SlideShare a Scribd company logo
A Wideband Digital-to-Frequency
Converter with Built-In Mechanism
for Self-Interference Mitigation
I. Bashir, R. B. Staszewski, P. T. Balsara
September 19th, 2016
Digital Controlled Oscillator
• A switch capacitor LC tank in a Digitally Controlled Oscillator
(DCO) is too coarse for many narrow band FM modulation
schemes such as GMSK, 8PSK etc.
• The smallest possible capacitor size and therefore frequency
step size is limited by process technology.
[1]
Digital Controlled Oscillator
• The fine sub 1-kHz frequency resolution is achieved by dithering the
smallest capacitor with a high speed ΣΔ converter. This process shapes the
quantization noise as shown in the figure below. The size of the capacitor,
ΣΔ clock, and the ΣΔ order must be chosen carefully to ensure that the
out-of-band phase noise does not violate the standard specification.
[2]
OUT
DCO
DCO
Interface
Logic
CTBCTB
ΣΔ
÷N÷2
OSCP
OSCN
T
d
~
dTI
1-64
dTF
1-3
T
df
+
-
VDD
6 8
Problem Statement
The ΣΔ dithering process also
creates an interference signal at
DCO resonance frequency. This
signal creates injection pulling in
the DCO and can limit the
modulation accuracy of the
transmitter. The amplitude of the
injected signal and therefore the
extent of the parasitic FM due to
injection pulling is a function of the
fractional portion of the oscillator’s
tuning word dT
f. The graphical
representation of the interference
mechanism is shown in the figure.
dT
f =0.25
f
Magnitude
fo
Iinj
fΣΔ=fo/2
DCO LC Tank
Selectivity
dT
f =0.75
f
Magnitude
fo
Iinj
fΣΔ=fo/2
DCO LC Tank
Selectivity
(a)
(b)
(c)
dTF
dTF
dT
f =0.50
f
Magnitude
fo
Iinj
fΣΔ=fo/2
DCO LC Tank
Selectivity
dTF
dT
f
Iinj
fΣΔ=fo/2
dT
f
Iinj
fΣΔ=fo/4
(d)
dT
f
Iinj
fΣΔ=fo/8
N=fo/fΣΔ
[3]
Injection Pulling Mechanism
We use Adler’s equation to
determine DCO frequency as it
experiences injection pulling from
the ΣΔ interference. The process is
shown graphically in the figure. A
time varying dT
f creates a time
varying amplitude of the injected
signal. This introduces a time
varying phase shift in the LC tank ϕ
that produces a time varying ωout,
the frequency of the composite
oscillator vector, in order to Satisfy
Barkhausen Criteria for oscillation.
(a)
ωout
ϕ
dT
f
Iinj
t
dT
f
9400 9450 9500 9550 9600 9650 9700 9750 9800 9850 9900
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
9400 9450 9500 9550 9600 9650 9700 9750 9800 9850 9900
0
50
100
150
200
250
300
350
t
Iinj
9400 9450 9500 9550 9600 9650 9700 9750 9800 9850 9900
0
50
100
150
200
250
300
350
t
ϕ
9400 9450 9500 9550 9600 9650 9700 9750 9800 9850 9900
0
50
100
150
200
250
300
350
t
ωout
(b)
(f) (c)
(e)
(d)
Vosc
ItankIosc
Iinj
ϕ(t)
θ(t)
Iinj=Ir*Iosc
Itank
’
ϕ(t)’
’
Iinj
(g)
Modulation Error due
to Injection Pulling induced by ΣΔ
In the chart below, the modulation error is measured as frequency deviation
normalized to integer step size. The data suggests that the maximum error
can reach up-to 20% of the integer step size. This means that an integer step
size of 20 kHz will result in a maximum frequency error of 4 kHz.
Numerical Modeling
The ADPLL transfer function (TF) analysis in [2] is extended to include the
described impairment. The TF of the impairment Hcl,P has bandpass response
with respect to ωout. The integration operation from ωout to ϕN,P shapes the high-
pass TF into a bandpass TF.
(a)
+
-
Phase detector Normalized DCO
E
KDCO

