This document discusses frameworks for processing big data that is distributed across geographic locations. It begins by introducing the challenges of geo-distributed big data processing and then describes several MapReduce-based frameworks like G-Hadoop and G-MR that can process pre-located geo-distributed data. It also covers Spark-based systems like Iridium and frameworks that partition data across geographic locations, such as KOALA grid-based systems. The document analyzes key aspects of geo-distributed big data processing systems like data distribution, task scheduling, and fault tolerance.