SlideShare a Scribd company logo
The Exponential Functions
* The meaning of 10π
* Compound interest and the periodic PINA
The Exponential Functions
The meaning positive integral exponents such as x2 is clear.
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
The Exponential Functions
K
N
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
b0 = 1 b–K =
b = ( b ) b =
K
N
The Exponential Functions
K
N
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
Example A.
80 =
8 =
The Exponential Functions
K
N
3
2
3
2
8 –2 =
8 =
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
Example A.
80 = 1
8 =
The Exponential Functions
K
N
3
2
3
2
8 –2 =
8 =
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
Example A.
80 = 1
8 =
82
1
64
1
The Exponential Functions
K
N
3
2
3
2
8 –2 = =
8 =
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
Example A.
80 = 1
8 = (  8 ) = 4
3 2
82
1
64
1
The Exponential Functions
K
N
3
2
3
2
8 –2 = =
8 =
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
Example A.
80 = 1
8 = (  8 ) = 4
3 2
82
1
3
2
 8
1
64
1
The Exponential Functions
K
N
3
2
3
2
8 –2 = =
8 = ( ) = 1/4
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
Example A.
80 = 1
8 = (  8 ) = 4
3 2
82
1
3
2
 8
1
64
1
The Exponential Functions
K
N
3
2
3
2
Decimal exponents are well defined since decimals may be
represented as reduced fractions.
8 –2 = =
8 = ( ) = 1/4
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
Example A.
80 = 1
8 = (  8 ) = 4
3 2
82
1
3
2
 8
1
64
1
The Exponential Functions
K
N
3
2
3
2
Decimal exponents are well defined since decimals may be
represented as reduced fractions.
b. 101.22 =
8 –2 = =
8 = ( ) = 1/4
Example B.
a. 91.50 =
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
Example A.
80 = 1
8 = (  8 ) = 4
3 2
82
1
3
2
 8
1
64
1
The Exponential Functions
K
N
3
2
3
2
Decimal exponents are well defined since decimals may be
represented as reduced fractions.
b. 101.22 =
8 –2 = =
8 = ( ) = 1/4
Example B.
a. 91.50 = 9 =
3
2
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
Example A.
80 = 1
8 = (  8 ) = 4
3 2
82
1
3
2
 8
1
64
1
The Exponential Functions
K
N
3
2
3
2
Decimal exponents are well defined since decimals may be
represented as reduced fractions.
b. 101.22 =
8 –2 = =
8 = ( ) = 1/4
Example B.
a. 91.50 = 9 = (9 ) = 27
3
2
3
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
Example A.
80 = 1
8 = (  8 ) = 4
3 2
82
1
3
2
 8
1
64
1
The Exponential Functions
K
N
3
2
3
2
Decimal exponents are well defined since decimals may be
represented as reduced fractions.
b. 101.22 = 10
61
50
8 –2 = =
8 = ( ) = 1/4
Example B.
a. 91.50 = 9 = (9 ) = 27
3
2
3
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
Example A.
80 = 1
8 = (  8 ) = 4
3 2
82
1
3
2
 8
1
64
1
The Exponential Functions
K
N
3
2
3
2
Decimal exponents are well defined since decimals may be
represented as reduced fractions.
b. 101.22 = 10 = ( 10 )  16.59586….
61
50
50 61
8 –2 = =
8 = ( ) = 1/4
Example B.
a. 91.50 = 9 = (9 ) = 27
3
2
3
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
For a real-number-exponent such as , we approximate the
real number with fractions then use the fractional powers to
approximate the result.
  3.14159..
10 
Example C.
The Exponential Functions
For a real-number-exponent such as , we approximate the
real number with fractions then use the fractional powers to
approximate the result.
  3.14159.. 3.1 3.14 3.141 3.1415
10 
Example C.

