SlideShare a Scribd company logo
インフラ領域の技術スタック
や業務内容について紹介
株式会社マイクロアド
システム開発部 基盤開発グループ
チーフエンジニア 永富 安和 ( @yassan168 )
#MicroadDevs
2022年【23卒/24卒エンジニア】オンライン勉強会
「オンプレ環境とクラウドのハイブリッド運用の活用事例」
#MicroadDevs
今日の話の流れ
1. どの様な技術を使っているか
2. 業務内容について
3. 基盤開発グループの体制について
4. マイクロアドのインフラの魅力
5. 基盤開発グループのミッション
6. 業務を行う上で大切にしていること
2
#MicroadDevs
どの様な技術を使っているか(その1)
環境 オンプレミス、AWS、GCP
ネットワーク環境
&ネットワーク機器
IP Clossネットワーク
WhiteBox Switch(Cumulus Linux)、Arista、Juniper
言語 Python、Golang、Java
バージョン管理 Git (GitHub Enterprise)
コラボレーションツール Slack、JIRA、Confluence、Google Workspace、Workplace
基盤開発グループで用いている技術は以下の通り
3
#MicroadDevs
どの様な技術を使っているか(その2 ミドルウェア)
)
プロビジョニング OS→ MAAS(Metal-As-A-Service)、クラウド→ Terraform
構成管理→ Ansible、AWX(Red Hat Ansible Automation PlatformのOSS版)
RDBMS MySQL、PostgreSQL
KVS Redis
分散処理基盤 CDH (Cloudera's Distribution including Apache Hadoop)
HDFS、Hive、Impala、Spark(Spark Streaming)、Flume、Kafka
仮想化基盤 OpenStack
Docker、Kubernetes(Rancher、RKE2)
監視基盤 Prometheus・VictoriaMetrics/Grafana、Elasticsearch/Kibana、
Datadog
バッチ Digdag(Treasure Dataが主体で開発するOSSのワークフローエンジン)
その他 Fluentd、Nginx 4
#MicroadDevs
業務内容について
国内最大級のデータプラットフォームのシステムインフラの設計・構築・運用
主な業務概要
1. 約1,400台の物理サーバをデータセンターで運用
2. IP Closネットワークの設計・構築・運用
3. Docker、Kubernetes、OpenStack を用いた仮想基盤の設計・構築・運用
4. Hadoopエコシステムを活用したデータ基盤の設計・構築・運用
5. バッチやCIで用いるクレデンシャルやアクセス権限の管理
6. 運用の自動化や監視の強化などインフラ環境の改善
7. 新しい技術の検証、導入
8. パブリッククラウド(GCP・AWS)の運用管理
9. 既存システムにおけるパフォーマンスチューニング 5
#MicroadDevs
約1,400台の物理サーバをデータセンターで運用
データセンターにて、約1,400台の物理サーバやネットワークスイッチを運用。
機器の調達から設置、構築まで全て行っている。
台数が多いので1台ずつ手作業で構築するのは手間がかかりすぎるので、
可能な限り自動化を行う。
OSのインストールについては、Canonical社のMAASを用いて自動化。
その後、用途に応じたセットアップは、独自のスクリプトやAnsibleを用いて自動化し
ている。
6
#MicroadDevs
HDFSで採用している物理サーバのH/W紹介
Hadoopクラスタには、以下のようなマルチノードクラスタを用いて
1ラックあたりの集積度を上げて効率化しています。
7
#MicroadDevs
IP Closネットワークの設計・構築・運用
こちらについては、このあとのセッションにて。
8
#MicroadDevs
Docker、Kubernetes、OpenStack を用いた仮想基盤の設計・構築・運用
例)DigdagとDockerコンテナを用いたバッチサーバ
PostgreSQL
S3 Docker Daemon
Digdag Server Host 01
Aジョブ用
Cジョブ用
・・・
Digdag
Server
Docker Daemon
Digdag Server Host XX
Bジョブ用
Dジョブ用
・・・
Digdag
Server
Aジョブ用
イメージ
Bジョブ用
イメージ
ジョブをコンテナ化しているのでどちらかのDigdag Serverで動く
ホストの
縮退が可能
S3のファイルを
フラグ的に使って
ジョブ間の依存を解決
管理情報を参照
9
#MicroadDevs
Hadoopエコシステムを活用したデータ基盤の設計・構築・運用
データセンター内にHadoopクラスタを構築。
必要なリソースを見積もり、将来を見越しながら運用している。
Cloudera Manager
ログ転送
広告配信サーバ等
各種サーバ
管理・監視
オンプレ GCP
BigQuery
Impala
参照 参照
利用
データ基盤概要
10
#MicroadDevs
バッチやCIで用いるクレデンシャルやアクセス権限の管理
クレデンシャルの管理
クレデンシャルとは、DBのアクセス情報やAWS S3アクセストークンなどの事。
開発する上で必要になるがクレデンシャルの中身は簡単に見えるようにしたくない。
そこで、Ansibleを用いてクレデンシャルを暗号化し、変数として扱えるようにして
バッチから利用出来るようなしくみを構築して運用しています。
アクセス権限の管理
以下に対してどの様に権限を付与するか検討し、必要最小限の権限を付与する。
● 各種サーバへのSSHリモートアクセス
● 開発向けWebサービス(GitHub Entrerprise、Jenkins、コンテナレジストリetc)
● AWS・GCPの各種サービス 11
#MicroadDevs
運用の自動化や監視の強化などインフラ環境の改善
繰り返し発生する作業のうち、手順化出来ている作業はコード化して
自動化出来るようしくみを構築して、手作業によるミスを無くすようにしてます。
例えば以下
● クレデンシャルの管理
● SSHリモートアクセス管理
● ミドルウェアのインストール
● 監視のアラート設定
また、構築したシステムを監視出来るようにPromethuesを使って、
