SlideShare a Scribd company logo
ΠΛΗ30
ΕΝΟΤΗΤΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ
Μάθηµα 3.6:
Μη Κανονικές ΓλώσσεςΜη Κανονικές Γλώσσες
∆ηµήτρης Ψούνης
ΠΕΡΙΕΧΟΜΕΝΑ
Α. Σκοπός του Μαθήµατος
Β. Θεωρία
1. Το Λήµµα της Άντλησης
1. Ορισµός
2. Παραδείγµατα
2. Απόδειξη µε Ιδιότητες Κλειστότητας
2∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
2. Απόδειξη µε Ιδιότητες Κλειστότητας
1. Μεθοδολογία
2. Παραδείγµατα
3. Απόδειξη µε χρήση του ελάχιστου αριθµού καταστάσεων αυτοµάτου
1. Μεθοδολογία
2. Παραδείγµατα
Γ.Ασκήσεις
Α. Σκοπός του Μαθήµατος
Οι στόχοι του µαθήµατος είναι:
Επίπεδο Α
Το λήµµα της άντλησης για απόδειξη µη κανονικότητας.
Επίπεδο Β
Απόδειξη µη κανονικότητας µε το ελάχιστο πλήθος καταστάσεων.
3∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
Απόδειξη µη κανονικότητας µε το ελάχιστο πλήθος καταστάσεων.
Επίπεδο Γ
Απόδειξη µη κανονικότητας µε ιδιότητες κλειστότητας.
B. Θεωρία
1. Το Λήµµα της Άντλησης
1. Ορισµός
4∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
B. Θεωρία
1. Το Λήµµα της Άντλησης
2. Παραδείγµατα
5∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
(1) Επιλέγουµε µια συµβολοσειρά s που ανήκει
στην γλώσσα που το πρώτο σύµβολο είναι
• (α) υψωµένο τουλάχιστον στην p
• (β) ανήκει οριακά στην γλώσσα
(2) Υπολογίζουµε το µήκος της συµβολοσειράς
που επιλέξαµε στο (1)
(3) Το uv θα περιέχεται στο πρώτο σύµβολο που
έχουµε επιλέξει.
(9) Αιτιολογούµε γιατί η συµβολοσειρά που
έχουµε δεν ανήκει στην γλώσσα.
B. Θεωρία
1. Το Λήµµα της Άντλησης
2. Παραδείγµατα
6∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
B. Θεωρία
1. Το Λήµµα της Άντλησης
2. Παραδείγµατα
7∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
B. Θεωρία
1. Το Λήµµα της Άντλησης
2. Παραδείγµατα
8∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
B. Θεωρία
1. Το Λήµµα της Άντλησης
2. Παραδείγµατα
9∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
Σηµείωση:
Η συγκεκριµένη γλώσσα έχει το χαρακτηριστικό ότι περιέχει συµβολοσειρές που είναι η
παράθεση 2 όµοιων συµβολοσειρών.
B. Θεωρία
1. Το Λήµµα της Άντλησης
2. Παραδείγµατα
10∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
B. Θεωρία
2. Απόδειξη µε ιδιότητες κλειστότητας
1. Μεθοδολογία
11∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
B. Θεωρία
2. Απόδειξη µε ιδιότητες κλειστότητας
2. Παραδείγµατα
12∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
B. Θεωρία
2. Απόδειξη µε ιδιότητες κλειστότητας
2. Παραδείγµατα
13∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
B. Θεωρία
3. Με χρήση του ελάχιστου αριθµού καταστάσεων αυτοµάτου
1. Ορισµοί
14∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
∆ιαισθητικά:
• Για κάθε κανονική γλώσσα υπάρχει πεπερασµένο αυτόµατο.
• Κάθε κατάσταση του αυτοµάτου ενσωµατώνει όλην την απαράιτητη
πληροφορία για τα σύµβολα που έχουµε διαβάσει και τι χρειάζεται ακόµη να
διαβάσουµε για να αποφασίσουµε αν η συµβολοσειρά ανήκει στη γλώσσα.
• Θα χρειαστούµε τόσες καταστάσεις στο αυτόµατο, όσες και οι περιπτώσεις που
Χρήσιµοι θα φανούν οι ακόλουθοι ορισµοί:
• Θα χρειαστούµε τόσες καταστάσεις στο αυτόµατο, όσες και οι περιπτώσεις που
απαιτούν διαφορετική συγκράτηση πληροφορίας.
Έστω L µια κανονική γλώσσα. Ορίζουµε ότι:
∆ύο συµβολοσειρές x,y είναι διακρινόµενες ανά δυο αν και µόνο αν υπάρχει
συµβολοσειρά z τέτοια ώστε µια µόνο από τις xz και yz να ανήκει στην
γλώσσα.
ΘΕΩΡΗΜΑ: Αν µια γλώσσα έχει n διακρινόµενες ανά δύο συµβολοσειρές, τότε
το αυτόµατό της θα πρέπει να έχει τουλάχιστον n καταστάσεις.
B. Θεωρία
3. Με χρήση του ελάχιστου αριθµού καταστάσεων αυτοµάτου
2. Παράδειγµα για Κανονική Γλώσσα
15∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
B. Θεωρία
3. Με χρήση του ελάχιστου αριθµού καταστάσεων αυτοµάτου
3. Μεθοδολογία
16∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
Τα βήµατα που ακολουθούµε για να δείξουµε ότι µία γλώσσα δεν είναι κανονική µε
χρήση του θεωρήµατος για το ελάχιστο πλήθος καταστάσεων του αυτοµάτου:
• Υποθέτουµε ότι είναι κανονική.
• Συνεπώς θα υπάρχει αυτόµατο µε n καταστάσεις που αναγνωρίζει τις
συµβολοσειρές της.συµβολοσειρές της.
• Βρίσκουµε m>n διακρινόµενες ανά δύο συµβολοσειρές της.
• Συνεπώς από το θέωρηµα κάθε αυτόµατό της θα έχει τουλάχιστον m
καταστάσεις.
• Άτοπο!΄Άρα δεν είναι κανονική γλώσσα.
B. Θεωρία
3. Με χρήση του ελάχιστου αριθµού καταστάσεων αυτοµάτου
4. Παραδείγµατα
17∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
B. Θεωρία
3. Με χρήση του ελάχιστου αριθµού καταστάσεων αυτοµάτου
4. Παραδείγµατα
18∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
Γ. Ασκήσεις
Εφαρµογή 1
19∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
Γ. Ασκήσεις
Εφαρµογή 2
20∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
Γ. Ασκήσεις
Εφαρµογή 3
21∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
Γ. Ασκήσεις
Εφαρµογή 4
22∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
Γ. Ασκήσεις
Εφαρµογή 5
23∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες

More Related Content

What's hot

ΠΛΗ30 ΜΑΘΗΜΑ 3.5
ΠΛΗ30 ΜΑΘΗΜΑ 3.5ΠΛΗ30 ΜΑΘΗΜΑ 3.5
ΠΛΗ30 ΜΑΘΗΜΑ 3.5
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 3.1
ΠΛΗ30 ΜΑΘΗΜΑ 3.1ΠΛΗ30 ΜΑΘΗΜΑ 3.1
ΠΛΗ30 ΜΑΘΗΜΑ 3.1
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 5.4
ΠΛΗ30 ΜΑΘΗΜΑ 5.4ΠΛΗ30 ΜΑΘΗΜΑ 5.4
ΠΛΗ30 ΜΑΘΗΜΑ 5.4
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.3
ΠΛΗ30 ΜΑΘΗΜΑ 1.3ΠΛΗ30 ΜΑΘΗΜΑ 1.3
ΠΛΗ30 ΜΑΘΗΜΑ 1.3
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.1
ΠΛΗ30 ΜΑΘΗΜΑ 1.1ΠΛΗ30 ΜΑΘΗΜΑ 1.1
ΠΛΗ30 ΜΑΘΗΜΑ 1.1
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.5
ΠΛΗ30 ΜΑΘΗΜΑ 1.5ΠΛΗ30 ΜΑΘΗΜΑ 1.5
ΠΛΗ30 ΜΑΘΗΜΑ 1.5
Dimitris Psounis
 