The Exponential Functions
For a real-number-exponent such as , we approximate the
real number with fractions then use the fractional powers to
approximate the result.
  3.14159.. 3.1 3.14 3.141 3.1415
10  10
Example C.
31
10

The Exponential Functions
≈1258.9..
For a real-number-exponent such as , we approximate the
real number with fractions then use the fractional powers to
approximate the result.
  3.14159.. 3.1 3.14 3.141 3.1415
10  10 10
Example C.
31
10
314
100

The Exponential Functions
≈1258.9.. ≈1380.3..
For a real-number-exponent such as , we approximate the
real number with fractions then use the fractional powers to
approximate the result.
  3.14159.. 3.1 3.14 3.141 3.1415
10  10 10 10 10
Example C.
31
10
314
100
3141
1000
31415
10000

The Exponential Functions
≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1..
For a real-number-exponent such as , we approximate the
real number with fractions then use the fractional powers to
approximate the result.
  3.14159.. 3.1 3.14 3.141 3.1415
10  10 10 10 10 10≈1385.45..
Example C.
31
10
314
100
3141
1000
31415
10000

The Exponential Functions
≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1..
For a real-number-exponent such as , we approximate the
real number with fractions then use the fractional powers to
approximate the result.
  3.14159.. 3.1 3.14 3.141 3.1415
10  10 10 10 10 10≈1385.45..
Example C.
31
10
314
100
3141
1000
31415
10000

The Exponential Functions
Hence exponential functions or functions of the form
f(x) = bx (b > 0 and b  1) are defined for all real numbers x.
≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1..
For a real-number-exponent such as , we approximate the
real number with fractions then use the fractional powers to
approximate the result.
  3.14159.. 3.1 3.14 3.141 3.1415
10  10 10 10 10 10≈1385.45..
Example C.
31
10
314
100
3141
1000
31415
10000

The Exponential Functions
Hence exponential functions or functions of the form
f(x) = bx (b > 0 and b  1) are defined for all real numbers x.
≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1..
Exponential functions show up in finance, bio science,
computer science and physical sciences.
For a real-number-exponent such as , we approximate the
real number with fractions then use the fractional powers to
approximate the result.
  3.14159.. 3.1 3.14 3.141 3.1415
10  10 10 10 10 10≈1385.45..
Example C.
31
10
314
100
3141
1000
31415
10000

The Exponential Functions
Hence exponential functions or functions of the form
f(x) = bx (b > 0 and b  1) are defined for all real numbers x.
≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1..
Exponential functions show up in finance, bio science,
computer science and physical sciences.
The most used exponential functions are
y = 10x, y = ex and y = 2x.
For a real-number-exponent such as , we approximate the
real number with fractions then use the fractional powers to
approximate the result.
  3.14159.. 3.1 3.14 3.141 3.1415
10  10 10 10 10 10≈1385.45..
Example C.
31
10
314
100
3141
1000
31415
10000

