Diagram 1
Set BSet A
p
q
r 8
6
4
2
g(x)x
0
2
4
6
-2
k
0
4
CHAPTER 1 FUNCTIONS FORM 4
PAPER 1
1. Diagram 1 shows the relation between set A and set B.
State
(a) the range of the relation,
(b) the type of the relation.
[2 marks]
2.
Based on the above information, the relation between R and S is defined by the set of
ordered pairs { }),(),,(),,(),,( hbfbdaba .
State
(a) the images of a
(b) the object of b
[2 marks]
3. Diagram 2 shows the linear function .g
(a) State the value of k.
(b) Using the function notation, express g in terms of x.
[2 marks]
4.
Diagram 3 shows the function 0,: ≠
+
→ x
x
kx
xg where k is a constant.
Find the value of k.
1
2
1
3
x
kx +x
Diagram 2
Diagram 3
{ }
{ }jhfdbS
cbaR
,,,,
,,
=
=
CHAPTER 1 FUNCTIONS FORM 4
[2 marks]
5. Given the function 1: +→xxg , find the value of x such that 2)( =xg .
[2 marks]
6. Diagram 5 shows the graph of the function 62)( −= xxf for domain 40 ≤≤ x .
State
(a) the value of t,
(b) the range of f(x) corresponding to the given domain.
[3 marks]
7. Given the function 12)( += xxf and kxxg −= 3)( , find
(a) )2(f
(b) the value of k such that 7)2( −=gf
[3 marks]
8. The following information is about the function g and the composite function 2
g .
Find the value of a and b.
[3 marks]
9.
Given the function 0,
2
1
)( ≠= x
x
xf and the composite function xxfg 4)( = .
Find
(a) )(xg
(b) the value of x when 2)( =xgf
[4 marks]
10
.
The function h is defined as 3,
3
7
)( −≠
+
= x
x
xh .
Find
(a) )(1
xh−
(b) )2(1−
h
[3 marks]
2
x
4t0
6
f(x)
Diagram 5
bxaxg −→: , where a and b are constant and b > 0
89:2
+→ xxg
CHAPTER 1 FUNCTIONS FORM 4
11
.
Diagram 9 shows the function f maps x to y and the function g maps y to z.
Determine
(a) )1(1−
f
(b) )5(gf
[2 marks]
12
.
The following information refers to the function f and g.
Find )(1
xgf −
.
[3 marks]
13
.
Given the function hxxg −→3: and
2
1
:1
−→−
kxxg , where h and k are constants. Find
the value of h and of k.
[3marks]
14
.
Given the function 13)( += xxh and
3
)(
x
xg = . Find
(a) )7(1−
h
(b) )(1
xgh−
[4 marks]
15
.
Given the function 23: −→ xxf and 32: 2
−→ xxg .
Find
(a) )4(1−
f
(b) )(xgf
[4 marks]
ANSWER (PAPER 1)
3
gf
zyx
4
1
5
3:
15:
−→
+→
xxg
xxf
CHAPTER 1 FUNCTIONS FORM 4
1 (a) { }8,4 1
(b) many-to-one 1
2 (a) b , d 1
(b) a 1
3 (a) 2=k 1
(b) 2)( −= xxg 1
4
3
2
1
2
1
2
1
=
+
=





k
g
1
1=k 1
5 21 =+x or 2)1( =+− x 1
1=x 3−=x 1
6 (a) When 0)( =xf , 062 =−x 1
3=x
3=∴ t 1
(b) Range : 6)(0 ≤≤ xf 1
7 (a) (a) 5)2( =f 1
(b) (b) 7)5( −=g
7)5(3 −=−k 1
2=k 1
8 )()(2
bxabaxg −−= 1
xbaba 2
+−=
92
=b and 8=− aba 1
3=b 4−=a 1
9 (a)
x
xg
4
)(2
1
=
1
0,
8
1
)( ≠= x
x
xg
1
(b)
2
2
1
8
1
=






x
1
4
CHAPTER 1 FUNCTIONS FORM 4
8
1
=x 1
10 (a) 3
7
−=
y
x 1
3
7
)(1
−=−
x
xh , 0≠x
1
(b)
2
1
)2(1
=−
h
1
11 (a) 5 1
(b) 4 1
12
5
1−
=
y
x
1
5
1)3(
)(1 −−
=− x
xgf
1
5
4−
=
x 1
13.
3
hy
x
+
=
1
3
1
=k
1
2
3
−=h
1
14.
(a) 3
1−
=
y
x
1
2
3
17
)7(1
=
−
=−
h
1
(b)
3
3
1
)(1
−
=−
x
xgh
1
9
1−
=
x 1
15 (a)
3
2+
=
y
x
1
2)4(1
=−
f 1
(b) 3)23(2)( 2
−−= xxgf 1
52418 2
+−= xx
1
5
CHAPTER 1 FUNCTIONS FORM 4
8
1
=x 1
10 (a) 3
7
−=
y
x 1
3
7
)(1
−=−
x
xh , 0≠x
1
(b)
2
1
)2(1
=−
h
1
11 (a) 5 1
(b) 4 1
12
5
1−
=
y
x
1
5
1)3(
)(1 −−
=− x
xgf
1
5
4−
=
x 1
13.
3
hy
x
+
=
1
3
1
=k
1
2
3
−=h
1
14.
(a) 3
1−
=
y
x
1
2
3
17
)7(1
=
−
=−
h
1
(b)
3
3
1
)(1
−
=−
x
xgh
1
9
1−
=
x 1
15 (a)
3
2+
=
y
x
1
2)4(1
=−
f 1
(b) 3)23(2)( 2
−−= xxgf 1
52418 2
+−= xx
1
5