Loop filter
s

ϕR
KDCO
fR
IIR
filter NTW
ϕ VE
n,TDC/2 OTW
ϕN,R N
fR
ϕN,V+ϕN,P
s
1
(b)
ϕN,R
Hcl,R
ϕN,V
Hcl,V
ϕN,TDC
Hcl,TDC
Hcl,P
+
Composite
ADPLL Phase
Noise Spectrum
fc
fc
fc
fc
ϕR,out ϕTDC,out
ϕV,out ϕP,out
ωout
Numerical Modeling
The model is simulated in time domain with a GMSK test vector
and the output spectrum is compared with measurement as shown
in the figure below. The distortion causes ‘spectral growth’ at
critical frequency offsets from the carrier such as 400 kHz.
10
5
10
6
10
7
-160
-150
-140
-130
-120
-110
-100
-90
-80
Frequency offset from carrier [Hz]
PhaseNoise[dBc/Hz]

R,out

TDC,out

V,out

P,out
Composite
1909.4 1909.6 1909.8 1910 1910.2
-80
-70
-60
-50
-40
-30
-20
-10
0
Frequency [MHz]
Power[dBm]/30kHz
Ideal
Simulated
Measured
Proposed Solution
An effective solution is to manipulate the phase of the aggressor such
that the impact of this impairment is minimized. This operation
essentially tunes the parameter θ in the equation below to ~0⁰. The
phase adjustment is performance by adjusting the delay of the ΣΔ
sampling clock as shown in the ‘Self-Interference Mitigation Circuit’ in
the figure below.
OUT
017 m
DCO
DCO
Interface
Logic
CTBCTB
ΣΔ
÷N÷2
OSCP
OSCN
Self-Interference
Mitigation Circuit
τd
T
d
~
dTI
1-64
dTF
1-3
T
df
+
-
VDD
6 8
[3]
Calibration & Compensation
The optimum delay code ‘m’
requires calibration and
compensation over frequency and
temperature. The calibration is
performed by measuring the
statistics of the phase error signal
of the ADPLL. As shown in Fig(b),
the worst delay setting is easily
distinguished and calibrated in a
particular frequency band. The
compensation adds an offset to
avoid the worst delay setting
using the equation:
Random data
CKV
m
DCO
ΣΔ
÷N ÷2τd
T
d 70.50
~

dTI
1-64
dTF
1-3
Phase
Detector
E[k]
Loop Filter
(PHE) (Filtered PHE)
Processor T
df
(a)
(b)
Calibration & Compensation
The slopes of compensation curves are verified over
frequency, temperature, and process. The measurement
set below is data on one part measured across GSM900
band and over temperature.
References
• http://www.researchgate.net/profile/Imran_Bashir5
– “A Wideband Digital-to-Frequency Converter with Built-In
Mechanism for Self-Interference Mitigation”
– “Mitigation of RF Oscillator Pulling through Adjustable Phase
Shifting”
• [1] C.-M. Hung, et. al, "A first RF digitally-controlled oscillator for SAW-
less TX in cellular systems," Proc. Of 2005 Symposium of VLSI Circuits, pp.
402-405, June 2005.
• [2] Staszewski RB (2006) All digital frequency synthesizer in deep submicron
CMOS. Wiley, New Jersey.
• [3] I. Bashir, R. B. Staszewski, O. E. Eliezer, and P. T. Balsara “A wideband
digital-to-frequency converter with built-In mechanism for self-interference
mitigation ,” Journal of Electronic Testing (JETTA): Theory and Applications;
Special Issue on Analog, Mixed-Signal and RF Testing, vol. 32, no. 4, pp.
437–445, Aug. 2016

More Related Content

What's hot

射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計
Simen Li
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
Simen Li
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Simen Li
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1]
Simen Li
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitance
Pei-Che Chang
 
