの分布が本来の分布とずれ, 予測値が不当に高騰
• 表現力の高いモデルなどは予測が極端になりやすく, 予測値をそのまま確率として解釈
することが不適切
マイクロアドでは, この問題に対し, Isotonic Regression による確率補正 2 で対処
2
Predicting Good Probabilities With Supervised Learning [Alexandru Niculescu-Mizil, 2005]
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 20 / 37
Isotonic Regression による確率補正
2クラス分類器の学習データとは別に, Isotonic Regrssion の学習データを準備
• 学習データセット : {(f(xi), yi)}N
i=1
▶ f(·) : 別データで学習済みの 2 クラス分類器
▶ yi ∈ {0, 1} : クリックラベル
Isotonic Regression では, 次の単調増加な等張関数 m(·) を学習する
yi = m(f(xi)) + ϵ (3)
Isotonic Regression学習
学習データ
補正用データ
分類器学習
学習済みモデルで推論
(under samplingなし, 直近データ)
step 1
step 2
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 21 / 37
Isotonic Regression による確率補正
Isotonic Regresssion の学習には pair-adjacent violators(PAV) algorithm を用いる
1 {(fi, yi)}N
i=1 を fi の順にソート
2 m̂(fi) = yi で初期化
3 正解ラベルの順序に間違いがあれば平均値で
置換
4 推論の際に学習データセット中にない値は, 最
近傍の値を出力
つまり,
• 分類器が事例を正しくランク付けできている部分では少ない事例で平均化
• ランク付けが間違っている部分 (分類器の信頼度が低い部分) では, より多くの事例で平
均化
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 22 / 37
推論時
Isotonic Regression
LightGBM 予測CTR
リクエスト
■ 特徴量
• 特徴量は入札リクエストに乗ってくるものの他に別の予測モデルで予測したものも利用
▶ web ページのカテゴリ推定
▶ ユーザーのデモグラ推定
• ユーザーの行動系特徴量も利用
▶ 24 時間以内のアクセス回数 など
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 23 / 37
Contents
1 Real Time Bidding (RTB) とは
2 RTB の入札戦略
3 CTR/CVR 予測
4 入札制御
5 MLOps
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 24 / 37
入札制御
入札額の計算方法には様々な考え方がある
• 予測 CTR/CVR × 目標値
• 予測落札額で入札
• etc...
入札戦略の目的
• 目標値 (広告主の期待する広告効果) の達成
• スムーズな予算消化
どの方法で入札金額を算出すれば良いのか?
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 25 / 37
入札制御
課題
• 広告キャンペーンごとに最適な入札金額の計算方法が異なる
▶ 広告キャンペーンごとに予算や目標効果が全然違う
▶ CTR/CVR 予測も完璧ではない
=⇒ 広告キャンペーンごとに最適な入札関数を選びたい
上記より, 今回の問題を
「目標予算を消化できる範囲内で効果が最大 (CPA/CPC/CPV/CPCV が最小) になるときの
入札関数の適用比率」
を求める最適化問題として考える
(複数の入札関数を試しつつ最適なものを選択する制約付きバンディットの問題と考えること
もできる)
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 26 / 37
定式化
毎時間, 広告キャンペーンごとに以下の線形計画問題を解く
• xsp : SSP s ∈ S における入札関数 p ∈ P の比率 (S : 配信可能な SSP 集合)
• effectsp : SSP s ∈ S における入札関数 p ∈ P の効果 (CPC, CPA など)
• e conssp : SSP s ∈ S における入札関数 p ∈ P の期待消化金額 3
• target cons : 次の 1 時間の目標消化金額
arg min
xsp
∑
s∈S
∑
p∈P
effectsp · xsp
s.t.
∑
s∈S
∑
p∈P
e conssp · xsp ≥ target cons
∑
p∈P
xsp = 1 (∀s ∈ S)
xsp ≥ 0.05 (∀s, p ∈ S, P)
3
次の 1 時間に適用率 100%で配信した時に期待される消化金額
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 27 / 37
各要素の計算方法
■ target cons : 次の一時間の目標消化金額
• 広告キャンペーンの日予算上限の残りを推定リクエスト数で分配した時の次の 1 時間の
金額
target cons = (残り予算) ×
reqs(t + 1)
∑24
m=t+1 reqs(m)
• reqs(t) : 時刻 t の推定リクエスト数
▶ 対象キャンペーンのターゲティング設定に該当するリクエスト数の直近 5 日間平均
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 28 / 37
各要素の計算方法
■ e conssp : SSP s ∈ S における入札関数 p ∈ P の次の 1 時間の期待消化金額
• 最新の 1 時間の実際の消化金額をもとに見積もる
配信時の期待消化金額 = (実際の消化金額) ×
1
適用比率
×
1
ペーシング率
• 配信時の 1 時間と次の 1 時間のリクエスト数の変化を考慮
e conssp = (配信時の期待消化金額) ×
reqs(t + 1)
reqs(t − n)
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 29 / 37
各要素の計算方法
■ effectsp : SSP s ∈ S における入札関数 p ∈ P の効果
• 直近 2 週間分の実績を集計して利用
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 30 / 37
実際の更新ログ
テスト稼働中の広告キャンペーンの実行結果
■ 2022/7/21 20:00 の更新結果 4
• daily limit: 4000.0
• remaining budget: 491.93110733000003
• next hourly target consumption: 173.33852947276674
4
配信の出てる SSP のみ表示
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 31 / 37
▶
試験導入の結果
• テスト稼働の広告キャンペーン 2 件で, 約 20%の CPA の改善
• ただし, 期待消化金額の計算精度に課題があることも見つかっている
▶ 累積情報を使って計算する方法 (サンプリングによる期待値計算) に変えて実験中
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 32 / 37
Contents
1 Real Time Bidding (RTB) とは
2 RTB の入札戦略
3 CTR/CVR 予測
4 入札制御
5 MLOps
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 33 / 37
CTR/CVR 予測の学習基盤
■ 機械学習モデルの実装から学習サイクルまでを円滑に管理するための学習基盤が必要
• 学習の自動化・監視
▶ 毎時間対象の RTB ログが蓄積
▶ より新しいデータを予測モデルに反映したい ⇒ 定期的な予測モデルの再学習が必要
• テスト・デプロイの整備
• 実験の簡易化
▶ 精度改善のための実験を効率よく行うための整備
マイクロアドでは, 機械学習基盤を GCP (Google Cloud Platform) で構築
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 34 / 37
CTR/CVR 予測の学習基盤
機械学習モデルの学習は AI-Platform Training で定期実行
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 35 / 37
機械学習エンジニアの業務内容
主な業務内容
機械学習プロジェクトに関する調査・開発・運用全般
■ 既存プロダクトの改善
• 精度改善 (例: CTR 予測の精度改善)
▶ 論文・事例調査, 実験 ⇒ A/B テスト
• 運用改善
■ 新規機能・プロダクトの提案・導入
• ビジネス課題を機械学習の問題に落とし込み
• 既存研究など調査・検証 ⇒ 開発
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 36 / 37
以下で情報発信もしています!
Twitter
@microad dev
技術ブログ
developers.microad.co.jp
Fukushima Daisuke (MicroAd inc.) 2022/8/22(月) 37 / 37