The Exponential Functions
Hence exponential functions or functions of the form
f(x) = bx (b > 0 and b  1) are defined for all real numbers x.
≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1..
Exponential functions show up in finance, bio science,
computer science and physical sciences.
The most used exponential functions are
y = 10x, y = ex and y = 2x.
Let’s use $ growth as applications below.
Example D. We deposit $1,000 in an account that gives
1% interest compounded monthly. How much money is there
after 1 month? 2 months? 3 months? and after 4 months?
Compound Interest
Example D. We deposit $1,000 in an account that gives
1% interest compounded monthly. How much money is there
after 1 month? 2 months? 3 months? and after 4 months?
Compound Interest
Let P = principal, i = (periodic) interest rate, A = accumulation.
After 1 period A = P(1 + i)
Example D. We deposit $1,000 in an account that gives
1% interest compounded monthly. How much money is there
after 1 month? 2 months? 3 months? and after 4 months?
After 1 month: 1000(1 + 0.01) = $1010.
Compound Interest
Let P = principal, i = (periodic) interest rate, A = accumulation.
After 1 period A = P(1 + i)
Example D. We deposit $1,000 in an account that gives
1% interest compounded monthly. How much money is there
after 1 month? 2 months? 3 months? and after 4 months?
After 1 month: 1000(1 + 0.01) = $1010.
After 2 months: 1010(1 + 0.01)
Compound Interest
Let P = principal, i = (periodic) interest rate, A = accumulation.
After 1 period A = P(1 + i)
Example D. We deposit $1,000 in an account that gives
1% interest compounded monthly. How much money is there
after 1 month? 2 months? 3 months? and after 4 months?
After 1 month: 1000(1 + 0.01) = $1010.
After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01)
Compound Interest
Let P = principal, i = (periodic) interest rate, A = accumulation.
After 1 period A = P(1 + i)
Example D. We deposit $1,000 in an account that gives
1% interest compounded monthly. How much money is there
after 1 month? 2 months? 3 months? and after 4 months?
After 1 month: 1000(1 + 0.01) = $1010.
After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01)
= 1000(1 + 0.01)2 = $1020.10
Compound Interest
Let P = principal, i = (periodic) interest rate, A = accumulation.
After 1 period A = P(1 + i)
Example D. We deposit $1,000 in an account that gives
1% interest compounded monthly. How much money is there
after 1 month? 2 months? 3 months? and after 4 months?
After 1 month: 1000(1 + 0.01) = $1010.
After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01)
= 1000(1 + 0.01)2 = $1020.10
Compound Interest
Let P = principal, i = (periodic) interest rate, A = accumulation.
After 1 period A = P(1 + i)
After 2 periods A = P(1 + i)(1 + i) = P(1 + i)2
Example D. We deposit $1,000 in an account that gives
1% interest compounded monthly. How much money is there
after 1 month? 2 months? 3 months? and after 4 months?
After 1 month: 1000(1 + 0.01) = $1010.
After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01)
= 1000(1 + 0.01)2 = $1020.10
After 3 months: 1020(1 + 0.01) = 1000(1 + 0.01)2(1 + 0.01)
= 1000(1 + 0.01)3 = $1030.30
Compound Interest
Let P = principal, i = (periodic) interest rate, A = accumulation.
After 1 period A = P(1 + i)
After 2 periods A = P(1 + i)(1 + i) = P(1 + i)2
Example D. We deposit $1,000 in an account that gives
1% interest compounded monthly. How much money is there
after 1 month? 2 months? 3 months? and after 4 months?
After 1 month: 1000(1 + 0.01) = $1010.
After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01)
= 1000(1 + 0.01)2 = $1020.10
After 3 months: 1020(1 + 0.01) = 1000(1 + 0.01)2(1 + 0.01)
= 1000(1 + 0.01)3 = $1030.30
Compound Interest
Let P = principal, i = (periodic) interest rate, A = accumulation.
After 1 period A = P(1 + i)
After 2 periods A = P(1 + i)(1 + i) = P(1 + i)2
After 3 periods A = P(1 + i)2(1 + i) = P(1 + i)3
Example D. We deposit $1,000 in an account that gives
1% interest compounded monthly. How much money is there
after 1 month? 2 months? 3 months? and after 4 months?
After 1 month: 1000(1 + 0.01) = $1010.
After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01)