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
Simen Li
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Simen Li
 
Introduction to Memory Effects
Introduction to Memory EffectsIntroduction to Memory Effects
Introduction to Memory Effects
Sohail Khanifar
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計
Simen Li
 
射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配
Simen Li
 
射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論
Simen Li
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Simen Li
 
B1 b3 b2_row_b20_b28a_and_b28b_tx_load_pull_matching_tuning
B1 b3 b2_row_b20_b28a_and_b28b_tx_load_pull_matching_tuningB1 b3 b2_row_b20_b28a_and_b28b_tx_load_pull_matching_tuning
B1 b3 b2_row_b20_b28a_and_b28b_tx_load_pull_matching_tuning
Pei-Che Chang
 
射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介
Simen Li
 
RF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line Theory
Simen Li
 
射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路
Simen Li
 
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsRF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
Simen Li
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith Chart
Simen Li
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power Amplifier
Simen Li
 

What's hot (20)

射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1]
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitance
 
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor AmplifierRF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
Introduction to Memory Effects
Introduction to Memory EffectsIntroduction to Memory Effects
Introduction to Memory Effects
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計
 
射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配
 
射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
 
B1 b3 b2_row_b20_b28a_and_b28b_tx_load_pull_matching_tuning
B1 b3 b2_row_b20_b28a_and_b28b_tx_load_pull_matching_tuningB1 b3 b2_row_b20_b28a_and_b28b_tx_load_pull_matching_tuning
B1 b3 b2_row_b20_b28a_and_b28b_tx_load_pull_matching_tuning
 
射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介
 
RF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line Theory
 
射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路
 
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsRF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith Chart
 
Link budget
Link budgetLink budget
Link budget
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power Amplifier
 

Similar to Bashir_09192016

2 n2222
2 n22222 n2222
2 n2222
jairote1974
 
Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...
Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...
Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...
AUTHELECTRONIC
 
2 n3904
2 n39042 n3904
2 n3904
yeksdech
 
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 NewOriginal P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
AUTHELECTRONIC
 
ACPL-K49T - Datasheet - Broadcom Corporation
ACPL-K49T - Datasheet - Broadcom CorporationACPL-K49T - Datasheet - Broadcom Corporation
ACPL-K49T - Datasheet - Broadcom Corporation
MarioFarias18
 
Original PNP Transistor MJE15033 MJE15033G 15033 8A 250V TO-220 New ON
Original PNP Transistor MJE15033 MJE15033G 15033 8A 250V TO-220 New ONOriginal PNP Transistor MJE15033 MJE15033G 15033 8A 250V TO-220 New ON
Original PNP Transistor MJE15033 MJE15033G 15033 8A 250V TO-220 New ON
AUTHELECTRONIC
 
Original Transistor NPN MJE15032 MJE15032G 15032 TO-220 8A 250V New ON
Original Transistor NPN MJE15032 MJE15032G 15032 TO-220 8A 250V New ONOriginal Transistor NPN MJE15032 MJE15032G 15032 TO-220 8A 250V New ON
Original Transistor NPN MJE15032 MJE15032G 15032 TO-220 8A 250V New ON
authelectroniccom
 
Optimization of Digitally Controlled Oscillator with Low Power
Optimization of Digitally Controlled Oscillator with Low PowerOptimization of Digitally Controlled Oscillator with Low Power
Optimization of Digitally Controlled Oscillator with Low Power
iosrjce
 
Thesis presentation
Thesis presentationThesis presentation
Thesis presentation
Jonathan Chik
 
Lect2 up390 (100329)
Lect2 up390 (100329)Lect2 up390 (100329)
Lect2 up390 (100329)aicdesign
 
Original Mosfet IRF9530N TO220 14A 100V New
Original Mosfet IRF9530N TO220 14A 100V NewOriginal Mosfet IRF9530N TO220 14A 100V New
Original Mosfet IRF9530N TO220 14A 100V New
AUTHELECTRONIC
 
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 NewOriginal N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
AUTHELECTRONIC
 