More Related Content

What's hot

アドテクを支える技術 〜1日40億リクエストを捌くには〜
アドテクを支える技術 〜1日40億リクエストを捌くには〜アドテクを支える技術 〜1日40億リクエストを捌くには〜
アドテクを支える技術 〜1日40億リクエストを捌くには〜
MicroAd, Inc.(Engineer)
 
Scala、DDD、Akkaで立ち向かう 〜広告配信システムに課せられた100msの制約〜
Scala、DDD、Akkaで立ち向かう 〜広告配信システムに課せられた100msの制約〜Scala、DDD、Akkaで立ち向かう 〜広告配信システムに課せられた100msの制約〜
Scala、DDD、Akkaで立ち向かう 〜広告配信システムに課せられた100msの制約〜
MicroAd, Inc.(Engineer)
 
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
mlm_kansai
 
[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object Detection[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object Detection
Deep Learning JP
 
インターネット広告の概要とシステム設計
インターネット広告の概要とシステム設計インターネット広告の概要とシステム設計
インターネット広告の概要とシステム設計
MicroAd, Inc.(Engineer)
 
CatBoost on GPU のひみつ
CatBoost on GPU のひみつCatBoost on GPU のひみつ
CatBoost on GPU のひみつ
Takuji Tahara
 
マイクロアドのアドテクを支える技術
マイクロアドのアドテクを支える技術マイクロアドのアドテクを支える技術
マイクロアドのアドテクを支える技術
MicroAd, Inc.(Engineer)
 
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
SSII
 
レコメンドアルゴリズムの基本と周辺知識と実装方法
レコメンドアルゴリズムの基本と周辺知識と実装方法レコメンドアルゴリズムの基本と周辺知識と実装方法
レコメンドアルゴリズムの基本と周辺知識と実装方法
Takeshi Mikami
 
Active Learning 入門
Active Learning 入門Active Learning 入門
Active Learning 入門
Shuyo Nakatani
 
Chainer でのプロファイリングをちょっと楽にする話
Chainer でのプロファイリングをちょっと楽にする話Chainer でのプロファイリングをちょっと楽にする話
Chainer でのプロファイリングをちょっと楽にする話
NVIDIA Japan
 
バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践
智之 村上
 
三次元表現まとめ(深層学習を中心に)
三次元表現まとめ(深層学習を中心に)三次元表現まとめ(深層学習を中心に)
三次元表現まとめ(深層学習を中心に)
Tomohiro Motoda
 