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.4
ΠΛΗ30 ΜΑΘΗΜΑ 1.4ΠΛΗ30 ΜΑΘΗΜΑ 1.4
ΠΛΗ30 ΜΑΘΗΜΑ 1.4
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 5.2
ΠΛΗ30 ΜΑΘΗΜΑ 5.2ΠΛΗ30 ΜΑΘΗΜΑ 5.2
ΠΛΗ30 ΜΑΘΗΜΑ 5.2
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 6.4
ΠΛΗ30 ΜΑΘΗΜΑ 6.4ΠΛΗ30 ΜΑΘΗΜΑ 6.4
ΠΛΗ30 ΜΑΘΗΜΑ 6.4
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 5
ΠΛΗ30 ΤΕΣΤ 5ΠΛΗ30 ΤΕΣΤ 5
ΠΛΗ30 ΤΕΣΤ 5
Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1
Dimitris Psounis
 
ΠΛΗ30 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 3
ΠΛΗ30 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 3ΠΛΗ30 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 3
ΠΛΗ30 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 3
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.6
ΠΛΗ30 ΜΑΘΗΜΑ 1.6ΠΛΗ30 ΜΑΘΗΜΑ 1.6
ΠΛΗ30 ΜΑΘΗΜΑ 1.6
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 7
ΠΛΗ30 ΤΕΣΤ 7ΠΛΗ30 ΤΕΣΤ 7
ΠΛΗ30 ΤΕΣΤ 7
Dimitris Psounis
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 5.3
ΠΛΗ30 ΜΑΘΗΜΑ 5.3ΠΛΗ30 ΜΑΘΗΜΑ 5.3
ΠΛΗ30 ΜΑΘΗΜΑ 5.3
Dimitris Psounis
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 1
ΠΛΗ30 ΤΕΣΤ 1ΠΛΗ30 ΤΕΣΤ 1
ΠΛΗ30 ΤΕΣΤ 1
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 4.3
ΠΛΗ30 ΜΑΘΗΜΑ 4.3ΠΛΗ30 ΜΑΘΗΜΑ 4.3
ΠΛΗ30 ΜΑΘΗΜΑ 4.3
Dimitris Psounis
 

What's hot (20)

ΠΛΗ30 ΜΑΘΗΜΑ 3.5
ΠΛΗ30 ΜΑΘΗΜΑ 3.5ΠΛΗ30 ΜΑΘΗΜΑ 3.5
ΠΛΗ30 ΜΑΘΗΜΑ 3.5
 
ΠΛΗ30 ΜΑΘΗΜΑ 3.1
ΠΛΗ30 ΜΑΘΗΜΑ 3.1ΠΛΗ30 ΜΑΘΗΜΑ 3.1
ΠΛΗ30 ΜΑΘΗΜΑ 3.1
 
ΠΛΗ30 ΜΑΘΗΜΑ 5.4
ΠΛΗ30 ΜΑΘΗΜΑ 5.4ΠΛΗ30 ΜΑΘΗΜΑ 5.4
ΠΛΗ30 ΜΑΘΗΜΑ 5.4
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.3
ΠΛΗ30 ΜΑΘΗΜΑ 1.3ΠΛΗ30 ΜΑΘΗΜΑ 1.3
ΠΛΗ30 ΜΑΘΗΜΑ 1.3
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.1
ΠΛΗ30 ΜΑΘΗΜΑ 1.1ΠΛΗ30 ΜΑΘΗΜΑ 1.1
ΠΛΗ30 ΜΑΘΗΜΑ 1.1
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.5
ΠΛΗ30 ΜΑΘΗΜΑ 1.5ΠΛΗ30 ΜΑΘΗΜΑ 1.5
ΠΛΗ30 ΜΑΘΗΜΑ 1.5
 
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.4
ΠΛΗ30 ΜΑΘΗΜΑ 1.4ΠΛΗ30 ΜΑΘΗΜΑ 1.4
ΠΛΗ30 ΜΑΘΗΜΑ 1.4
 