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 NewOriginal N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
AUTHELECTRONIC
 
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
authelectroniccom
 
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
AUTHELECTRONIC
 
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On SemiconductorOriginal PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
authelectroniccom
 

Similar to Bashir_09192016 (20)

Bashir_04142016
Bashir_04142016Bashir_04142016
Bashir_04142016
 
2 n2222
2 n22222 n2222
2 n2222
 
2 n5401
2 n54012 n5401
2 n5401
 
Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...
Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...
Original Mosfet IRF4905PBF IRF4905 IRF4905 4905 55V 74A TO-220 New Internatio...
 
2 n3904
2 n39042 n3904
2 n3904
 
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 NewOriginal P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
Original P Channel Mosfet IRF9Z34 IRF9Z34N IRF9Z34NPBF 9Z34 60V 18A TO 220 New
 
ACPL-K49T - Datasheet - Broadcom Corporation
ACPL-K49T - Datasheet - Broadcom CorporationACPL-K49T - Datasheet - Broadcom Corporation
ACPL-K49T - Datasheet - Broadcom Corporation
 
Ad7716
Ad7716Ad7716
Ad7716
 
Original PNP Transistor MJE15033 MJE15033G 15033 8A 250V TO-220 New ON
Original PNP Transistor MJE15033 MJE15033G 15033 8A 250V TO-220 New ONOriginal PNP Transistor MJE15033 MJE15033G 15033 8A 250V TO-220 New ON
Original PNP Transistor MJE15033 MJE15033G 15033 8A 250V TO-220 New ON
 
Original Transistor NPN MJE15032 MJE15032G 15032 TO-220 8A 250V New ON
Original Transistor NPN MJE15032 MJE15032G 15032 TO-220 8A 250V New ONOriginal Transistor NPN MJE15032 MJE15032G 15032 TO-220 8A 250V New ON
Original Transistor NPN MJE15032 MJE15032G 15032 TO-220 8A 250V New ON
 
Optimization of Digitally Controlled Oscillator with Low Power
Optimization of Digitally Controlled Oscillator with Low PowerOptimization of Digitally Controlled Oscillator with Low Power
Optimization of Digitally Controlled Oscillator with Low Power
 
Thesis presentation
Thesis presentationThesis presentation
Thesis presentation
 
Lect2 up390 (100329)
Lect2 up390 (100329)Lect2 up390 (100329)
Lect2 up390 (100329)
 
Original Mosfet IRF9530N TO220 14A 100V New
Original Mosfet IRF9530N TO220 14A 100V NewOriginal Mosfet IRF9530N TO220 14A 100V New
Original Mosfet IRF9530N TO220 14A 100V New
 
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 NewOriginal N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
 
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 NewOriginal N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
Original N-Channel Mosfet IRFI4019H-117P 4019 8A 150V TO-220 New
 
upload2
upload2upload2
upload2
 
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
 
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
 
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On SemiconductorOriginal PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
Original PNP Transistors PZT2907A PZT2907 2907 P2F SOT22-3 New On Semiconductor
 

More from imranbashir

RM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_FinalRM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_Finalimranbashir
 
Perforce Setup
Perforce SetupPerforce Setup
Perforce Setup
imranbashir
 
Edge Tx With Mitigation Of Osc Pulling
Edge Tx With Mitigation Of Osc PullingEdge Tx With Mitigation Of Osc Pulling
Edge Tx With Mitigation Of Osc Pulling
imranbashir
 
All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09
imranbashir
 
Amplifier Design
Amplifier DesignAmplifier Design
Amplifier Design
imranbashir
 
On Chip Calibration And Compensation Techniques (11 03 08)
On Chip Calibration And Compensation Techniques (11 03 08)On Chip Calibration And Compensation Techniques (11 03 08)
On Chip Calibration And Compensation Techniques (11 03 08)
imranbashir
 

More from imranbashir (6)

RM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_FinalRM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_Final
 