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
[DL輪読会]A System for General In-Hand Object Re-Orientation
[DL輪読会]A System for General In-Hand Object Re-Orientation[DL輪読会]A System for General In-Hand Object Re-Orientation
[DL輪読会]A System for General In-Hand Object Re-Orientation
Deep Learning JP
 
FPGA, AI, エッジコンピューティング
FPGA, AI, エッジコンピューティングFPGA, AI, エッジコンピューティング
FPGA, AI, エッジコンピューティング
Hideo Terada
 
Hadoopデータ基盤とMulti-CloudなML基盤への取り組みの紹介
Hadoopデータ基盤とMulti-CloudなML基盤への取り組みの紹介Hadoopデータ基盤とMulti-CloudなML基盤への取り組みの紹介
Hadoopデータ基盤とMulti-CloudなML基盤への取り組みの紹介
MicroAd, Inc.(Engineer)
 
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII
 
アドテクを支える基盤 〜10Tバイト/日のビッグデータを処理する〜
アドテクを支える基盤 〜10Tバイト/日のビッグデータを処理する〜アドテクを支える基盤 〜10Tバイト/日のビッグデータを処理する〜
アドテクを支える基盤 〜10Tバイト/日のビッグデータを処理する〜
MicroAd, Inc.(Engineer)
 
SSII2020SS: 微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​
SSII2020SS:  微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​SSII2020SS:  微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​
SSII2020SS: 微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​
SSII
 

What's hot (20)

アドテクを支える技術 〜1日40億リクエストを捌くには〜
アドテクを支える技術 〜1日40億リクエストを捌くには〜アドテクを支える技術 〜1日40億リクエストを捌くには〜
アドテクを支える技術 〜1日40億リクエストを捌くには〜
 
Scala、DDD、Akkaで立ち向かう 〜広告配信システムに課せられた100msの制約〜
Scala、DDD、Akkaで立ち向かう 〜広告配信システムに課せられた100msの制約〜Scala、DDD、Akkaで立ち向かう 〜広告配信システムに課せられた100msの制約〜
Scala、DDD、Akkaで立ち向かう 〜広告配信システムに課せられた100msの制約〜
 
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
 
[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object Detection[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object Detection
 
インターネット広告の概要とシステム設計
インターネット広告の概要とシステム設計インターネット広告の概要とシステム設計
インターネット広告の概要とシステム設計
 
CatBoost on GPU のひみつ
CatBoost on GPU のひみつCatBoost on GPU のひみつ
CatBoost on GPU のひみつ
 
マイクロアドのアドテクを支える技術
マイクロアドのアドテクを支える技術マイクロアドのアドテクを支える技術
マイクロアドのアドテクを支える技術
 
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜​
 
レコメンドアルゴリズムの基本と周辺知識と実装方法
レコメンドアルゴリズムの基本と周辺知識と実装方法レコメンドアルゴリズムの基本と周辺知識と実装方法
レコメンドアルゴリズムの基本と周辺知識と実装方法
 
Active Learning 入門
Active Learning 入門Active Learning 入門
Active Learning 入門
 
Chainer でのプロファイリングをちょっと楽にする話
Chainer でのプロファイリングをちょっと楽にする話Chainer でのプロファイリングをちょっと楽にする話
Chainer でのプロファイリングをちょっと楽にする話
 
バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践バンディットアルゴリズム入門と実践
バンディットアルゴリズム入門と実践
 
三次元表現まとめ(深層学習を中心に)
三次元表現まとめ(深層学習を中心に)三次元表現まとめ(深層学習を中心に)
三次元表現まとめ(深層学習を中心に)
 
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
 
[DL輪読会]A System for General In-Hand Object Re-Orientation
[DL輪読会]A System for General In-Hand Object Re-Orientation[DL輪読会]A System for General In-Hand Object Re-Orientation
[DL輪読会]A System for General In-Hand Object Re-Orientation
 
FPGA, AI, エッジコンピューティング
FPGA, AI, エッジコンピューティングFPGA, AI, エッジコンピューティング
FPGA, AI, エッジコンピューティング
 
Hadoopデータ基盤とMulti-CloudなML基盤への取り組みの紹介
Hadoopデータ基盤とMulti-CloudなML基盤への取り組みの紹介Hadoopデータ基盤とMulti-CloudなML基盤への取り組みの紹介
Hadoopデータ基盤とMulti-CloudなML基盤への取り組みの紹介
 
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
 
アドテクを支える基盤 〜10Tバイト/日のビッグデータを処理する〜
アドテクを支える基盤 〜10Tバイト/日のビッグデータを処理する〜アドテクを支える基盤 〜10Tバイト/日のビッグデータを処理する〜
アドテクを支える基盤 〜10Tバイト/日のビッグデータを処理する〜
 