取得出来るメトリクスを増やし、異常を補足できるようにアラートを設定しています。
12
#MicroadDevs
新しい技術の検証・導入
これまで利用していなかった技術を検証し、
効果がありそうと判断したら導入するまで対応していきます。
そこで大事なのは「新規性」ではなく、
「現状の課題(技術・コスト)を解決可能」かつ「継続して利用可能」である事とな
ります。
ただし、導入するための技術的な難易度や運用時の手間も考慮して判断しています。
例: Promethuesの長期メトリクス保存のためのVictoriaMetricsの導入
13
#MicroadDevs
パブリッククラウド(GCP・AWS)の運用管理
各種サービスを適切に利用できるように整備する。
● オンプレ環境と接続するためのネットワーク設定
● VPC管理
● IAM、サービスアカウントといったアクセス権限の管理
● 利用するサービスのリソースの作成
○ VMインスタンス、S3・GCSバケット、GKEクラスタなどなど
大事にしていること
● 安全に利用できること
● コスト
● 最小権限の原則に基づいて権限を考慮すること
14
#MicroadDevs
既存システムにおけるパフォーマンスチューニング
以下のような理由でパフォーマンス改善を行うこともあります
● 構築時の想定と異なる利用した影響でパフォーマンスが落ちる
● 要求するスペックが上がる
● ダッシュボードを見た際に想定よりパフォーマンスが悪い
などなど
チューニングの際は、観点となるメトリクスをGrafanaのダッシュボードを見なが
ら、改善していきます。
15
#MicroadDevs
基盤開発グループの体制
左図のようなロールで構成している。
各々の得意分野や今後の技術的志向に合わせて
タスクを分担して対応している。
その為、XXエンジニアだから●●な雑務をするといっ
た様なアサインはしない。
新人でも出来ると判断したらどんなタスクでも
アサインされる(サポート付けて相談しながら進める
場合もある)。
統括
シニアエンジニア
チーフエンジニア
エンジニア
16
#MicroadDevs
マイクロアドのインフラの魅力 その1
広告に由来する大規模データとトラフィックを支える巨大なインフラ環境に携われる
● 秒間30万件のリクエストを 100 msec 以下で捌く広告配信システム
● メインのデータレイクは約40TB/日の書き込み、総量が約2ペタバイト
基盤開発グループ視点での魅力
● 上記を支える約1,400台の物理サーバをデータセンターで運用
● AWS、GCPなどのパブリッククラウドサービスも併用
● Ansibleなどによる自動化で、容易かつ再現性のあるインフラ構築を実現
17
#MicroadDevs
マイクロアドのインフラの魅力 その2
広範なインフラ領域の様々な業務に取り組むことができる
近年に行った新規導入、検証、各種改善の例
● データセンターの移設
● IP Closネットワークの導入
● Rancher(& RKE2)によるKubernetes環境の導入
● CentOS以外のOSとしてUbuntuの導入
● Prometheus及びLong-term StorageとしてのVictoriaMetricsの利用
● GrafanaダッシュボードのIaC運用の導入
18
#MicroadDevs
基盤開発グループのミッション
アプリ開発や機械学習のチーム向けに安全で最適なプラットフォームを提供する
各チーム 基盤開発グループ
XX用サーバを追加して欲しい
GCPに新しいプロジェクトが欲しい
XXってミドルウェアを導入て欲しい
19
#MicroadDevs
大事にしている事
各所から要望に対して「顧客が本当に必要だったもの」が何かを意識する。
「何を実現したいのか?」を明らかにして、必要であればオンプレにこだわらず、
パブリッククラウドを活用するなど柔軟に対応する。
出典: https://www.businessballs.com/amusement-stress-relief/tree-swing-cartoons-new-versions/ 20
#MicroadDevs
大事にしている事
目標の達成にこだわる
緊急度と重要度を天秤にかけながら「達成すべきこと」を考えた行動が求められる。
例1)障害が発生した際
障害の原因究明は大事だが、復旧が遅れるのもまずいので、
ある程度の段階で原因が特定出来なければ、復旧を優先する。
例2)新機能の検証の際
ベストの方法はXXXだけど、やりたかった事は出来ているし、
運用面もクリア出来ているので、期日の問題もあるので、ベターな方法をとる。
など。
21
#MicroadDevs
振り返り
1. どの様な技術を使っているか
2. 業務内容について
3. 基盤開発グループの体制について
4. マイクロアドのインフラの魅力
5. 基盤開発グループのミッション
6. 業務を行う上で大切にしていること
22
補足(MicroAd Developers Blog)
● ケーブリングを改善した話
https://developers.microad.co.jp/entry/2022/06/27/100000
● strongSwanとFRRでオンプレとGCPをVPN接続
https://developers.microad.co.jp/entry/2022/05/30/100000
● CDH (Hadoop) 入門
https://developers.microad.co.jp/entry/2021/09/21/063000
● redis threadedI/Oの検証
https://developers.microad.co.jp/entry/2021/06/28/063000
23
補足(MicroAd Developers Blog)
● Ansible AWXでMySQLの構成管理を行う
https://developers.microad.co.jp/entry/2019/06/07/190000
● MAASを導入した話
https://developers.microad.co.jp/entry/2020/09/29/063000
24
補足(SlideShare)
● Cumulus Linuxを導入したワケ
https://www.slideshare.net/microad_engineer/cumulusug20191120
● Hadoopデータ基盤とMulti-CloudなML基盤への取り組みの紹介
https://www.slideshare.net/microad_engineer/camphorinfra20191005
25