Add math 1

  • 1.
    Diagram 1 Set BSetA p q r 8 6 4 2 g(x)x 0 2 4 6 -2 k 0 4 CHAPTER 1 FUNCTIONS FORM 4 PAPER 1 1. Diagram 1 shows the relation between set A and set B. State (a) the range of the relation, (b) the type of the relation. [2 marks] 2. Based on the above information, the relation between R and S is defined by the set of ordered pairs { }),(),,(),,(),,( hbfbdaba . State (a) the images of a (b) the object of b [2 marks] 3. Diagram 2 shows the linear function .g (a) State the value of k. (b) Using the function notation, express g in terms of x. [2 marks] 4. Diagram 3 shows the function 0,: ≠ + → x x kx xg where k is a constant. Find the value of k. 1 2 1 3 x kx +x Diagram 2 Diagram 3 { } { }jhfdbS cbaR ,,,, ,, = =
  • 2.
    CHAPTER 1 FUNCTIONSFORM 4 [2 marks] 5. Given the function 1: +→xxg , find the value of x such that 2)( =xg . [2 marks] 6. Diagram 5 shows the graph of the function 62)( −= xxf for domain 40 ≤≤ x . State (a) the value of t, (b) the range of f(x) corresponding to the given domain. [3 marks] 7. Given the function 12)( += xxf and kxxg −= 3)( , find (a) )2(f (b) the value of k such that 7)2( −=gf [3 marks] 8. The following information is about the function g and the composite function 2 g . Find the value of a and b. [3 marks] 9. Given the function 0, 2 1 )( ≠= x x xf and the composite function xxfg 4)( = . Find (a) )(xg (b) the value of x when 2)( =xgf [4 marks] 10 . The function h is defined as 3, 3 7 )( −≠ + = x x xh . Find (a) )(1 xh− (b) )2(1− h [3 marks] 2 x 4t0 6 f(x) Diagram 5 bxaxg −→: , where a and b are constant and b > 0 89:2 +→ xxg
  • 3.
    CHAPTER 1 FUNCTIONSFORM 4 11 . Diagram 9 shows the function f maps x to y and the function g maps y to z. Determine (a) )1(1− f (b) )5(gf [2 marks] 12 . The following information refers to the function f and g. Find )(1 xgf − . [3 marks] 13 . Given the function hxxg −→3: and 2 1 :1 −→− kxxg , where h and k are constants. Find the value of h and of k. [3marks] 14 . Given the function 13)( += xxh and 3 )( x xg = . Find (a) )7(1− h (b) )(1 xgh− [4 marks] 15 . Given the function 23: −→ xxf and 32: 2 −→ xxg . Find (a) )4(1− f (b) )(xgf [4 marks] ANSWER (PAPER 1) 3 gf zyx 4 1 5 3: 15: −→ +→ xxg xxf
  • 4.
    CHAPTER 1 FUNCTIONSFORM 4 1 (a) { }8,4 1 (b) many-to-one 1 2 (a) b , d 1 (b) a 1 3 (a) 2=k 1 (b) 2)( −= xxg 1 4 3 2 1 2 1 2 1 = + =      k g 1 1=k 1 5 21 =+x or 2)1( =+− x 1 1=x 3−=x 1 6 (a) When 0)( =xf , 062 =−x 1 3=x 3=∴ t 1 (b) Range : 6)(0 ≤≤ xf 1 7 (a) (a) 5)2( =f 1 (b) (b) 7)5( −=g 7)5(3 −=−k 1 2=k 1 8 )()(2 bxabaxg −−= 1 xbaba 2 +−= 92 =b and 8=− aba 1 3=b 4−=a 1 9 (a) x xg 4 )(2 1 = 1 0, 8 1 )( ≠= x x xg 1 (b) 2 2 1 8 1 =       x 1 4
  • 5.
    CHAPTER 1 FUNCTIONSFORM 4 8 1 =x 1 10 (a) 3 7 −= y x 1 3 7 )(1 −=− x xh , 0≠x 1 (b) 2 1 )2(1 =− h 1 11 (a) 5 1 (b) 4 1 12 5 1− = y x 1 5 1)3( )(1 −− =− x xgf 1 5 4− = x 1 13. 3 hy x + = 1 3 1 =k 1 2 3 −=h 1 14. (a) 3 1− = y x 1 2 3 17 )7(1 = − =− h 1 (b) 3 3 1 )(1 − =− x xgh 1 9 1− = x 1 15 (a) 3 2+ = y x 1 2)4(1 =− f 1 (b) 3)23(2)( 2 −−= xxgf 1 52418 2 +−= xx 1 5
  • 6.
    CHAPTER 1 FUNCTIONSFORM 4 8 1 =x 1 10 (a) 3 7 −= y x 1 3 7 )(1 −=− x xh , 0≠x 1 (b) 2 1 )2(1 =− h 1 11 (a) 5 1 (b) 4 1 12 5 1− = y x 1 5 1)3( )(1 −− =− x xgf 1 5 4− = x 1 13. 3 hy x + = 1 3 1 =k 1 2 3 −=h 1 14. (a) 3 1− = y x 1 2 3 17 )7(1 = − =− h 1 (b) 3 3 1 )(1 − =− x xgh 1 9 1− = x 1 15 (a) 3 2+ = y x 1 2)4(1 =− f 1 (b) 3)23(2)( 2 −−= xxgf 1 52418 2 +−= xx 1 5