SSII2020SS: 微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​
SSII2020SS:  微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​SSII2020SS:  微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​
SSII2020SS: 微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​
 

Similar to RTBにおける機械学習の活用事例

KDDCUP2020 RL Track : 強化学習部門入賞の手法紹介
KDDCUP2020 RL Track : 強化学習部門入賞の手法紹介KDDCUP2020 RL Track : 強化学習部門入賞の手法紹介
KDDCUP2020 RL Track : 強化学習部門入賞の手法紹介
NTTDOCOMO-ServiceInnovation
 
確率的深層学習における中間層の改良と高性能学習法の提案
確率的深層学習における中間層の改良と高性能学習法の提案確率的深層学習における中間層の改良と高性能学習法の提案
確率的深層学習における中間層の改良と高性能学習法の提案
__106__
 
アプリケーションの性能最適化の実例1
アプリケーションの性能最適化の実例1 アプリケーションの性能最適化の実例1
アプリケーションの性能最適化の実例1
RCCSRENKEI
 
EuroPython 2017 外部向け報告会
EuroPython 2017 外部向け報告会EuroPython 2017 外部向け報告会
EuroPython 2017 外部向け報告会
Ogushi Masaya
 
レコメンドエンジン作成コンテストの勝ち方
レコメンドエンジン作成コンテストの勝ち方レコメンドエンジン作成コンテストの勝ち方
レコメンドエンジン作成コンテストの勝ち方
Shun Nukui
 
画像処理の高性能計算
画像処理の高性能計算画像処理の高性能計算
画像処理の高性能計算
Norishige Fukushima
 
Taking a Deeper Look at the Inverse Compositional Algorithm
Taking a Deeper Look at the Inverse Compositional AlgorithmTaking a Deeper Look at the Inverse Compositional Algorithm
Taking a Deeper Look at the Inverse Compositional Algorithm
Mai Nishimura
 
200702material hirokawa
200702material hirokawa200702material hirokawa
200702material hirokawa
RCCSRENKEI
 
CEDEC 2007 ゲーム開発者向け最新技術論文の解説・実装講座
CEDEC 2007 ゲーム開発者向け最新技術論文の解説・実装講座CEDEC 2007 ゲーム開発者向け最新技術論文の解説・実装講座
CEDEC 2007 ゲーム開発者向け最新技術論文の解説・実装講座
Silicon Studio Corporation
 
30分でわかる広告エンジンの作り方
30分でわかる広告エンジンの作り方30分でわかる広告エンジンの作り方
30分でわかる広告エンジンの作り方
Daisuke Yamazaki
 
第3回 配信講義 計算科学技術特論B(2022)
第3回 配信講義 計算科学技術特論B(2022)第3回 配信講義 計算科学技術特論B(2022)
第3回 配信講義 計算科学技術特論B(2022)
RCCSRENKEI
 
200514material minami
200514material minami200514material minami
200514material minami
RCCSRENKEI
 
企業の中の経済学
企業の中の経済学企業の中の経済学
企業の中の経済学
Yusuke Kaneko
 
強化学習の実適用に向けた課題と工夫
強化学習の実適用に向けた課題と工夫強化学習の実適用に向けた課題と工夫
強化学習の実適用に向けた課題と工夫
Masahiro Yasumoto
 
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
harmonylab
 
(文献紹介)深層学習による動被写体ロバストなカメラの動き推定
(文献紹介)深層学習による動被写体ロバストなカメラの動き推定(文献紹介)深層学習による動被写体ロバストなカメラの動き推定
(文献紹介)深層学習による動被写体ロバストなカメラの動き推定
Morpho, Inc.
 
競輪におけるレーティングシステムを用いた予想記事生成に関する研究
競輪におけるレーティングシステムを用いた予想記事生成に関する研究競輪におけるレーティングシステムを用いた予想記事生成に関する研究
競輪におけるレーティングシステムを用いた予想記事生成に関する研究
harmonylab
 
量子コンピュータ向けアプリケーション開発フレームワークReNomQとは
量子コンピュータ向けアプリケーション開発フレームワークReNomQとは量子コンピュータ向けアプリケーション開発フレームワークReNomQとは
量子コンピュータ向けアプリケーション開発フレームワークReNomQとは
ReNom User Group
 
2015年度GPGPU実践プログラミング 第10回 行列計算(行列-行列積の高度な最適化)
2015年度GPGPU実践プログラミング 第10回 行列計算(行列-行列積の高度な最適化)2015年度GPGPU実践プログラミング 第10回 行列計算(行列-行列積の高度な最適化)
2015年度GPGPU実践プログラミング 第10回 行列計算(行列-行列積の高度な最適化)
智啓 出川
 