More Related Content

What's hot

コンテナ未経験新人が学ぶコンテナ技術入門
コンテナ未経験新人が学ぶコンテナ技術入門コンテナ未経験新人が学ぶコンテナ技術入門
コンテナ未経験新人が学ぶコンテナ技術入門
Kohei Tokunaga
 
ぱぱっと理解するSpring Cloudの基本
ぱぱっと理解するSpring Cloudの基本ぱぱっと理解するSpring Cloudの基本
ぱぱっと理解するSpring Cloudの基本
kazuki kumagai
 
大規模データ処理の定番OSS Hadoop / Spark 最新動向 - 2021秋 -(db tech showcase 2021 / ONLINE 発...
大規模データ処理の定番OSS Hadoop / Spark 最新動向 - 2021秋 -(db tech showcase 2021 / ONLINE 発...大規模データ処理の定番OSS Hadoop / Spark 最新動向 - 2021秋 -(db tech showcase 2021 / ONLINE 発...
大規模データ処理の定番OSS Hadoop / Spark 最新動向 - 2021秋 -(db tech showcase 2021 / ONLINE 発...
NTT DATA Technology & Innovation
 
Azure Digital Twins 最新事例紹介 ( IoTビジネス共創ラボ 第16回勉強会 )
Azure Digital Twins 最新事例紹介 ( IoTビジネス共創ラボ 第16回勉強会 )Azure Digital Twins 最新事例紹介 ( IoTビジネス共創ラボ 第16回勉強会 )
Azure Digital Twins 最新事例紹介 ( IoTビジネス共創ラボ 第16回勉強会 )
Takeshi Fukuhara
 
gRPC入門
gRPC入門gRPC入門
gRPC入門
Kenjiro Kubota
 
【BS13】チーム開発がこんなにも快適に!コーディングもデバッグも GitHub 上で。 GitHub Codespaces で叶えられるシームレスな開発
【BS13】チーム開発がこんなにも快適に!コーディングもデバッグも GitHub 上で。 GitHub Codespaces で叶えられるシームレスな開発【BS13】チーム開発がこんなにも快適に!コーディングもデバッグも GitHub 上で。 GitHub Codespaces で叶えられるシームレスな開発
【BS13】チーム開発がこんなにも快適に!コーディングもデバッグも GitHub 上で。 GitHub Codespaces で叶えられるシームレスな開発
日本マイクロソフト株式会社
 
ストリーム処理を支えるキューイングシステムの選び方
ストリーム処理を支えるキューイングシステムの選び方ストリーム処理を支えるキューイングシステムの選び方
ストリーム処理を支えるキューイングシステムの選び方
Yoshiyasu SAEKI
 
ゼロから作るKubernetesによるJupyter as a Service ー Kubernetes Meetup Tokyo #43
ゼロから作るKubernetesによるJupyter as a Service ー Kubernetes Meetup Tokyo #43ゼロから作るKubernetesによるJupyter as a Service ー Kubernetes Meetup Tokyo #43
ゼロから作るKubernetesによるJupyter as a Service ー Kubernetes Meetup Tokyo #43
Preferred Networks
 
Redisの特徴と活用方法について
Redisの特徴と活用方法についてRedisの特徴と活用方法について
Redisの特徴と活用方法について
Yuji Otani
 
PostgreSQLをKubernetes上で活用するためのOperator紹介!(Cloud Native Database Meetup #3 発表資料)
PostgreSQLをKubernetes上で活用するためのOperator紹介!(Cloud Native Database Meetup #3 発表資料)PostgreSQLをKubernetes上で活用するためのOperator紹介!(Cloud Native Database Meetup #3 発表資料)
PostgreSQLをKubernetes上で活用するためのOperator紹介!(Cloud Native Database Meetup #3 発表資料)
NTT DATA Technology & Innovation
 
マイクロサービス 4つの分割アプローチ
マイクロサービス 4つの分割アプローチマイクロサービス 4つの分割アプローチ
マイクロサービス 4つの分割アプローチ
増田 亨
 
Dockerからcontainerdへの移行
Dockerからcontainerdへの移行Dockerからcontainerdへの移行
Dockerからcontainerdへの移行
Kohei Tokunaga
 
[Cloud OnAir] BigQuery の仕組みからベストプラクティスまでのご紹介 2018年9月6日 放送
[Cloud OnAir] BigQuery の仕組みからベストプラクティスまでのご紹介 2018年9月6日 放送[Cloud OnAir] BigQuery の仕組みからベストプラクティスまでのご紹介 2018年9月6日 放送
[Cloud OnAir] BigQuery の仕組みからベストプラクティスまでのご紹介 2018年9月6日 放送
Google Cloud Platform - Japan
 
フロー効率性とリソース効率性について #xpjug
フロー効率性とリソース効率性について #xpjugフロー効率性とリソース効率性について #xpjug
フロー効率性とリソース効率性について #xpjug
Itsuki Kuroda
 
SQL大量発行処理をいかにして高速化するか
SQL大量発行処理をいかにして高速化するかSQL大量発行処理をいかにして高速化するか
SQL大量発行処理をいかにして高速化するか
Shogo Wakayama
 
At least onceってぶっちゃけ問題の先送りだったよね #kafkajp
At least onceってぶっちゃけ問題の先送りだったよね #kafkajpAt least onceってぶっちゃけ問題の先送りだったよね #kafkajp
At least onceってぶっちゃけ問題の先送りだったよね #kafkajp
Yahoo!デベロッパーネットワーク
 
Grafana LokiではじめるKubernetesロギングハンズオン(NTT Tech Conference #4 ハンズオン資料)
Grafana LokiではじめるKubernetesロギングハンズオン(NTT Tech Conference #4 ハンズオン資料)Grafana LokiではじめるKubernetesロギングハンズオン(NTT Tech Conference #4 ハンズオン資料)
Grafana LokiではじめるKubernetesロギングハンズオン(NTT Tech Conference #4 ハンズオン資料)
NTT DATA Technology & Innovation
 
シリコンバレーの「何が」凄いのか
シリコンバレーの「何が」凄いのかシリコンバレーの「何が」凄いのか
シリコンバレーの「何が」凄いのか
Atsushi Nakada
 
忙しい人の5分で分かるDocker 2017年春Ver
忙しい人の5分で分かるDocker 2017年春Ver忙しい人の5分で分かるDocker 2017年春Ver
忙しい人の5分で分かるDocker 2017年春Ver
Masahito Zembutsu
 
【BS4】時は来たれり。今こそ .NET 6 へ移行する時。
【BS4】時は来たれり。今こそ .NET 6 へ移行する時。 【BS4】時は来たれり。今こそ .NET 6 へ移行する時。
【BS4】時は来たれり。今こそ .NET 6 へ移行する時。
日本マイクロソフト株式会社
 

What's hot (20)

コンテナ未経験新人が学ぶコンテナ技術入門
コンテナ未経験新人が学ぶコンテナ技術入門コンテナ未経験新人が学ぶコンテナ技術入門
コンテナ未経験新人が学ぶコンテナ技術入門
 
ぱぱっと理解するSpring Cloudの基本
ぱぱっと理解するSpring Cloudの基本ぱぱっと理解するSpring Cloudの基本
ぱぱっと理解するSpring Cloudの基本
 
大規模データ処理の定番OSS Hadoop / Spark 最新動向 - 2021秋 -(db tech showcase 2021 / ONLINE 発...
大規模データ処理の定番OSS Hadoop / Spark 最新動向 - 2021秋 -(db tech showcase 2021 / ONLINE 発...大規模データ処理の定番OSS Hadoop / Spark 最新動向 - 2021秋 -(db tech showcase 2021 / ONLINE 発...
大規模データ処理の定番OSS Hadoop / Spark 最新動向 - 2021秋 -(db tech showcase 2021 / ONLINE 発...
 