= 1000(1 + 0.01)2 = $1020.10
After 3 months: 1020(1 + 0.01) = 1000(1 + 0.01)2(1 + 0.01)
= 1000(1 + 0.01)3 = $1030.30
After 4 months: 1030(1 + 0.01) = 1000(1 + 0.01)3(1 + 0.01)
= 1000(1 + 0.01)4 = $1040.60
Compound Interest
Let P = principal, i = (periodic) interest rate, A = accumulation.
After 1 period A = P(1 + i)
After 2 periods A = P(1 + i)(1 + i) = P(1 + i)2
After 3 periods A = P(1 + i)2(1 + i) = P(1 + i)3
Example D. We deposit $1,000 in an account that gives
1% interest compounded monthly. How much money is there
after 1 month? 2 months? 3 months? and after 4 months?
After 1 month: 1000(1 + 0.01) = $1010.
After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01)
= 1000(1 + 0.01)2 = $1020.10
After 3 months: 1020(1 + 0.01) = 1000(1 + 0.01)2(1 + 0.01)
= 1000(1 + 0.01)3 = $1030.30
After 4 months: 1030(1 + 0.01) = 1000(1 + 0.01)3(1 + 0.01)
= 1000(1 + 0.01)4 = $1040.60
Compound Interest
Let P = principal, i = (periodic) interest rate, A = accumulation.
After 1 period A = P(1 + i)
After 2 periods A = P(1 + i)(1 + i) = P(1 + i)2
After 3 periods A = P(1 + i)2(1 + i) = P(1 + i)3
Continue the pattern, after N periods, we obtain the
exponential periodic-compound formula (PINA): P(1 + i)N = A.
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
The PINA Formula (Periodic Interest)
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
0 1 2 3 Nth period
N–1
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
P
0 1 2 3 Nth period
N–1
Rule: Multiply (1 + i) each period forward
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
P
0 1 2 3 Nth period
N–1
Rule: Multiply (1 + i) each period forward
P(1 + i)
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
P
0 1 2 3 Nth period
N–1
Rule: Multiply (1 + i) each period forward
P(1 + i) P(1 + i) 2
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
P
0 1 2 3 Nth period
N–1
Rule: Multiply (1 + i) each period forward
P(1 + i) P(1 + i) 2 P(1 + i) 3
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
P
0 1 2 3 Nth period
N–1
Rule: Multiply (1 + i) each period forward
P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
P
0 1 2 3 Nth period
N–1
Rule: Multiply (1 + i) each period forward
P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
P
0 1 2 3 Nth period
N–1
Rule: Multiply (1 + i) each period forward
P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N
Example E. $1,000 is in an account that has a monthly interest
rate of 1%. How much will be there after 60 years?
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
P
0 1 2 3 Nth period
N–1
Rule: Multiply (1 + i) each period forward
P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N
Example E. $1,000 is in an account that has a monthly interest
rate of 1%. How much will be there after 60 years?
We have P = $1,000, i = 1% = 0.01,
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
P
0 1 2 3 Nth period
N–1
Rule: Multiply (1 + i) each period forward
P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N
Example E. $1,000 is in an account that has a monthly interest
rate of 1%. How much will be there after 60 years?
We have P = $1,000, i = 1% = 0.01, N = 60 *12 = 720 months
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
P
0 1 2 3 Nth period
N–1
Rule: Multiply (1 + i) each period forward
P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N
Example E. $1,000 is in an account that has a monthly interest
rate of 1%. How much will be there after 60 years?
We have P = $1,000, i = 1% = 0.01, N = 60 *12 = 720 months
so by PINA, there will be 1000(1 + 0.01) 720
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
P
0 1 2 3 Nth period
N–1
Rule: Multiply (1 + i) each period forward
P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N
Example E. $1,000 is in an account that has a monthly interest
rate of 1%. How much will be there after 60 years?
We have P = $1,000, i = 1% = 0.01, N = 60 *12 = 720 months
so by PINA, there will be 1000(1 + 0.01) 720 = $1,292,376.71
after 60 years.
Compound Interest
In practice, compound interests are usually quoted in
annual interest rate r and the frequency f, the number of times