ΠΛΗ30 ΜΑΘΗΜΑ 5.2
ΠΛΗ30 ΜΑΘΗΜΑ 5.2ΠΛΗ30 ΜΑΘΗΜΑ 5.2
ΠΛΗ30 ΜΑΘΗΜΑ 5.2
 
ΠΛΗ30 ΜΑΘΗΜΑ 6.4
ΠΛΗ30 ΜΑΘΗΜΑ 6.4ΠΛΗ30 ΜΑΘΗΜΑ 6.4
ΠΛΗ30 ΜΑΘΗΜΑ 6.4
 
ΠΛΗ30 ΤΕΣΤ 5
ΠΛΗ30 ΤΕΣΤ 5ΠΛΗ30 ΤΕΣΤ 5
ΠΛΗ30 ΤΕΣΤ 5
 
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1
 
ΠΛΗ30 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 3
ΠΛΗ30 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 3ΠΛΗ30 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 3
ΠΛΗ30 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 3
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.6
ΠΛΗ30 ΜΑΘΗΜΑ 1.6ΠΛΗ30 ΜΑΘΗΜΑ 1.6
ΠΛΗ30 ΜΑΘΗΜΑ 1.6
 
ΠΛΗ30 ΤΕΣΤ 7
ΠΛΗ30 ΤΕΣΤ 7ΠΛΗ30 ΤΕΣΤ 7
ΠΛΗ30 ΤΕΣΤ 7
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1
 
ΠΛΗ30 ΜΑΘΗΜΑ 5.3
ΠΛΗ30 ΜΑΘΗΜΑ 5.3ΠΛΗ30 ΜΑΘΗΜΑ 5.3
ΠΛΗ30 ΜΑΘΗΜΑ 5.3
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7
 
ΠΛΗ30 ΤΕΣΤ 1
ΠΛΗ30 ΤΕΣΤ 1ΠΛΗ30 ΤΕΣΤ 1
ΠΛΗ30 ΤΕΣΤ 1
 
ΠΛΗ30 ΜΑΘΗΜΑ 4.3
ΠΛΗ30 ΜΑΘΗΜΑ 4.3ΠΛΗ30 ΜΑΘΗΜΑ 4.3
ΠΛΗ30 ΜΑΘΗΜΑ 4.3
 

Viewers also liked

ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6 ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 3.6 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 3.6 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΜΑΘΗΜΑ 3.6 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 3.6 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.5 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.5 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.5 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.5 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.5
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.5ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.5
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.5
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 3.5 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 3.5 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΜΑΘΗΜΑ 3.5 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 3.5 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.4 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.4 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.4
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.4ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.4
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.4
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 3.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 3.4 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΜΑΘΗΜΑ 3.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 3.4 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ30 ΧΑΡΤΗΣ ΓΛΩΣΣΩΝ
ΠΛΗ30 ΧΑΡΤΗΣ ΓΛΩΣΣΩΝΠΛΗ30 ΧΑΡΤΗΣ ΓΛΩΣΣΩΝ
ΠΛΗ30 ΧΑΡΤΗΣ ΓΛΩΣΣΩΝ
Dimitris Psounis
 
ΠΛΗ30 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4
ΠΛΗ30 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4ΠΛΗ30 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4
ΠΛΗ30 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4
Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.3 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.3 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.3
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.3 ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.3
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.3
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 3.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 3.3 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΜΑΘΗΜΑ 3.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 3.3 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 4.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 4.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΜΑΘΗΜΑ 4.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 4.1 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 4.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 4.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 4.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 4.1 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 4.1
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 4.1ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 4.1
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 4.1
Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.1 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.1
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.1ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.1
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.1
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 3.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 3.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΜΑΘΗΜΑ 3.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 3.1 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 

Viewers also liked (20)

ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6 ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.6
 
ΠΛΗ30 ΜΑΘΗΜΑ 3.6 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 3.6 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΜΑΘΗΜΑ 3.6 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 3.6 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.5 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.5 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.5 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.5 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.5
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.5ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.5
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.5
 
ΠΛΗ30 ΜΑΘΗΜΑ 3.5 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 3.5 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΜΑΘΗΜΑ 3.5 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 3.5 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.4 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.4 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.4
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.4ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.4
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.4
 
ΠΛΗ30 ΜΑΘΗΜΑ 3.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 3.4 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΜΑΘΗΜΑ 3.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 3.4 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ30 ΧΑΡΤΗΣ ΓΛΩΣΣΩΝ
ΠΛΗ30 ΧΑΡΤΗΣ ΓΛΩΣΣΩΝΠΛΗ30 ΧΑΡΤΗΣ ΓΛΩΣΣΩΝ
ΠΛΗ30 ΧΑΡΤΗΣ ΓΛΩΣΣΩΝ
 