Decision Transformer: Reinforcement Learning via Sequence Modeling
Decision Transformer: Reinforcement Learning via Sequence ModelingDecision Transformer: Reinforcement Learning via Sequence Modeling
Decision Transformer: Reinforcement Learning via Sequence Modeling
Tomoya Oda
 

Similar to RTBにおける機械学習の活用事例 (20)

KDDCUP2020 RL Track : 強化学習部門入賞の手法紹介
KDDCUP2020 RL Track : 強化学習部門入賞の手法紹介KDDCUP2020 RL Track : 強化学習部門入賞の手法紹介
KDDCUP2020 RL Track : 強化学習部門入賞の手法紹介
 
確率的深層学習における中間層の改良と高性能学習法の提案
確率的深層学習における中間層の改良と高性能学習法の提案確率的深層学習における中間層の改良と高性能学習法の提案
確率的深層学習における中間層の改良と高性能学習法の提案
 
アプリケーションの性能最適化の実例1
アプリケーションの性能最適化の実例1 アプリケーションの性能最適化の実例1
アプリケーションの性能最適化の実例1
 
EuroPython 2017 外部向け報告会
EuroPython 2017 外部向け報告会EuroPython 2017 外部向け報告会
EuroPython 2017 外部向け報告会
 
レコメンドエンジン作成コンテストの勝ち方
レコメンドエンジン作成コンテストの勝ち方レコメンドエンジン作成コンテストの勝ち方
レコメンドエンジン作成コンテストの勝ち方
 
画像処理の高性能計算
画像処理の高性能計算画像処理の高性能計算
画像処理の高性能計算
 
Taking a Deeper Look at the Inverse Compositional Algorithm
Taking a Deeper Look at the Inverse Compositional AlgorithmTaking a Deeper Look at the Inverse Compositional Algorithm
Taking a Deeper Look at the Inverse Compositional Algorithm
 
200702material hirokawa
200702material hirokawa200702material hirokawa
200702material hirokawa
 
CEDEC 2007 ゲーム開発者向け最新技術論文の解説・実装講座
CEDEC 2007 ゲーム開発者向け最新技術論文の解説・実装講座CEDEC 2007 ゲーム開発者向け最新技術論文の解説・実装講座
CEDEC 2007 ゲーム開発者向け最新技術論文の解説・実装講座
 
30分でわかる広告エンジンの作り方
30分でわかる広告エンジンの作り方30分でわかる広告エンジンの作り方
30分でわかる広告エンジンの作り方
 
第3回 配信講義 計算科学技術特論B(2022)
第3回 配信講義 計算科学技術特論B(2022)第3回 配信講義 計算科学技術特論B(2022)
第3回 配信講義 計算科学技術特論B(2022)
 
200514material minami
200514material minami200514material minami
200514material minami
 
企業の中の経済学
企業の中の経済学企業の中の経済学
企業の中の経済学
 
強化学習の実適用に向けた課題と工夫
強化学習の実適用に向けた課題と工夫強化学習の実適用に向けた課題と工夫
強化学習の実適用に向けた課題と工夫
 
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matching
 
(文献紹介)深層学習による動被写体ロバストなカメラの動き推定
(文献紹介)深層学習による動被写体ロバストなカメラの動き推定(文献紹介)深層学習による動被写体ロバストなカメラの動き推定
(文献紹介)深層学習による動被写体ロバストなカメラの動き推定
 
競輪におけるレーティングシステムを用いた予想記事生成に関する研究
競輪におけるレーティングシステムを用いた予想記事生成に関する研究競輪におけるレーティングシステムを用いた予想記事生成に関する研究
競輪におけるレーティングシステムを用いた予想記事生成に関する研究
 
量子コンピュータ向けアプリケーション開発フレームワークReNomQとは
量子コンピュータ向けアプリケーション開発フレームワークReNomQとは量子コンピュータ向けアプリケーション開発フレームワークReNomQとは
量子コンピュータ向けアプリケーション開発フレームワークReNomQとは
 
2015年度GPGPU実践プログラミング 第10回 行列計算(行列-行列積の高度な最適化)
2015年度GPGPU実践プログラミング 第10回 行列計算(行列-行列積の高度な最適化)2015年度GPGPU実践プログラミング 第10回 行列計算(行列-行列積の高度な最適化)
2015年度GPGPU実践プログラミング 第10回 行列計算(行列-行列積の高度な最適化)
 
Decision Transformer: Reinforcement Learning via Sequence Modeling
Decision Transformer: Reinforcement Learning via Sequence ModelingDecision Transformer: Reinforcement Learning via Sequence Modeling
Decision Transformer: Reinforcement Learning via Sequence Modeling
 

More from MicroAd, Inc.(Engineer)