of compounding in one year, so the periodic rate i = .
r
f
Example F. We open an account with annual rate r = 9%,
compounded monthly, i.e. 12 times a year.
Compound Interest
In practice, compound interests are usually quoted in
annual interest rate r and the frequency f, the number of times
of compounding in one year, so the periodic rate i = .
r
f
Example F. We open an account with annual rate r = 9%,
compounded monthly, i.e. 12 times a year.
We have r = 9% = 0.09 for one year,
and f = 12 is the number of times of compounding in one year,
Compound Interest
In practice, compound interests are usually quoted in
annual interest rate r and the frequency f, the number of times
of compounding in one year, so the periodic rate i = .
r
f
Example F. We open an account with annual rate r = 9%,
compounded monthly, i.e. 12 times a year.
We have r = 9% = 0.09 for one year,
and f = 12 is the number of times of compounding in one year,
so the periodic or monthly rate i = 0.09/12.
Compound Interest
In practice, compound interests are usually quoted in
annual interest rate r and the frequency f, the number of times
of compounding in one year, so the periodic rate i = .
r
f
Example F. We open an account with annual rate r = 9%,
compounded monthly, i.e. 12 times a year. After 40 years the
total return is $250,000, what was the initial principal?
We have r = 9% = 0.09 for one year,
and f = 12 is the number of times of compounding in one year,
so the periodic or monthly rate i = 0.09/12.
Compound Interest
In practice, compound interests are usually quoted in
annual interest rate r and the frequency f, the number of times
of compounding in one year, so the periodic rate i = .
r
f
Example F. We open an account with annual rate r = 9%,
compounded monthly, i.e. 12 times a year. After 40 years the
total return is $250,000, what was the initial principal?
We have r = 9% = 0.09 for one year,
and f = 12 is the number of times of compounding in one year,
so the periodic or monthly rate i = 0.09/12. After 40 years, i.e.
N = 40(12) = 480 months the return A = 250,000
Compound Interest
In practice, compound interests are usually quoted in
annual interest rate r and the frequency f, the number of times
of compounding in one year, so the periodic rate i = .
r
f
Example F. We open an account with annual rate r = 9%,
compounded monthly, i.e. 12 times a year. After 40 years the
total return is $250,000, what was the initial principal?
We have r = 9% = 0.09 for one year,
and f = 12 is the number of times of compounding in one year,
so the periodic or monthly rate i = 0.09/12. After 40 years, i.e.
N = 40(12) = 480 months the return A = 250,000, so by PINA:
Compound Interest
P (1 + ) 480 = 250,000
0.09
12
In practice, compound interests are usually quoted in
annual interest rate r and the frequency f, the number of times
of compounding in one year, so the periodic rate i = .
r
f
Example F. We open an account with annual rate r = 9%,
compounded monthly, i.e. 12 times a year. After 40 years the
total return is $250,000, what was the initial principal?
We have r = 9% = 0.09 for one year,
and f = 12 is the number of times of compounding in one year,
so the periodic or monthly rate i = 0.09/12. After 40 years, i.e.
N = 40(12) = 480 months the return A = 250,000, so by PINA:
Compound Interest
P (1 + ) 480 = 250,000
0.09
12 or
(1 + ) 480
P = 250,000
0.09
12
In practice, compound interests are usually quoted in
annual interest rate r and the frequency f, the number of times
of compounding in one year, so the periodic rate i = .
r
f
Example F. We open an account with annual rate r = 9%,
compounded monthly, i.e. 12 times a year. After 40 years the
total return is $250,000, what was the initial principal?
We have r = 9% = 0.09 for one year,
and f = 12 is the number of times of compounding in one year,
so the periodic or monthly rate i = 0.09/12. After 40 years, i.e.
N = 40(12) = 480 months the return A = 250,000, so by PINA:
Compound Interest
P (1 + ) 480 = 250,000
0.09
12 or
(1 + ) 480
P = 250,000
0.09
12
P = $6,923.31
by calculator
Hence the initial deposit is $6,923.31.
In practice, compound interests are usually quoted in
