CSN08704
Data, Audio, Video and Images
http://asecuritysite.com/comms
Telecommunications
Prof Bill Buchanan
4. Analysis of Digital Pulses
CSN08704
Data, Audio, Video and Images
http://asecuritysite.com/comms
Telecommunications
Prof Bill Buchanan
4. Analysis of Digital Pulses: Frequency
and Time Domain
Signals
V t V ft( ) sin( ) 2 
Time domain Frequency domain
Vmax
f
T (1/f)
(1/T)
-V max
0
Vmax
AmplitudeAmplitude
Repetitive Signals
ω1 = 2.π.f1 where f1 is the fundamental frequency.
tNBtBtB
tNAtAtAAtf
N
N
11211
112110
sin...2sinsin
cos...2coscos)(




Repetitive Signals
• 1 1st, 0.4 2nd, 0.2 3rd.
• 0.4 4th, 0.05 5th.
• Link.
Repetitive Signals
Example
1
0.3
0.2
1/T 3/T 5/T f
T
0.9
-0.9
0
Time domain Frequency domain
V
f t t t t( ) sin( ) . sin( ) . sin( )    1 1 103 3 02 5
Even Symmetry
t
f t A A t A t A N tN( ) cos cos ... cos    0 1 1 2 1 12  
Odd Symmetry
t
f t B t B t B N tN( ) sin sin ... sin   1 1 2 1 12  
Half Symmetry
• No even harmonics ... just odd harmonics.
Time
CSN08704
Data, Audio, Video and Images
http://asecuritysite.com/comms
Telecommunications
Prof Bill Buchanan
4. Analysis of Digital Pulses: Pulse
Analysis
Repetitive Pulse Stream
t
+V
T
Duty Cycle
t
T

v t
V
T
V n f tn
n
n
( ) cos( ) 




2 1
1
V
V
T
Nx
x
n 
2 
.
sin
x
T


Sin(x)/x
0 10 20 30 40 50 60 70 80 90
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
V
V
T
Nx
x
n 
2 
.
sin
x
T


0
4 8 12 16 20 24 28
Harmonic
Amplitude
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
-0.05
-0.1
Worked Example
5 V
0 V
25 s
5 s
v t
Vt
T
Vt
T
N t
T
N t
T
N t
N
( ) .
sin( )
cos( ) 










2
1
1



V V
t
T
VDC pk  5
5
25
1.
Worked Example
f
T
kHz
f kHz
f kHz
f kHz
f kHz
1 6
2
3
4
5
1 1
25 10
40
80
120
160
200
 







5 V
0 V
25 s
5 s
Worked Example
5 V
0 V
25 s
5 s
V
Vt
T
N t
T
N t
T
N 
2
.
sin( )

V
N
N
N
N
N 
 

2 5 5
25
0 2
0 2
318
0 63
.
sin( . )
.
.
.sin( . )


V
N f (kHz) V amplitude (Volts)
1
2
3
4
5
40
80
120
160
200
1.87
1.51
1.01
0.47
0
5 V
0 V
25 s
5 s
v t t t t
t
i ( ) . sin( ) . sin( ) . sin( )
. sin( ) ......
   

1 187 151 2 101 3
0 47 4
1 1 1
1
  
+
t () V0 V1 V2 V3 
1 1.77 cost 1.51 cos2t 1.01 cos3t
45 1 1.32 0 –0.71 1.61
90 1 0 –1.51 0 –0.51
135 1 –1.32 0 0.71 0.39
180 1 –1.87 1.51 –1.01 –0.37
225 1 –1.32 0 0.71 0.39
270 1 0 –1.51 0 –0.51
315 1 1.32 0 –0.71 1.61
0,360 1 1.87 1.51 1.01 5.39
Worked Example
-1
0
1
2
3
4
5
6
0
45
90
135
180
225
270
315
360
Angle (deg.)
Voltage(V)
t () V0 V1 V2 V3 
1 1.77 cost 1.51 cos2t 1.01 cos3t
45 1 1.32 0 –0.71 1.61
90 1 0 –1.51 0 –0.51
135 1 –1.32 0 0.71 0.39
180 1 –1.87 1.51 –1.01 –0.37
225 1 –1.32 0 0.71 0.39
270 1 0 –1.51 0 –0.51
315 1 1.32 0 –0.71 1.61
0,360 1 1.87 1.51 1.01 5.39
5 V
0 V
25 s
5 s
Example
• Duty cycle=0.2.
• Link.
Example
• Duty cycle=0.3.
• Link.
CSN08704
Data, Audio, Video and Images
http://asecuritysite.com/comms
Telecommunications
Prof Bill Buchanan
4. Analysis of Digital Pulses