ΠΛΗ30 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4
ΠΛΗ30 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4ΠΛΗ30 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4
ΠΛΗ30 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.3 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.3 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.3
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.3 ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.3
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.3
 
ΠΛΗ30 ΜΑΘΗΜΑ 3.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 3.3 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΜΑΘΗΜΑ 3.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 3.3 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ30 ΜΑΘΗΜΑ 4.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 4.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΜΑΘΗΜΑ 4.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 4.1 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 4.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 4.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 4.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 4.1 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 4.1
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 4.1ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 4.1
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 4.1
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.1 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.1
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.1ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.1
ΠΛΗ30 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.1
 
ΠΛΗ30 ΜΑΘΗΜΑ 3.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 3.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ30 ΜΑΘΗΜΑ 3.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ30 ΜΑΘΗΜΑ 3.1 (ΕΚΤΥΠΩΣΗ)
 

More from Dimitris Psounis

Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Dimitris Psounis
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Dimitris Psounis
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
Dimitris Psounis
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
Dimitris Psounis
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Dimitris Psounis
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Dimitris Psounis
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ CC++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
Dimitris Psounis
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
Dimitris Psounis
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
Dimitris Psounis
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
Dimitris Psounis
 

More from Dimitris Psounis (20)

Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ CC++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ31 - ΤΕΣΤ 33
ΠΛΗ31 - ΤΕΣΤ 33ΠΛΗ31 - ΤΕΣΤ 33
ΠΛΗ31 - ΤΕΣΤ 33
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
 