annual interest rate r and the frequency f, the number of times
of compounding in one year, so the periodic rate i = .
r
f
x -4 -3 -2 -1 0 1 2 3 4
y=2x 1/16 1/8 1/4 1/2 1 2 4 8 16
Graphs of the Exponential Functions
Here is a table of y = 2x for plotting its graph.
(0,1)
(1,2)
(2,4)
(3,8)
(-1,1/2)
(-2,1/4)
y=2x
Graph of y = 2x
x -4 -3 -2 -1 0 1 2 3 4
y=2x 1/16 1/8 1/4 1/2 1 2 4 8 16
Graphs of the Exponential Functions
Here is a table of y = 2x for plotting its graph.
(0,1)
(1,2)
(2,4)
(3,8)
(-1,1/2)
(-2,1/4)
y=2x
Graph of y = 2x
x -4 -3 -2 -1 0 1 2 3 4
y=2x 1/16 1/8 1/4 1/2 1 2 4 8 16
Graphs of the Exponential Functions
Graph of y = bx where b>1
Here is a table of y = 2x for plotting its graph.
This is the shape of the graphs of y = bx for b > 1.
x -4 -3 -2 -1 0 1 2 3 4
y=(½)x 16 8 4 2 1 1/2 1/4 1/8 1/16
Here is a table of y = (½)x for plotting its graph.
Graphs of the Exponential Functions
(0,1)
(-1,2)
(-2,4)
(-3,8)
(1,1/2) (2,1/4)
y= (½)x
Graph of y = (½)x
x -4 -3 -2 -1 0 1 2 3 4
y=(½)x 16 8 4 2 1 1/2 1/4 1/8 1/16
Here is a table of y = (½)x for plotting its graph.
Graphs of the Exponential Functions
(0,1)
(-1,2)
(-2,4)
(-3,8)
(1,1/2) (2,1/4)
y= (½)x
Graph of y = bx where 0<b<1
Graph of y = (½)x
x -4 -3 -2 -1 0 1 2 3 4
y=(½)x 16 8 4 2 1 1/2 1/4 1/8 1/16
Here is a table of y = (½)x for plotting its graph.
Graphs of the Exponential Functions
This is the shape of the graphs of y = bx for b < 1.
The graphs shown here are the different returns with r = 20%
with different compounding frequencies.
Compounded return on $1,000 with annual interest rate r = 20% (Wikipedia)
Compound Interest
The graphs shown here are the different returns with r = 20%
with different compounding frequencies. We observe that
I. the more frequently we compound, the bigger the return
Compounded return on $1,000 with annual interest rate r = 20% (Wikipedia)
Compound Interest
The graphs shown here are the different returns with r = 20%
with different compounding frequencies. We observe that
I. the more frequently we compound, the bigger the return
II. but the returns do not go above the blue-line
the continuous compound return, which is the next topic.
Compounded return on $1,000 with annual interest rate r = 20% (Wikipedia)
Compound Interest
Compound Interest
B. Given the monthly compounded periodic rate i, find the
principal needed to obtain a return of $1,000 after the given
amount the time.
1. i = 1%, time = 60 months.
Exercise A. Given the monthly compounded periodic rate i and
the amount the time, find the return with a principal of $1,000.
2. i = 1%, time = 60 years.
3. i = ½ %, time = 60 years 4. i = ½ %, time = 60 months.
5. i = 1¼ %, time = 6 months. 6. i = 1¼ %, time = 5½ years.
.
7. i = 3/8%, time = 52 months. 8. i = 2/3%, time = 27 months.
1. i = 1%, time = 60 months. 2. i = 1%, time = 60 years.
3. i = ½ %, time = 60 years 4. i = ½ %, time = 60 months.
5. i = 1¼ %, time = 60 months. 6. i = 1¼ %, time = 60 years.
7. i = 3/8%, time = 60 years 8. i = 2/3%, time = 60 months.
Compound Interest
D. Given the annual rate r, convert it into the monthly
compounded periodic rate i and find the principal needed to
obtain $1,000 after the given amount the time.
1. r = 1%, time = 60 months.
C. Given the annual rate r, convert it into the monthly
compounded periodic rate i and find the return with a principal
of $1,000 after the given amount the time.
2. r = 1%, time = 60 years.
3. r = 3 %, time = 60 years 4. r = 3½ %, time = 60 months.
1. r = 1%, time = 60 months. 2. r = 1%, time = 60 years.
3. r = 3 %, time = 60 years 4. r = 3½ %, time = 60 months.
5. r = 1¼ %, time = 6 months. 6. r = 1¼ %, time = 5½ years.
.
7. r = 3/8%, time = 52 months. 8. r = 2/3%, time = 27 months.
5. r = 1¼ %, time = 6 months. 6. r = 1¼ %, time = 5½ years.
.
7. r = 3/8%, time = 52 months. 8. r = 2/3%, time = 27 months.
Exercise B.
1. 𝐴 ≈ 1816.7
(Answers to the odd problems) Exercise A.
3. 𝐴 ≈ 36271.41 5. 𝐴 ≈ 1077.39
7. 𝐴 ≈ 1214.87
1. P ≈ 550.45 3. P ≈ 27.57 5. P ≈ 474.57
7. P ≈ 67.55
1. 𝐴 ≈ 1051.25
Exercise C.
3. 𝐴 ≈ 6036.07 5. 𝐴 ≈ 1006.27
7. 𝐴 ≈ 1016.39
Exercise D.
1. 𝑃 ≈ 951.25 3. 𝑃 ≈ 165.67 5. 𝑃 ≈ 993.78
7. 𝑃 ≈ 983.88
Compound Interest