Azure Digital Twins 最新事例紹介 ( IoTビジネス共創ラボ 第16回勉強会 )
Azure Digital Twins 最新事例紹介 ( IoTビジネス共創ラボ 第16回勉強会 )Azure Digital Twins 最新事例紹介 ( IoTビジネス共創ラボ 第16回勉強会 )
Azure Digital Twins 最新事例紹介 ( IoTビジネス共創ラボ 第16回勉強会 )
 
gRPC入門
gRPC入門gRPC入門
gRPC入門
 
【BS13】チーム開発がこんなにも快適に!コーディングもデバッグも GitHub 上で。 GitHub Codespaces で叶えられるシームレスな開発
【BS13】チーム開発がこんなにも快適に!コーディングもデバッグも GitHub 上で。 GitHub Codespaces で叶えられるシームレスな開発【BS13】チーム開発がこんなにも快適に!コーディングもデバッグも GitHub 上で。 GitHub Codespaces で叶えられるシームレスな開発
【BS13】チーム開発がこんなにも快適に!コーディングもデバッグも GitHub 上で。 GitHub Codespaces で叶えられるシームレスな開発
 
ストリーム処理を支えるキューイングシステムの選び方
ストリーム処理を支えるキューイングシステムの選び方ストリーム処理を支えるキューイングシステムの選び方
ストリーム処理を支えるキューイングシステムの選び方
 
ゼロから作るKubernetesによるJupyter as a Service ー Kubernetes Meetup Tokyo #43
ゼロから作るKubernetesによるJupyter as a Service ー Kubernetes Meetup Tokyo #43ゼロから作るKubernetesによるJupyter as a Service ー Kubernetes Meetup Tokyo #43
ゼロから作るKubernetesによるJupyter as a Service ー Kubernetes Meetup Tokyo #43
 
Redisの特徴と活用方法について
Redisの特徴と活用方法についてRedisの特徴と活用方法について
Redisの特徴と活用方法について
 
PostgreSQLをKubernetes上で活用するためのOperator紹介!(Cloud Native Database Meetup #3 発表資料)
PostgreSQLをKubernetes上で活用するためのOperator紹介!(Cloud Native Database Meetup #3 発表資料)PostgreSQLをKubernetes上で活用するためのOperator紹介!(Cloud Native Database Meetup #3 発表資料)
PostgreSQLをKubernetes上で活用するためのOperator紹介!(Cloud Native Database Meetup #3 発表資料)
 
マイクロサービス 4つの分割アプローチ
マイクロサービス 4つの分割アプローチマイクロサービス 4つの分割アプローチ
マイクロサービス 4つの分割アプローチ
 
Dockerからcontainerdへの移行
Dockerからcontainerdへの移行Dockerからcontainerdへの移行
Dockerからcontainerdへの移行
 
[Cloud OnAir] BigQuery の仕組みからベストプラクティスまでのご紹介 2018年9月6日 放送
[Cloud OnAir] BigQuery の仕組みからベストプラクティスまでのご紹介 2018年9月6日 放送[Cloud OnAir] BigQuery の仕組みからベストプラクティスまでのご紹介 2018年9月6日 放送
[Cloud OnAir] BigQuery の仕組みからベストプラクティスまでのご紹介 2018年9月6日 放送
 
フロー効率性とリソース効率性について #xpjug
フロー効率性とリソース効率性について #xpjugフロー効率性とリソース効率性について #xpjug
フロー効率性とリソース効率性について #xpjug
 
SQL大量発行処理をいかにして高速化するか
SQL大量発行処理をいかにして高速化するかSQL大量発行処理をいかにして高速化するか
SQL大量発行処理をいかにして高速化するか
 
At least onceってぶっちゃけ問題の先送りだったよね #kafkajp
At least onceってぶっちゃけ問題の先送りだったよね #kafkajpAt least onceってぶっちゃけ問題の先送りだったよね #kafkajp
At least onceってぶっちゃけ問題の先送りだったよね #kafkajp
 
Grafana LokiではじめるKubernetesロギングハンズオン(NTT Tech Conference #4 ハンズオン資料)
Grafana LokiではじめるKubernetesロギングハンズオン(NTT Tech Conference #4 ハンズオン資料)Grafana LokiではじめるKubernetesロギングハンズオン(NTT Tech Conference #4 ハンズオン資料)
Grafana LokiではじめるKubernetesロギングハンズオン(NTT Tech Conference #4 ハンズオン資料)
 
シリコンバレーの「何が」凄いのか
シリコンバレーの「何が」凄いのかシリコンバレーの「何が」凄いのか
シリコンバレーの「何が」凄いのか
 
忙しい人の5分で分かるDocker 2017年春Ver
忙しい人の5分で分かるDocker 2017年春Ver忙しい人の5分で分かるDocker 2017年春Ver
忙しい人の5分で分かるDocker 2017年春Ver
 
【BS4】時は来たれり。今こそ .NET 6 へ移行する時。
【BS4】時は来たれり。今こそ .NET 6 へ移行する時。 【BS4】時は来たれり。今こそ .NET 6 へ移行する時。
【BS4】時は来たれり。今こそ .NET 6 へ移行する時。
 

Similar to インフラ領域の技術スタックや業務内容について紹介

レガシー Web からの脱却 ~ 開発者が次に目指すべき Web アプリの姿とは?
レガシー Web からの脱却 ~ 開発者が次に目指すべき Web アプリの姿とは?レガシー Web からの脱却 ~ 開発者が次に目指すべき Web アプリの姿とは?
レガシー Web からの脱却 ~ 開発者が次に目指すべき Web アプリの姿とは?
Akira Inoue
 
Qiita x Microsoft - 機械学習セミナー Microsoft AI Platform
Qiita x Microsoft - 機械学習セミナー Microsoft AI PlatformQiita x Microsoft - 機械学習セミナー Microsoft AI Platform
Qiita x Microsoft - 機械学習セミナー Microsoft AI Platform
Daiyu Hatakeyama
 
Open Hybrid Cloudを検討すべき理由.pdf
Open Hybrid Cloudを検討すべき理由.pdfOpen Hybrid Cloudを検討すべき理由.pdf
Open Hybrid Cloudを検討すべき理由.pdf
Masahiko Umeno
 
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
Daiyu Hatakeyama
 
機械学習応用システムのアーキテクチャ・デザイパターン(2020-07 ドラフトバージョン))
機械学習応用システムのアーキテクチャ・デザイパターン(2020-07 ドラフトバージョン))機械学習応用システムのアーキテクチャ・デザイパターン(2020-07 ドラフトバージョン))
機械学習応用システムのアーキテクチャ・デザイパターン(2020-07 ドラフトバージョン))
HironoriTAKEUCHI1
 