Perforce Setup
Perforce SetupPerforce Setup
Perforce Setup
 
Edge Tx With Mitigation Of Osc Pulling
Edge Tx With Mitigation Of Osc PullingEdge Tx With Mitigation Of Osc Pulling
Edge Tx With Mitigation Of Osc Pulling
 
All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09
 
Amplifier Design
Amplifier DesignAmplifier Design
Amplifier Design
 
On Chip Calibration And Compensation Techniques (11 03 08)
On Chip Calibration And Compensation Techniques (11 03 08)On Chip Calibration And Compensation Techniques (11 03 08)
On Chip Calibration And Compensation Techniques (11 03 08)
 

Bashir_09192016

  • 1. A Wideband Digital-to-Frequency Converter with Built-In Mechanism for Self-Interference Mitigation I. Bashir, R. B. Staszewski, P. T. Balsara September 19th, 2016
  • 2. Digital Controlled Oscillator • A switch capacitor LC tank in a Digitally Controlled Oscillator (DCO) is too coarse for many narrow band FM modulation schemes such as GMSK, 8PSK etc. • The smallest possible capacitor size and therefore frequency step size is limited by process technology. [1]
  • 3. Digital Controlled Oscillator • The fine sub 1-kHz frequency resolution is achieved by dithering the smallest capacitor with a high speed ΣΔ converter. This process shapes the quantization noise as shown in the figure below. The size of the capacitor, ΣΔ clock, and the ΣΔ order must be chosen carefully to ensure that the out-of-band phase noise does not violate the standard specification. [2] OUT DCO DCO Interface Logic CTBCTB ΣΔ ÷N÷2 OSCP OSCN T d ~ dTI 1-64 dTF 1-3 T df + - VDD 6 8
  • 4. Problem Statement The ΣΔ dithering process also creates an interference signal at DCO resonance frequency. This signal creates injection pulling in the DCO and can limit the modulation accuracy of the transmitter. The amplitude of the injected signal and therefore the extent of the parasitic FM due to injection pulling is a function of the fractional portion of the oscillator’s tuning word dT f. The graphical representation of the interference mechanism is shown in the figure. dT f =0.25 f Magnitude fo Iinj fΣΔ=fo/2 DCO LC Tank Selectivity dT f =0.75 f Magnitude fo Iinj fΣΔ=fo/2 DCO LC Tank Selectivity (a) (b) (c) dTF dTF dT f =0.50 f Magnitude fo Iinj fΣΔ=fo/2 DCO LC Tank Selectivity dTF dT f Iinj fΣΔ=fo/2 dT f Iinj fΣΔ=fo/4 (d) dT f Iinj fΣΔ=fo/8 N=fo/fΣΔ [3]
  • 5. Injection Pulling Mechanism We use Adler’s equation to determine DCO frequency as it experiences injection pulling from the ΣΔ interference. The process is shown graphically in the figure. A time varying dT f creates a time varying amplitude of the injected signal. This introduces a time varying phase shift in the LC tank ϕ that produces a time varying ωout, the frequency of the composite oscillator vector, in order to Satisfy Barkhausen Criteria for oscillation. (a) ωout ϕ dT f Iinj t dT f 9400 9450 9500 9550 9600 9650 9700 9750 9800 9850 9900 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 9400 9450 9500 9550 9600 9650 9700 9750 9800 9850 9900 0 50 100 150 200 250 300 350 t Iinj 9400 9450 9500 9550 9600 9650 9700 9750 9800 9850 9900 0 50 100 150 200 250 300 350 t ϕ 9400 9450 9500 9550 9600 9650 9700 9750 9800 9850 9900 0 50 100 150 200 250 300 350 t ωout (b) (f) (c) (e) (d) Vosc ItankIosc Iinj ϕ(t) θ(t) Iinj=Ir*Iosc Itank ’ ϕ(t)’ ’ Iinj (g)