4. Analysis of Digital Pulses

  • 1.
    CSN08704 Data, Audio, Videoand Images http://asecuritysite.com/comms Telecommunications Prof Bill Buchanan 4. Analysis of Digital Pulses
  • 2.
    CSN08704 Data, Audio, Videoand Images http://asecuritysite.com/comms Telecommunications Prof Bill Buchanan 4. Analysis of Digital Pulses: Frequency and Time Domain
  • 3.
    Signals V t Vft( ) sin( ) 2  Time domain Frequency domain Vmax f T (1/f) (1/T) -V max 0 Vmax AmplitudeAmplitude
  • 4.
    Repetitive Signals ω1 =2.π.f1 where f1 is the fundamental frequency. tNBtBtB tNAtAtAAtf N N 11211 112110 sin...2sinsin cos...2coscos)(    
  • 5.
    Repetitive Signals • 11st, 0.4 2nd, 0.2 3rd. • 0.4 4th, 0.05 5th. • Link.
  • 6.
  • 7.
    Example 1 0.3 0.2 1/T 3/T 5/Tf T 0.9 -0.9 0 Time domain Frequency domain V f t t t t( ) sin( ) . sin( ) . sin( )    1 1 103 3 02 5
  • 8.
    Even Symmetry t f tA A t A t A N tN( ) cos cos ... cos    0 1 1 2 1 12  
  • 9.
    Odd Symmetry t f tB t B t B N tN( ) sin sin ... sin   1 1 2 1 12  
  • 10.
    Half Symmetry • Noeven harmonics ... just odd harmonics. Time
  • 11.
    CSN08704 Data, Audio, Videoand Images http://asecuritysite.com/comms Telecommunications Prof Bill Buchanan 4. Analysis of Digital Pulses: Pulse Analysis
  • 12.
    Repetitive Pulse Stream t +V T DutyCycle t T  v t V T V n f tn n n ( ) cos( )      2 1 1 V V T Nx x n  2  . sin x T  
  • 13.
    Sin(x)/x 0 10 2030 40 50 60 70 80 90 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 V V T Nx x n  2  . sin x T   0 4 8 12 16 20 24 28 Harmonic Amplitude 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 -0.05 -0.1
  • 14.
    Worked Example 5 V 0V 25 s 5 s v t Vt T Vt T N t T N t T N t N ( ) . sin( ) cos( )            2 1 1    V V t T VDC pk  5 5 25 1.
  • 15.
    Worked Example f T kHz f kHz fkHz f kHz f kHz 1 6 2 3 4 5 1 1 25 10 40 80 120 160 200          5 V 0 V 25 s 5 s
  • 16.
    Worked Example 5 V 0V 25 s 5 s V Vt T N t T N t T N  2 . sin( )  V N N N N N     2 5 5 25 0 2 0 2 318 0 63 . sin( . ) . . .sin( . )   V N f (kHz) V amplitude (Volts) 1 2 3 4 5 40 80 120 160 200 1.87 1.51 1.01 0.47 0
  • 17.
    5 V 0 V 25s 5 s v t t t t t i ( ) . sin( ) . sin( ) . sin( ) . sin( ) ......      1 187 151 2 101 3 0 47 4 1 1 1 1    + t () V0 V1 V2 V3  1 1.77 cost 1.51 cos2t 1.01 cos3t 45 1 1.32 0 –0.71 1.61 90 1 0 –1.51 0 –0.51 135 1 –1.32 0 0.71 0.39 180 1 –1.87 1.51 –1.01 –0.37 225 1 –1.32 0 0.71 0.39 270 1 0 –1.51 0 –0.51 315 1 1.32 0 –0.71 1.61 0,360 1 1.87 1.51 1.01 5.39
  • 18.
    Worked Example -1 0 1 2 3 4 5 6 0 45 90 135 180 225 270 315 360 Angle (deg.) Voltage(V) t() V0 V1 V2 V3  1 1.77 cost 1.51 cos2t 1.01 cos3t 45 1 1.32 0 –0.71 1.61 90 1 0 –1.51 0 –0.51 135 1 –1.32 0 0.71 0.39 180 1 –1.87 1.51 –1.01 –0.37 225 1 –1.32 0 0.71 0.39 270 1 0 –1.51 0 –0.51 315 1 1.32 0 –0.71 1.61 0,360 1 1.87 1.51 1.01 5.39 5 V 0 V 25 s 5 s
  • 19.
  • 20.
  • 21.
    CSN08704 Data, Audio, Videoand Images http://asecuritysite.com/comms Telecommunications Prof Bill Buchanan 4. Analysis of Digital Pulses