More Related Content

What's hot

20 methods of division x
20 methods of division x20 methods of division x
20 methods of division x
math260
 
10.5 more on language of functions x
10.5 more on language of functions x10.5 more on language of functions x
10.5 more on language of functions x
math260
 
12 graphs of second degree functions x
12 graphs of second degree functions x12 graphs of second degree functions x
12 graphs of second degree functions x
math260
 
23 looking for real roots of real polynomials x
23 looking for real roots of real polynomials x23 looking for real roots of real polynomials x
23 looking for real roots of real polynomials x
math260
 
29 inverse functions x
29 inverse functions  x29 inverse functions  x
29 inverse functions x
math260
 
21 properties of division and roots x
21 properties of division and roots x21 properties of division and roots x
21 properties of division and roots x
math260
 
16 slopes and difference quotient x
16 slopes and difference quotient x16 slopes and difference quotient x
16 slopes and difference quotient x
math260
 
15 translations of graphs x
15 translations of graphs x15 translations of graphs x
15 translations of graphs x
math260
 
11 graphs of first degree functions x
11 graphs of first degree functions x11 graphs of first degree functions x
11 graphs of first degree functions x
math260
 
8 inequalities and sign charts x
8 inequalities and sign charts x8 inequalities and sign charts x
8 inequalities and sign charts x
math260
 
6.2 special cases system of linear equations
6.2 special cases system of linear equations6.2 special cases system of linear equations
6.2 special cases system of linear equationsmath260
 
14 graphs of factorable rational functions x
14 graphs of factorable rational functions x14 graphs of factorable rational functions x
14 graphs of factorable rational functions x
math260
 
1.3 solving equations y
1.3 solving equations y1.3 solving equations y
1.3 solving equations y
math260
 
6 comparison statements, inequalities and intervals y
6 comparison statements, inequalities and intervals y6 comparison statements, inequalities and intervals y
6 comparison statements, inequalities and intervals y
math260
 
17 conic sections circles-x
17 conic sections circles-x17 conic sections circles-x
17 conic sections circles-x
math260
 
1.0 factoring trinomials the ac method and making lists-x
1.0 factoring trinomials  the ac method and making lists-x1.0 factoring trinomials  the ac method and making lists-x
1.0 factoring trinomials the ac method and making lists-x
math260
 
18Ellipses-x.pptx
18Ellipses-x.pptx18Ellipses-x.pptx
18Ellipses-x.pptx
math260
 
7 sign charts of factorable formulas y
7 sign charts of factorable formulas y7 sign charts of factorable formulas y
7 sign charts of factorable formulas y
math260
 
6.1 system of linear equations and matrices
6.1 system of linear equations and matrices6.1 system of linear equations and matrices
6.1 system of linear equations and matricesmath260
 
1 exponents yz
1 exponents yz1 exponents yz
1 exponents yz
math260
 

What's hot (20)

20 methods of division x
20 methods of division x20 methods of division x
20 methods of division x
 
10.5 more on language of functions x
10.5 more on language of functions x10.5 more on language of functions x
10.5 more on language of functions x
 
12 graphs of second degree functions x
12 graphs of second degree functions x12 graphs of second degree functions x
12 graphs of second degree functions x
 