20240229 DEIM2024 【技術報告】広告配信における安定して拡張性のある大量データ処理基盤の必要性と活用
20240229 DEIM2024 【技術報告】広告配信における安定して拡張性のある大量データ処理基盤の必要性と活用20240229 DEIM2024 【技術報告】広告配信における安定して拡張性のある大量データ処理基盤の必要性と活用
20240229 DEIM2024 【技術報告】広告配信における安定して拡張性のある大量データ処理基盤の必要性と活用
MicroAd, Inc.(Engineer)
 
Kafka Connect:Iceberg Sink Connectorを使ってみる
Kafka Connect:Iceberg Sink Connectorを使ってみるKafka Connect:Iceberg Sink Connectorを使ってみる
Kafka Connect:Iceberg Sink Connectorを使ってみる
MicroAd, Inc.(Engineer)
 
Apache Kafkaでの大量データ処理がKubernetesで簡単にできて嬉しかった話
Apache Kafkaでの大量データ処理がKubernetesで簡単にできて嬉しかった話Apache Kafkaでの大量データ処理がKubernetesで簡単にできて嬉しかった話
Apache Kafkaでの大量データ処理がKubernetesで簡単にできて嬉しかった話
MicroAd, Inc.(Engineer)
 
Chromeの3rd Party Cookie廃止とインターネット広告への影響
Chromeの3rd Party Cookie廃止とインターネット広告への影響Chromeの3rd Party Cookie廃止とインターネット広告への影響
Chromeの3rd Party Cookie廃止とインターネット広告への影響
MicroAd, Inc.(Engineer)
 
ベアメタルで実現するSpark&Trino on K8sなデータ基盤
ベアメタルで実現するSpark&Trino on K8sなデータ基盤ベアメタルで実現するSpark&Trino on K8sなデータ基盤
ベアメタルで実現するSpark&Trino on K8sなデータ基盤
MicroAd, Inc.(Engineer)
 
DDD&Scalaで作られたプロダクトはその後どうなったか?(Current state of products made with DDD & Scala)
DDD&Scalaで作られたプロダクトはその後どうなったか?(Current state of products made with DDD & Scala)DDD&Scalaで作られたプロダクトはその後どうなったか?(Current state of products made with DDD & Scala)
DDD&Scalaで作られたプロダクトはその後どうなったか?(Current state of products made with DDD & Scala)
MicroAd, Inc.(Engineer)
 
マイクロアドにおけるデータストアの使い分け
マイクロアドにおけるデータストアの使い分けマイクロアドにおけるデータストアの使い分け
マイクロアドにおけるデータストアの使い分け
MicroAd, Inc.(Engineer)
 
データセンターネットワークの構成について
データセンターネットワークの構成についてデータセンターネットワークの構成について
データセンターネットワークの構成について
MicroAd, Inc.(Engineer)
 
インフラ領域の技術スタックや業務内容について紹介
インフラ領域の技術スタックや業務内容について紹介インフラ領域の技術スタックや業務内容について紹介
インフラ領域の技術スタックや業務内容について紹介
MicroAd, Inc.(Engineer)
 
アドテクに機械学習を組み込むための推論の高速化
アドテクに機械学習を組み込むための推論の高速化アドテクに機械学習を組み込むための推論の高速化
アドテクに機械学習を組み込むための推論の高速化
MicroAd, Inc.(Engineer)
 
マイクロアドのデータ基盤について アドテクを支える基盤〜10Tバイト/日のビッグデータを処理する〜
マイクロアドのデータ基盤について アドテクを支える基盤〜10Tバイト/日のビッグデータを処理する〜マイクロアドのデータ基盤について アドテクを支える基盤〜10Tバイト/日のビッグデータを処理する〜
マイクロアドのデータ基盤について アドテクを支える基盤〜10Tバイト/日のビッグデータを処理する〜
MicroAd, Inc.(Engineer)
 
アドテクを支える技術 〜1日40億リクエストを捌くには〜
アドテクを支える技術 〜1日40億リクエストを捌くには〜アドテクを支える技術 〜1日40億リクエストを捌くには〜
アドテクを支える技術 〜1日40億リクエストを捌くには〜
MicroAd, Inc.(Engineer)
 
社内問い合わせ&申請・承認業務の 管理方法 - Jira Service Management 事例紹介 -
社内問い合わせ&申請・承認業務の 管理方法 - Jira Service Management 事例紹介 -社内問い合わせ&申請・承認業務の 管理方法 - Jira Service Management 事例紹介 -
社内問い合わせ&申請・承認業務の 管理方法 - Jira Service Management 事例紹介 -
MicroAd, Inc.(Engineer)
 
Digdagを用いた大規模広告配信ログデータの加工と運用
Digdagを用いた大規模広告配信ログデータの加工と運用Digdagを用いた大規模広告配信ログデータの加工と運用
Digdagを用いた大規模広告配信ログデータの加工と運用
MicroAd, Inc.(Engineer)
 