Tier Ⅳ Tech Meetup #2 - 自動運転を作るのはCloudシステムの集合体?? 活用技術を大解剖 -
Tier Ⅳ Tech Meetup #2 - 自動運転を作るのはCloudシステムの集合体?? 活用技術を大解剖 -Tier Ⅳ Tech Meetup #2 - 自動運転を作るのはCloudシステムの集合体?? 活用技術を大解剖 -
Tier Ⅳ Tech Meetup #2 - 自動運転を作るのはCloudシステムの集合体?? 活用技術を大解剖 -
Tier_IV
 
くまあず Nchikita 140628-2
くまあず Nchikita 140628-2くまあず Nchikita 140628-2
くまあず Nchikita 140628-2
wintechq
 
【CNDT2022】SIerで実践!クラウドネイティブを普及させる取り組み
【CNDT2022】SIerで実践!クラウドネイティブを普及させる取り組み【CNDT2022】SIerで実践!クラウドネイティブを普及させる取り組み
【CNDT2022】SIerで実践!クラウドネイティブを普及させる取り組み
Yuta Shimada
 
株式会社waja 安藤様 登壇資料
株式会社waja 安藤様 登壇資料株式会社waja 安藤様 登壇資料
株式会社waja 安藤様 登壇資料
leverages_event
 
20151029 ヒカラボ講演資料
20151029 ヒカラボ講演資料20151029 ヒカラボ講演資料
20151029 ヒカラボ講演資料
Daisuke Ando
 
Web制作会社様向け 知って得するMicrosoft Azureの概要と使い方!
Web制作会社様向け 知って得するMicrosoft Azureの概要と使い方!Web制作会社様向け 知って得するMicrosoft Azureの概要と使い方!
Web制作会社様向け 知って得するMicrosoft Azureの概要と使い方!
Azure 相談センター
 
Web制作会社様向け 知って得するMicrosoft Azureの概要と使い方!
Web制作会社様向け 知って得するMicrosoft Azureの概要と使い方!Web制作会社様向け 知って得するMicrosoft Azureの概要と使い方!
Web制作会社様向け 知って得するMicrosoft Azureの概要と使い方!
Daisuke Masubuchi
 
OSC 2012 Microsoft Session [マイクロソフトの魅せるセンサー×クラウド技術]
OSC 2012 Microsoft Session [マイクロソフトの魅せるセンサー×クラウド技術]OSC 2012 Microsoft Session [マイクロソフトの魅せるセンサー×クラウド技術]
OSC 2012 Microsoft Session [マイクロソフトの魅せるセンサー×クラウド技術]
Aya Tokura
 
アーキテクトが主導するコンテナ/マイクロサービス/サーバーレスのセキュリティ
アーキテクトが主導するコンテナ/マイクロサービス/サーバーレスのセキュリティアーキテクトが主導するコンテナ/マイクロサービス/サーバーレスのセキュリティ
アーキテクトが主導するコンテナ/マイクロサービス/サーバーレスのセキュリティ
Eiji Sasahara, Ph.D., MBA 笹原英司
 
ToolChainを使った次世代DevOps環境の作り方
ToolChainを使った次世代DevOps環境の作り方ToolChainを使った次世代DevOps環境の作り方
ToolChainを使った次世代DevOps環境の作り方
Harada Kazuki
 
Iot algyan jhirono 20190111
Iot algyan jhirono 20190111Iot algyan jhirono 20190111
Iot algyan jhirono 20190111
Hirono Jumpei
 
de:code2018 登壇資料
de:code2018 登壇資料de:code2018 登壇資料
de:code2018 登壇資料
Hiroshi Senga
 
3Dリッチコンテンツビジネス活用のご提案ver3.1
3Dリッチコンテンツビジネス活用のご提案ver3.13Dリッチコンテンツビジネス活用のご提案ver3.1
3Dリッチコンテンツビジネス活用のご提案ver3.1
ITDORAKU
 
Visual Studio 2019 GA ! ~ 最新情報 & これからの開発スタイル
Visual Studio 2019 GA ! ~ 最新情報 & これからの開発スタイルVisual Studio 2019 GA ! ~ 最新情報 & これからの開発スタイル
Visual Studio 2019 GA ! ~ 最新情報 & これからの開発スタイル
Akira Inoue
 
CloudConductorの特長と最新動向(OSSユーザーのための勉強会#7)
CloudConductorの特長と最新動向(OSSユーザーのための勉強会#7)CloudConductorの特長と最新動向(OSSユーザーのための勉強会#7)
CloudConductorの特長と最新動向(OSSユーザーのための勉強会#7)
cloudconductor
 

Similar to インフラ領域の技術スタックや業務内容について紹介 (20)

レガシー Web からの脱却 ~ 開発者が次に目指すべき Web アプリの姿とは?
レガシー Web からの脱却 ~ 開発者が次に目指すべき Web アプリの姿とは?レガシー Web からの脱却 ~ 開発者が次に目指すべき Web アプリの姿とは?
レガシー Web からの脱却 ~ 開発者が次に目指すべき Web アプリの姿とは?
 
Qiita x Microsoft - 機械学習セミナー Microsoft AI Platform
Qiita x Microsoft - 機械学習セミナー Microsoft AI PlatformQiita x Microsoft - 機械学習セミナー Microsoft AI Platform
Qiita x Microsoft - 機械学習セミナー Microsoft AI Platform
 
Open Hybrid Cloudを検討すべき理由.pdf
Open Hybrid Cloudを検討すべき理由.pdfOpen Hybrid Cloudを検討すべき理由.pdf
Open Hybrid Cloudを検討すべき理由.pdf
 
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
デジタルトランスフォーメーション時代を生き抜くためのビジネス力 ~ AI、Advanced Analytics の使いどころ ~
 
機械学習応用システムのアーキテクチャ・デザイパターン(2020-07 ドラフトバージョン))
機械学習応用システムのアーキテクチャ・デザイパターン(2020-07 ドラフトバージョン))機械学習応用システムのアーキテクチャ・デザイパターン(2020-07 ドラフトバージョン))
機械学習応用システムのアーキテクチャ・デザイパターン(2020-07 ドラフトバージョン))
 