ΠΛΗ30 ΜΑΘΗΜΑ 3.6

  • 1. ΠΛΗ30 ΕΝΟΤΗΤΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ Μάθηµα 3.6: Μη Κανονικές ΓλώσσεςΜη Κανονικές Γλώσσες ∆ηµήτρης Ψούνης
  • 2. ΠΕΡΙΕΧΟΜΕΝΑ Α. Σκοπός του Μαθήµατος Β. Θεωρία 1. Το Λήµµα της Άντλησης 1. Ορισµός 2. Παραδείγµατα 2. Απόδειξη µε Ιδιότητες Κλειστότητας 2∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες 2. Απόδειξη µε Ιδιότητες Κλειστότητας 1. Μεθοδολογία 2. Παραδείγµατα 3. Απόδειξη µε χρήση του ελάχιστου αριθµού καταστάσεων αυτοµάτου 1. Μεθοδολογία 2. Παραδείγµατα Γ.Ασκήσεις
  • 3. Α. Σκοπός του Μαθήµατος Οι στόχοι του µαθήµατος είναι: Επίπεδο Α Το λήµµα της άντλησης για απόδειξη µη κανονικότητας. Επίπεδο Β Απόδειξη µη κανονικότητας µε το ελάχιστο πλήθος καταστάσεων. 3∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες Απόδειξη µη κανονικότητας µε το ελάχιστο πλήθος καταστάσεων. Επίπεδο Γ Απόδειξη µη κανονικότητας µε ιδιότητες κλειστότητας.
  • 4. B. Θεωρία 1. Το Λήµµα της Άντλησης 1. Ορισµός 4∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
  • 5. B. Θεωρία 1. Το Λήµµα της Άντλησης 2. Παραδείγµατα 5∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες (1) Επιλέγουµε µια συµβολοσειρά s που ανήκει στην γλώσσα που το πρώτο σύµβολο είναι • (α) υψωµένο τουλάχιστον στην p • (β) ανήκει οριακά στην γλώσσα (2) Υπολογίζουµε το µήκος της συµβολοσειράς που επιλέξαµε στο (1) (3) Το uv θα περιέχεται στο πρώτο σύµβολο που έχουµε επιλέξει. (9) Αιτιολογούµε γιατί η συµβολοσειρά που έχουµε δεν ανήκει στην γλώσσα.
  • 6. B. Θεωρία 1. Το Λήµµα της Άντλησης 2. Παραδείγµατα 6∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
  • 7. B. Θεωρία 1. Το Λήµµα της Άντλησης 2. Παραδείγµατα 7∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
  • 8. B. Θεωρία 1. Το Λήµµα της Άντλησης 2. Παραδείγµατα 8∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
  • 9. B. Θεωρία 1. Το Λήµµα της Άντλησης 2. Παραδείγµατα 9∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες Σηµείωση: Η συγκεκριµένη γλώσσα έχει το χαρακτηριστικό ότι περιέχει συµβολοσειρές που είναι η παράθεση 2 όµοιων συµβολοσειρών.
  • 10. B. Θεωρία 1. Το Λήµµα της Άντλησης 2. Παραδείγµατα 10∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
  • 11. B. Θεωρία 2. Απόδειξη µε ιδιότητες κλειστότητας 1. Μεθοδολογία 11∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
  • 12. B. Θεωρία 2. Απόδειξη µε ιδιότητες κλειστότητας 2. Παραδείγµατα 12∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
  • 13. B. Θεωρία 2. Απόδειξη µε ιδιότητες κλειστότητας 2. Παραδείγµατα 13∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
  • 14. B. Θεωρία 3. Με χρήση του ελάχιστου αριθµού καταστάσεων αυτοµάτου 1. Ορισµοί 14∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες ∆ιαισθητικά: • Για κάθε κανονική γλώσσα υπάρχει πεπερασµένο αυτόµατο. • Κάθε κατάσταση του αυτοµάτου ενσωµατώνει όλην την απαράιτητη πληροφορία για τα σύµβολα που έχουµε διαβάσει και τι χρειάζεται ακόµη να διαβάσουµε για να αποφασίσουµε αν η συµβολοσειρά ανήκει στη γλώσσα. • Θα χρειαστούµε τόσες καταστάσεις στο αυτόµατο, όσες και οι περιπτώσεις που Χρήσιµοι θα φανούν οι ακόλουθοι ορισµοί: • Θα χρειαστούµε τόσες καταστάσεις στο αυτόµατο, όσες και οι περιπτώσεις που απαιτούν διαφορετική συγκράτηση πληροφορίας. Έστω L µια κανονική γλώσσα. Ορίζουµε ότι: ∆ύο συµβολοσειρές x,y είναι διακρινόµενες ανά δυο αν και µόνο αν υπάρχει συµβολοσειρά z τέτοια ώστε µια µόνο από τις xz και yz να ανήκει στην γλώσσα. ΘΕΩΡΗΜΑ: Αν µια γλώσσα έχει n διακρινόµενες ανά δύο συµβολοσειρές, τότε το αυτόµατό της θα πρέπει να έχει τουλάχιστον n καταστάσεις.
  • 15. B. Θεωρία 3. Με χρήση του ελάχιστου αριθµού καταστάσεων αυτοµάτου 2. Παράδειγµα για Κανονική Γλώσσα 15∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
  • 16. B. Θεωρία 3. Με χρήση του ελάχιστου αριθµού καταστάσεων αυτοµάτου 3. Μεθοδολογία 16∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες Τα βήµατα που ακολουθούµε για να δείξουµε ότι µία γλώσσα δεν είναι κανονική µε χρήση του θεωρήµατος για το ελάχιστο πλήθος καταστάσεων του αυτοµάτου: • Υποθέτουµε ότι είναι κανονική. • Συνεπώς θα υπάρχει αυτόµατο µε n καταστάσεις που αναγνωρίζει τις συµβολοσειρές της.συµβολοσειρές της. • Βρίσκουµε m>n διακρινόµενες ανά δύο συµβολοσειρές της. • Συνεπώς από το θέωρηµα κάθε αυτόµατό της θα έχει τουλάχιστον m καταστάσεις. • Άτοπο!΄Άρα δεν είναι κανονική γλώσσα.
  • 17. B. Θεωρία 3. Με χρήση του ελάχιστου αριθµού καταστάσεων αυτοµάτου 4. Παραδείγµατα 17∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
  • 18. B. Θεωρία 3. Με χρήση του ελάχιστου αριθµού καταστάσεων αυτοµάτου 4. Παραδείγµατα 18∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
  • 19. Γ. Ασκήσεις Εφαρµογή 1 19∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
  • 20. Γ. Ασκήσεις Εφαρµογή 2 20∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
  • 21. Γ. Ασκήσεις Εφαρµογή 3 21∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
  • 22. Γ. Ασκήσεις Εφαρµογή 4 22∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες
  • 23. Γ. Ασκήσεις Εφαρµογή 5 23∆ηµήτρης Ψούνης, ΠΛΗ30, Μάθηµα 3.6: Μη Κανονικές Γλώσσες