これから機械学習エンジニアとして戦っていくみなさんへ ~MLOps というマインドセットについて~
これから機械学習エンジニアとして戦っていくみなさんへ ~MLOps というマインドセットについて~これから機械学習エンジニアとして戦っていくみなさんへ ~MLOps というマインドセットについて~
これから機械学習エンジニアとして戦っていくみなさんへ ~MLOps というマインドセットについて~
MicroAd, Inc.(Engineer)
 
アドテクに携わって培った アプリをハイパフォーマンスに保つ設計とコーディング
アドテクに携わって培った アプリをハイパフォーマンスに保つ設計とコーディング アドテクに携わって培った アプリをハイパフォーマンスに保つ設計とコーディング
アドテクに携わって培った アプリをハイパフォーマンスに保つ設計とコーディング
MicroAd, Inc.(Engineer)
 
Cumulus Linuxを導入したワケ
Cumulus Linuxを導入したワケCumulus Linuxを導入したワケ
Cumulus Linuxを導入したワケ
MicroAd, Inc.(Engineer)
 
オンプレ×Google Cloud PlatformなML基盤におけるRancherの活用
オンプレ×Google Cloud PlatformなML基盤におけるRancherの活用オンプレ×Google Cloud PlatformなML基盤におけるRancherの活用
オンプレ×Google Cloud PlatformなML基盤におけるRancherの活用
MicroAd, Inc.(Engineer)
 
琵琶湖を中心とした世界のようなお話
琵琶湖を中心とした世界のようなお話琵琶湖を中心とした世界のようなお話
琵琶湖を中心とした世界のようなお話
MicroAd, Inc.(Engineer)
 
ソフトとかハードとか関係ございません
ソフトとかハードとか関係ございませんソフトとかハードとか関係ございません
ソフトとかハードとか関係ございません
MicroAd, Inc.(Engineer)
 

More from MicroAd, Inc.(Engineer) (20)

20240229 DEIM2024 【技術報告】広告配信における安定して拡張性のある大量データ処理基盤の必要性と活用
20240229 DEIM2024 【技術報告】広告配信における安定して拡張性のある大量データ処理基盤の必要性と活用20240229 DEIM2024 【技術報告】広告配信における安定して拡張性のある大量データ処理基盤の必要性と活用
20240229 DEIM2024 【技術報告】広告配信における安定して拡張性のある大量データ処理基盤の必要性と活用
 
Kafka Connect:Iceberg Sink Connectorを使ってみる
Kafka Connect:Iceberg Sink Connectorを使ってみるKafka Connect:Iceberg Sink Connectorを使ってみる
Kafka Connect:Iceberg Sink Connectorを使ってみる
 
Apache Kafkaでの大量データ処理がKubernetesで簡単にできて嬉しかった話
Apache Kafkaでの大量データ処理がKubernetesで簡単にできて嬉しかった話Apache Kafkaでの大量データ処理がKubernetesで簡単にできて嬉しかった話
Apache Kafkaでの大量データ処理がKubernetesで簡単にできて嬉しかった話
 
Chromeの3rd Party Cookie廃止とインターネット広告への影響
Chromeの3rd Party Cookie廃止とインターネット広告への影響Chromeの3rd Party Cookie廃止とインターネット広告への影響
Chromeの3rd Party Cookie廃止とインターネット広告への影響
 
ベアメタルで実現するSpark&Trino on K8sなデータ基盤
ベアメタルで実現するSpark&Trino on K8sなデータ基盤ベアメタルで実現するSpark&Trino on K8sなデータ基盤
ベアメタルで実現するSpark&Trino on K8sなデータ基盤
 
DDD&Scalaで作られたプロダクトはその後どうなったか?(Current state of products made with DDD & Scala)
DDD&Scalaで作られたプロダクトはその後どうなったか?(Current state of products made with DDD & Scala)DDD&Scalaで作られたプロダクトはその後どうなったか?(Current state of products made with DDD & Scala)
DDD&Scalaで作られたプロダクトはその後どうなったか?(Current state of products made with DDD & Scala)
 
マイクロアドにおけるデータストアの使い分け
マイクロアドにおけるデータストアの使い分けマイクロアドにおけるデータストアの使い分け
マイクロアドにおけるデータストアの使い分け
 
データセンターネットワークの構成について
データセンターネットワークの構成についてデータセンターネットワークの構成について
データセンターネットワークの構成について
 
インフラ領域の技術スタックや業務内容について紹介
インフラ領域の技術スタックや業務内容について紹介インフラ領域の技術スタックや業務内容について紹介
インフラ領域の技術スタックや業務内容について紹介
 
アドテクに機械学習を組み込むための推論の高速化
アドテクに機械学習を組み込むための推論の高速化アドテクに機械学習を組み込むための推論の高速化
アドテクに機械学習を組み込むための推論の高速化
 