Tier Ⅳ Tech Meetup #2 - 自動運転を作るのはCloudシステムの集合体?? 活用技術を大解剖 -
Tier Ⅳ Tech Meetup #2 - 自動運転を作るのはCloudシステムの集合体?? 活用技術を大解剖 -Tier Ⅳ Tech Meetup #2 - 自動運転を作るのはCloudシステムの集合体?? 活用技術を大解剖 -
Tier Ⅳ Tech Meetup #2 - 自動運転を作るのはCloudシステムの集合体?? 活用技術を大解剖 -
 
くまあず Nchikita 140628-2
くまあず Nchikita 140628-2くまあず Nchikita 140628-2
くまあず Nchikita 140628-2
 
【CNDT2022】SIerで実践!クラウドネイティブを普及させる取り組み
【CNDT2022】SIerで実践!クラウドネイティブを普及させる取り組み【CNDT2022】SIerで実践!クラウドネイティブを普及させる取り組み
【CNDT2022】SIerで実践!クラウドネイティブを普及させる取り組み
 
株式会社waja 安藤様 登壇資料
株式会社waja 安藤様 登壇資料株式会社waja 安藤様 登壇資料
株式会社waja 安藤様 登壇資料
 
20151029 ヒカラボ講演資料
20151029 ヒカラボ講演資料20151029 ヒカラボ講演資料
20151029 ヒカラボ講演資料
 
Web制作会社様向け 知って得するMicrosoft Azureの概要と使い方!
Web制作会社様向け 知って得するMicrosoft Azureの概要と使い方!Web制作会社様向け 知って得するMicrosoft Azureの概要と使い方!
Web制作会社様向け 知って得するMicrosoft Azureの概要と使い方!
 
Web制作会社様向け 知って得するMicrosoft Azureの概要と使い方!
Web制作会社様向け 知って得するMicrosoft Azureの概要と使い方!Web制作会社様向け 知って得するMicrosoft Azureの概要と使い方!
Web制作会社様向け 知って得するMicrosoft Azureの概要と使い方!
 
OSC 2012 Microsoft Session [マイクロソフトの魅せるセンサー×クラウド技術]
OSC 2012 Microsoft Session [マイクロソフトの魅せるセンサー×クラウド技術]OSC 2012 Microsoft Session [マイクロソフトの魅せるセンサー×クラウド技術]
OSC 2012 Microsoft Session [マイクロソフトの魅せるセンサー×クラウド技術]
 
アーキテクトが主導するコンテナ/マイクロサービス/サーバーレスのセキュリティ
アーキテクトが主導するコンテナ/マイクロサービス/サーバーレスのセキュリティアーキテクトが主導するコンテナ/マイクロサービス/サーバーレスのセキュリティ
アーキテクトが主導するコンテナ/マイクロサービス/サーバーレスのセキュリティ
 
ToolChainを使った次世代DevOps環境の作り方
ToolChainを使った次世代DevOps環境の作り方ToolChainを使った次世代DevOps環境の作り方
ToolChainを使った次世代DevOps環境の作り方
 
Iot algyan jhirono 20190111
Iot algyan jhirono 20190111Iot algyan jhirono 20190111
Iot algyan jhirono 20190111
 
de:code2018 登壇資料
de:code2018 登壇資料de:code2018 登壇資料
de:code2018 登壇資料
 
3Dリッチコンテンツビジネス活用のご提案ver3.1
3Dリッチコンテンツビジネス活用のご提案ver3.13Dリッチコンテンツビジネス活用のご提案ver3.1
3Dリッチコンテンツビジネス活用のご提案ver3.1
 
Visual Studio 2019 GA ! ~ 最新情報 & これからの開発スタイル
Visual Studio 2019 GA ! ~ 最新情報 & これからの開発スタイルVisual Studio 2019 GA ! ~ 最新情報 & これからの開発スタイル
Visual Studio 2019 GA ! ~ 最新情報 & これからの開発スタイル
 
CloudConductorの特長と最新動向(OSSユーザーのための勉強会#7)
CloudConductorの特長と最新動向(OSSユーザーのための勉強会#7)CloudConductorの特長と最新動向(OSSユーザーのための勉強会#7)
CloudConductorの特長と最新動向(OSSユーザーのための勉強会#7)
 

More from MicroAd, Inc.(Engineer)

20240229 DEIM2024 【技術報告】広告配信における安定して拡張性のある大量データ処理基盤の必要性と活用
20240229 DEIM2024 【技術報告】広告配信における安定して拡張性のある大量データ処理基盤の必要性と活用20240229 DEIM2024 【技術報告】広告配信における安定して拡張性のある大量データ処理基盤の必要性と活用
20240229 DEIM2024 【技術報告】広告配信における安定して拡張性のある大量データ処理基盤の必要性と活用
MicroAd, Inc.(Engineer)
 
Kafka Connect:Iceberg Sink Connectorを使ってみる
Kafka Connect:Iceberg Sink Connectorを使ってみるKafka Connect:Iceberg Sink Connectorを使ってみる
Kafka Connect:Iceberg Sink Connectorを使ってみる
MicroAd, Inc.(Engineer)
 
Apache Kafkaでの大量データ処理がKubernetesで簡単にできて嬉しかった話
Apache Kafkaでの大量データ処理がKubernetesで簡単にできて嬉しかった話Apache Kafkaでの大量データ処理がKubernetesで簡単にできて嬉しかった話
Apache Kafkaでの大量データ処理がKubernetesで簡単にできて嬉しかった話
MicroAd, Inc.(Engineer)
 
Chromeの3rd Party Cookie廃止とインターネット広告への影響
Chromeの3rd Party Cookie廃止とインターネット広告への影響Chromeの3rd Party Cookie廃止とインターネット広告への影響
Chromeの3rd Party Cookie廃止とインターネット広告への影響
MicroAd, Inc.(Engineer)
 
ベアメタルで実現するSpark&Trino on K8sなデータ基盤
ベアメタルで実現するSpark&Trino on K8sなデータ基盤ベアメタルで実現するSpark&Trino on K8sなデータ基盤
ベアメタルで実現するSpark&Trino on K8sなデータ基盤
MicroAd, Inc.(Engineer)
 
DDD&Scalaで作られたプロダクトはその後どうなったか?(Current state of products made with DDD & Scala)
DDD&Scalaで作られたプロダクトはその後どうなったか?(Current state of products made with DDD & Scala)DDD&Scalaで作られたプロダクトはその後どうなったか?(Current state of products made with DDD & Scala)
DDD&Scalaで作られたプロダクトはその後どうなったか?(Current state of products made with DDD & Scala)
MicroAd, Inc.(Engineer)
 