  • 6. Modulation Error due to Injection Pulling induced by ΣΔ In the chart below, the modulation error is measured as frequency deviation normalized to integer step size. The data suggests that the maximum error can reach up-to 20% of the integer step size. This means that an integer step size of 20 kHz will result in a maximum frequency error of 4 kHz.
  • 7. Numerical Modeling The ADPLL transfer function (TF) analysis in [2] is extended to include the described impairment. The TF of the impairment Hcl,P has bandpass response with respect to ωout. The integration operation from ωout to ϕN,P shapes the high- pass TF into a bandpass TF. (a) + - Phase detector Normalized DCO E KDCO  Loop filter s  ϕR KDCO fR IIR filter NTW ϕ VE n,TDC/2 OTW ϕN,R N fR ϕN,V+ϕN,P s 1 (b) ϕN,R Hcl,R ϕN,V Hcl,V ϕN,TDC Hcl,TDC Hcl,P + Composite ADPLL Phase Noise Spectrum fc fc fc fc ϕR,out ϕTDC,out ϕV,out ϕP,out ωout
  • 8. Numerical Modeling The model is simulated in time domain with a GMSK test vector and the output spectrum is compared with measurement as shown in the figure below. The distortion causes ‘spectral growth’ at critical frequency offsets from the carrier such as 400 kHz. 10 5 10 6 10 7 -160 -150 -140 -130 -120 -110 -100 -90 -80 Frequency offset from carrier [Hz] PhaseNoise[dBc/Hz]  R,out  TDC,out  V,out  P,out Composite 1909.4 1909.6 1909.8 1910 1910.2 -80 -70 -60 -50 -40 -30 -20 -10 0 Frequency [MHz] Power[dBm]/30kHz Ideal Simulated Measured
  • 9. Proposed Solution An effective solution is to manipulate the phase of the aggressor such that the impact of this impairment is minimized. This operation essentially tunes the parameter θ in the equation below to ~0⁰. The phase adjustment is performance by adjusting the delay of the ΣΔ sampling clock as shown in the ‘Self-Interference Mitigation Circuit’ in the figure below. OUT 017 m DCO DCO Interface Logic CTBCTB ΣΔ ÷N÷2 OSCP OSCN Self-Interference Mitigation Circuit τd T d ~ dTI 1-64 dTF 1-3 T df + - VDD 6 8 [3]
  • 10. Calibration & Compensation The optimum delay code ‘m’ requires calibration and compensation over frequency and temperature. The calibration is performed by measuring the statistics of the phase error signal of the ADPLL. As shown in Fig(b), the worst delay setting is easily distinguished and calibrated in a particular frequency band. The compensation adds an offset to avoid the worst delay setting using the equation: Random data CKV m DCO ΣΔ ÷N ÷2τd T d 70.50 ~  dTI 1-64 dTF 1-3 Phase Detector E[k] Loop Filter (PHE) (Filtered PHE) Processor T df (a) (b)
  • 11. Calibration & Compensation The slopes of compensation curves are verified over frequency, temperature, and process. The measurement set below is data on one part measured across GSM900 band and over temperature.
  • 12. References • http://www.researchgate.net/profile/Imran_Bashir5 – “A Wideband Digital-to-Frequency Converter with Built-In Mechanism for Self-Interference Mitigation” – “Mitigation of RF Oscillator Pulling through Adjustable Phase Shifting” • [1] C.-M. Hung, et. al, "A first RF digitally-controlled oscillator for SAW- less TX in cellular systems," Proc. Of 2005 Symposium of VLSI Circuits, pp. 402-405, June 2005. • [2] Staszewski RB (2006) All digital frequency synthesizer in deep submicron CMOS. Wiley, New Jersey. • [3] I. Bashir, R. B. Staszewski, O. E. Eliezer, and P. T. Balsara “A wideband digital-to-frequency converter with built-In mechanism for self-interference mitigation ,” Journal of Electronic Testing (JETTA): Theory and Applications; Special Issue on Analog, Mixed-Signal and RF Testing, vol. 32, no. 4, pp. 437–445, Aug. 2016