マイクロアドのデータ基盤について アドテクを支える基盤〜10Tバイト/日のビッグデータを処理する〜
マイクロアドのデータ基盤について アドテクを支える基盤〜10Tバイト/日のビッグデータを処理する〜マイクロアドのデータ基盤について アドテクを支える基盤〜10Tバイト/日のビッグデータを処理する〜
マイクロアドのデータ基盤について アドテクを支える基盤〜10Tバイト/日のビッグデータを処理する〜
 
アドテクを支える技術 〜1日40億リクエストを捌くには〜
アドテクを支える技術 〜1日40億リクエストを捌くには〜アドテクを支える技術 〜1日40億リクエストを捌くには〜
アドテクを支える技術 〜1日40億リクエストを捌くには〜
 
社内問い合わせ&申請・承認業務の 管理方法 - Jira Service Management 事例紹介 -
社内問い合わせ&申請・承認業務の 管理方法 - Jira Service Management 事例紹介 -社内問い合わせ&申請・承認業務の 管理方法 - Jira Service Management 事例紹介 -
社内問い合わせ&申請・承認業務の 管理方法 - Jira Service Management 事例紹介 -
 
Digdagを用いた大規模広告配信ログデータの加工と運用
Digdagを用いた大規模広告配信ログデータの加工と運用Digdagを用いた大規模広告配信ログデータの加工と運用
Digdagを用いた大規模広告配信ログデータの加工と運用
 
これから機械学習エンジニアとして戦っていくみなさんへ ~MLOps というマインドセットについて~
これから機械学習エンジニアとして戦っていくみなさんへ ~MLOps というマインドセットについて~これから機械学習エンジニアとして戦っていくみなさんへ ~MLOps というマインドセットについて~
これから機械学習エンジニアとして戦っていくみなさんへ ~MLOps というマインドセットについて~
 
アドテクに携わって培った アプリをハイパフォーマンスに保つ設計とコーディング
アドテクに携わって培った アプリをハイパフォーマンスに保つ設計とコーディング アドテクに携わって培った アプリをハイパフォーマンスに保つ設計とコーディング
アドテクに携わって培った アプリをハイパフォーマンスに保つ設計とコーディング
 
Cumulus Linuxを導入したワケ
Cumulus Linuxを導入したワケCumulus Linuxを導入したワケ
Cumulus Linuxを導入したワケ
 
オンプレ×Google Cloud PlatformなML基盤におけるRancherの活用
オンプレ×Google Cloud PlatformなML基盤におけるRancherの活用オンプレ×Google Cloud PlatformなML基盤におけるRancherの活用
オンプレ×Google Cloud PlatformなML基盤におけるRancherの活用
 
琵琶湖を中心とした世界のようなお話
琵琶湖を中心とした世界のようなお話琵琶湖を中心とした世界のようなお話
琵琶湖を中心とした世界のようなお話
 
ソフトとかハードとか関係ございません
ソフトとかハードとか関係ございませんソフトとかハードとか関係ございません
ソフトとかハードとか関係ございません
 

Recently uploaded

【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
ARISE analytics
 
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログLoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
CRI Japan, Inc.
 
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit IntroductionMatsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo Lab
 
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit IntroductionMatsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo Lab
 
Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)
Natsutani Minoru
 
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
Sony - Neural Network Libraries
 
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
Toru Tamaki
 
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit IntroductionMatsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo Lab
 
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
Toru Tamaki
 
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
Sony - Neural Network Libraries
 
Kyndryl Developer Services のご紹介 2024年7月
Kyndryl Developer Services のご紹介  2024年7月Kyndryl Developer Services のご紹介  2024年7月
Kyndryl Developer Services のご紹介 2024年7月
Takayuki Nakayama
 
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ..."ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
たけおか しょうぞう
 
20240717_IoTLT_vol113_kitazaki_v1___.pdf
20240717_IoTLT_vol113_kitazaki_v1___.pdf20240717_IoTLT_vol113_kitazaki_v1___.pdf
20240717_IoTLT_vol113_kitazaki_v1___.pdf
Ayachika Kitazaki
 
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
chisatotakane
 

Recently uploaded (14)

【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
 
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログLoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
 
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit IntroductionMatsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit Introduction
 
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit IntroductionMatsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit Introduction
 
Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)
 
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
 
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
 
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit IntroductionMatsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit Introduction
 
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
 
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
 
Kyndryl Developer Services のご紹介 2024年7月
Kyndryl Developer Services のご紹介  2024年7月Kyndryl Developer Services のご紹介  2024年7月
Kyndryl Developer Services のご紹介 2024年7月
 
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ..."ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
 
20240717_IoTLT_vol113_kitazaki_v1___.pdf
20240717_IoTLT_vol113_kitazaki_v1___.pdf20240717_IoTLT_vol113_kitazaki_v1___.pdf
20240717_IoTLT_vol113_kitazaki_v1___.pdf
 
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
 

RTBにおける機械学習の活用事例