InternetWeek2022 - インターネット広告の羅針盤
InternetWeek2022 - インターネット広告の羅針盤InternetWeek2022 - インターネット広告の羅針盤
InternetWeek2022 - インターネット広告の羅針盤
MicroAd, Inc.(Engineer)
 
マイクロアドにおけるデータストアの使い分け
マイクロアドにおけるデータストアの使い分けマイクロアドにおけるデータストアの使い分け
マイクロアドにおけるデータストアの使い分け
MicroAd, Inc.(Engineer)
 
データセンターネットワークの構成について
データセンターネットワークの構成についてデータセンターネットワークの構成について
データセンターネットワークの構成について
MicroAd, Inc.(Engineer)
 
RTBにおける機械学習の活用事例
RTBにおける機械学習の活用事例RTBにおける機械学習の活用事例
RTBにおける機械学習の活用事例
MicroAd, Inc.(Engineer)
 
アドテクを支える基盤 〜10Tバイト/日のビッグデータを処理する〜
アドテクを支える基盤 〜10Tバイト/日のビッグデータを処理する〜アドテクを支える基盤 〜10Tバイト/日のビッグデータを処理する〜
アドテクを支える基盤 〜10Tバイト/日のビッグデータを処理する〜
MicroAd, Inc.(Engineer)
 
アドテクを支える技術 〜1日40億リクエストを捌くには〜
アドテクを支える技術 〜1日40億リクエストを捌くには〜アドテクを支える技術 〜1日40億リクエストを捌くには〜
アドテクを支える技術 〜1日40億リクエストを捌くには〜
MicroAd, Inc.(Engineer)
 
アドテクに機械学習を組み込むための推論の高速化
アドテクに機械学習を組み込むための推論の高速化アドテクに機械学習を組み込むための推論の高速化
アドテクに機械学習を組み込むための推論の高速化
MicroAd, Inc.(Engineer)
 
マイクロアドのデータ基盤について アドテクを支える基盤〜10Tバイト/日のビッグデータを処理する〜
マイクロアドのデータ基盤について アドテクを支える基盤〜10Tバイト/日のビッグデータを処理する〜マイクロアドのデータ基盤について アドテクを支える基盤〜10Tバイト/日のビッグデータを処理する〜
マイクロアドのデータ基盤について アドテクを支える基盤〜10Tバイト/日のビッグデータを処理する〜
MicroAd, Inc.(Engineer)
 
アドテクを支える技術 〜1日40億リクエストを捌くには〜
アドテクを支える技術 〜1日40億リクエストを捌くには〜アドテクを支える技術 〜1日40億リクエストを捌くには〜
アドテクを支える技術 〜1日40億リクエストを捌くには〜
MicroAd, Inc.(Engineer)
 
RTBにおける機械学習の活用事例
RTBにおける機械学習の活用事例RTBにおける機械学習の活用事例
RTBにおける機械学習の活用事例
MicroAd, Inc.(Engineer)
 
社内問い合わせ&申請・承認業務の 管理方法 - Jira Service Management 事例紹介 -
社内問い合わせ&申請・承認業務の 管理方法 - Jira Service Management 事例紹介 -社内問い合わせ&申請・承認業務の 管理方法 - Jira Service Management 事例紹介 -
社内問い合わせ&申請・承認業務の 管理方法 - Jira Service Management 事例紹介 -
MicroAd, Inc.(Engineer)
 
Digdagを用いた大規模広告配信ログデータの加工と運用
Digdagを用いた大規模広告配信ログデータの加工と運用Digdagを用いた大規模広告配信ログデータの加工と運用
Digdagを用いた大規模広告配信ログデータの加工と運用
MicroAd, Inc.(Engineer)
 
これから機械学習エンジニアとして戦っていくみなさんへ ~MLOps というマインドセットについて~
これから機械学習エンジニアとして戦っていくみなさんへ ~MLOps というマインドセットについて~これから機械学習エンジニアとして戦っていくみなさんへ ~MLOps というマインドセットについて~
これから機械学習エンジニアとして戦っていくみなさんへ ~MLOps というマインドセットについて~
MicroAd, Inc.(Engineer)
 
インターネット広告の概要とシステム設計
インターネット広告の概要とシステム設計インターネット広告の概要とシステム設計
インターネット広告の概要とシステム設計
MicroAd, Inc.(Engineer)
 

More from MicroAd, Inc.(Engineer) (20)

20240229 DEIM2024 【技術報告】広告配信における安定して拡張性のある大量データ処理基盤の必要性と活用
20240229 DEIM2024 【技術報告】広告配信における安定して拡張性のある大量データ処理基盤の必要性と活用20240229 DEIM2024 【技術報告】広告配信における安定して拡張性のある大量データ処理基盤の必要性と活用
20240229 DEIM2024 【技術報告】広告配信における安定して拡張性のある大量データ処理基盤の必要性と活用
 
Kafka Connect:Iceberg Sink Connectorを使ってみる
Kafka Connect:Iceberg Sink Connectorを使ってみるKafka Connect:Iceberg Sink Connectorを使ってみる
Kafka Connect:Iceberg Sink Connectorを使ってみる
 
Apache Kafkaでの大量データ処理がKubernetesで簡単にできて嬉しかった話
Apache Kafkaでの大量データ処理がKubernetesで簡単にできて嬉しかった話Apache Kafkaでの大量データ処理がKubernetesで簡単にできて嬉しかった話
Apache Kafkaでの大量データ処理がKubernetesで簡単にできて嬉しかった話
 
Chromeの3rd Party Cookie廃止とインターネット広告への影響
Chromeの3rd Party Cookie廃止とインターネット広告への影響Chromeの3rd Party Cookie廃止とインターネット広告への影響
Chromeの3rd Party Cookie廃止とインターネット広告への影響
 
ベアメタルで実現するSpark&Trino on K8sなデータ基盤
ベアメタルで実現するSpark&Trino on K8sなデータ基盤ベアメタルで実現するSpark&Trino on K8sなデータ基盤
ベアメタルで実現するSpark&Trino on K8sなデータ基盤
 
DDD&Scalaで作られたプロダクトはその後どうなったか?(Current state of products made with DDD & Scala)
DDD&Scalaで作られたプロダクトはその後どうなったか?(Current state of products made with DDD & Scala)DDD&Scalaで作られたプロダクトはその後どうなったか?(Current state of products made with DDD & Scala)
DDD&Scalaで作られたプロダクトはその後どうなったか?(Current state of products made with DDD & Scala)
 
InternetWeek2022 - インターネット広告の羅針盤
InternetWeek2022 - インターネット広告の羅針盤InternetWeek2022 - インターネット広告の羅針盤
InternetWeek2022 - インターネット広告の羅針盤
 
マイクロアドにおけるデータストアの使い分け
マイクロアドにおけるデータストアの使い分けマイクロアドにおけるデータストアの使い分け
マイクロアドにおけるデータストアの使い分け
 
データセンターネットワークの構成について
データセンターネットワークの構成についてデータセンターネットワークの構成について
データセンターネットワークの構成について
 
RTBにおける機械学習の活用事例
RTBにおける機械学習の活用事例RTBにおける機械学習の活用事例
RTBにおける機械学習の活用事例
 
アドテクを支える基盤 〜10Tバイト/日のビッグデータを処理する〜
アドテクを支える基盤 〜10Tバイト/日のビッグデータを処理する〜アドテクを支える基盤 〜10Tバイト/日のビッグデータを処理する〜
アドテクを支える基盤 〜10Tバイト/日のビッグデータを処理する〜
 
アドテクを支える技術 〜1日40億リクエストを捌くには〜
アドテクを支える技術 〜1日40億リクエストを捌くには〜アドテクを支える技術 〜1日40億リクエストを捌くには〜
アドテクを支える技術 〜1日40億リクエストを捌くには〜
 
アドテクに機械学習を組み込むための推論の高速化
アドテクに機械学習を組み込むための推論の高速化アドテクに機械学習を組み込むための推論の高速化
アドテクに機械学習を組み込むための推論の高速化
 
マイクロアドのデータ基盤について アドテクを支える基盤〜10Tバイト/日のビッグデータを処理する〜
マイクロアドのデータ基盤について アドテクを支える基盤〜10Tバイト/日のビッグデータを処理する〜マイクロアドのデータ基盤について アドテクを支える基盤〜10Tバイト/日のビッグデータを処理する〜
マイクロアドのデータ基盤について アドテクを支える基盤〜10Tバイト/日のビッグデータを処理する〜
 
アドテクを支える技術 〜1日40億リクエストを捌くには〜
アドテクを支える技術 〜1日40億リクエストを捌くには〜アドテクを支える技術 〜1日40億リクエストを捌くには〜
アドテクを支える技術 〜1日40億リクエストを捌くには〜
 
RTBにおける機械学習の活用事例
RTBにおける機械学習の活用事例RTBにおける機械学習の活用事例
RTBにおける機械学習の活用事例
 
社内問い合わせ&申請・承認業務の 管理方法 - Jira Service Management 事例紹介 -
社内問い合わせ&申請・承認業務の 管理方法 - Jira Service Management 事例紹介 -社内問い合わせ&申請・承認業務の 管理方法 - Jira Service Management 事例紹介 -
社内問い合わせ&申請・承認業務の 管理方法 - Jira Service Management 事例紹介 -
 
Digdagを用いた大規模広告配信ログデータの加工と運用
Digdagを用いた大規模広告配信ログデータの加工と運用Digdagを用いた大規模広告配信ログデータの加工と運用
Digdagを用いた大規模広告配信ログデータの加工と運用
 
これから機械学習エンジニアとして戦っていくみなさんへ ~MLOps というマインドセットについて~
これから機械学習エンジニアとして戦っていくみなさんへ ~MLOps というマインドセットについて~これから機械学習エンジニアとして戦っていくみなさんへ ~MLOps というマインドセットについて~
これから機械学習エンジニアとして戦っていくみなさんへ ~MLOps というマインドセットについて~
 
インターネット広告の概要とシステム設計
インターネット広告の概要とシステム設計インターネット広告の概要とシステム設計
インターネット広告の概要とシステム設計
 

Recently uploaded

Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit IntroductionMatsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo Lab
 
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit IntroductionMatsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo Lab
 
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
ARISE analytics
 
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ..."ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
たけおか しょうぞう
 
Developer IO 2024 Odyssey SAMを応用したコンピュータビジョンの話
Developer IO 2024 Odyssey  SAMを応用したコンピュータビジョンの話Developer IO 2024 Odyssey  SAMを応用したコンピュータビジョンの話
Developer IO 2024 Odyssey SAMを応用したコンピュータビジョンの話
Shinichi Hirauchi
 
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
Sony - Neural Network Libraries
 
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
Toru Tamaki
 
Kyndryl Developer Services のご紹介 2024年7月
Kyndryl Developer Services のご紹介  2024年7月Kyndryl Developer Services のご紹介  2024年7月
Kyndryl Developer Services のご紹介 2024年7月
Takayuki Nakayama
 
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit IntroductionMatsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo Lab
 
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
Sony - Neural Network Libraries
 
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
Toru Tamaki
 
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
chisatotakane
 
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログLoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
CRI Japan, Inc.
 
Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)
Natsutani Minoru
 
20240717_IoTLT_vol113_kitazaki_v1___.pdf
20240717_IoTLT_vol113_kitazaki_v1___.pdf20240717_IoTLT_vol113_kitazaki_v1___.pdf
20240717_IoTLT_vol113_kitazaki_v1___.pdf
Ayachika Kitazaki
 

Recently uploaded (15)

Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit IntroductionMatsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit Introduction
 
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit IntroductionMatsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit Introduction
 
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
 
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ..."ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
 
Developer IO 2024 Odyssey SAMを応用したコンピュータビジョンの話
Developer IO 2024 Odyssey  SAMを応用したコンピュータビジョンの話Developer IO 2024 Odyssey  SAMを応用したコンピュータビジョンの話
Developer IO 2024 Odyssey SAMを応用したコンピュータビジョンの話
 
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
 
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
 
Kyndryl Developer Services のご紹介 2024年7月
Kyndryl Developer Services のご紹介  2024年7月Kyndryl Developer Services のご紹介  2024年7月
Kyndryl Developer Services のご紹介 2024年7月
 
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit IntroductionMatsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit Introduction
 
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
 
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
 
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
 
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログLoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
 
Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)
 
20240717_IoTLT_vol113_kitazaki_v1___.pdf
20240717_IoTLT_vol113_kitazaki_v1___.pdf20240717_IoTLT_vol113_kitazaki_v1___.pdf
20240717_IoTLT_vol113_kitazaki_v1___.pdf
 

インフラ領域の技術スタックや業務内容について紹介