23 looking for real roots of real polynomials x
23 looking for real roots of real polynomials x23 looking for real roots of real polynomials x
23 looking for real roots of real polynomials x
 
29 inverse functions x
29 inverse functions  x29 inverse functions  x
29 inverse functions x
 
21 properties of division and roots x
21 properties of division and roots x21 properties of division and roots x
21 properties of division and roots x
 
16 slopes and difference quotient x
16 slopes and difference quotient x16 slopes and difference quotient x
16 slopes and difference quotient x
 
15 translations of graphs x
15 translations of graphs x15 translations of graphs x
15 translations of graphs x
 
11 graphs of first degree functions x
11 graphs of first degree functions x11 graphs of first degree functions x
11 graphs of first degree functions x
 
8 inequalities and sign charts x
8 inequalities and sign charts x8 inequalities and sign charts x
8 inequalities and sign charts x
 
6.2 special cases system of linear equations
6.2 special cases system of linear equations6.2 special cases system of linear equations
6.2 special cases system of linear equations
 
14 graphs of factorable rational functions x
14 graphs of factorable rational functions x14 graphs of factorable rational functions x
14 graphs of factorable rational functions x
 
1.3 solving equations y
1.3 solving equations y1.3 solving equations y
1.3 solving equations y
 
6 comparison statements, inequalities and intervals y
6 comparison statements, inequalities and intervals y6 comparison statements, inequalities and intervals y
6 comparison statements, inequalities and intervals y
 
17 conic sections circles-x
17 conic sections circles-x17 conic sections circles-x
17 conic sections circles-x
 
1.0 factoring trinomials the ac method and making lists-x
1.0 factoring trinomials  the ac method and making lists-x1.0 factoring trinomials  the ac method and making lists-x
1.0 factoring trinomials the ac method and making lists-x
 
18Ellipses-x.pptx
18Ellipses-x.pptx18Ellipses-x.pptx
18Ellipses-x.pptx
 
7 sign charts of factorable formulas y
7 sign charts of factorable formulas y7 sign charts of factorable formulas y
7 sign charts of factorable formulas y
 
6.1 system of linear equations and matrices
6.1 system of linear equations and matrices6.1 system of linear equations and matrices
6.1 system of linear equations and matrices
 
1 exponents yz
1 exponents yz1 exponents yz
1 exponents yz
 

Similar to 24 exponential functions and periodic compound interests pina x

2.2 exponential function and compound interest
2.2 exponential function and compound interest2.2 exponential function and compound interest
2.2 exponential function and compound interestmath123c
 
4.2 exponential functions and periodic compound interests pina x
4.2 exponential functions and periodic compound interests pina x4.2 exponential functions and periodic compound interests pina x
4.2 exponential functions and periodic compound interests pina x
math260
 
4.2 exponential functions and compound interests
4.2 exponential functions and compound interests4.2 exponential functions and compound interests
4.2 exponential functions and compound interestsmath260
 
6.1 Exponential Functions
6.1 Exponential Functions6.1 Exponential Functions
6.1 Exponential Functions
smiller5
 
4.2 exponential functions and periodic compound interests pina t
4.2 exponential functions and periodic compound interests pina t4.2 exponential functions and periodic compound interests pina t
4.2 exponential functions and periodic compound interests pina t
math260
 
4.2 Exponential Functions
4.2 Exponential Functions4.2 Exponential Functions
4.2 Exponential Functions
smiller5
 
maths_formula_sheet.pdf
maths_formula_sheet.pdfmaths_formula_sheet.pdf
maths_formula_sheet.pdf
VanhoaTran2
 
P7
P7P7
2.5 calculation with log and exp
2.5 calculation with log and exp2.5 calculation with log and exp
2.5 calculation with log and expmath123c
 
Number system
Number systemNumber system
Number system
Mantra VLSI
 
8.2 Exploring exponential models
8.2 Exploring exponential models8.2 Exploring exponential models
8.2 Exploring exponential modelsswartzje
 
logarithmic, exponential, trigonometric functions and their graphs.ppt
logarithmic, exponential, trigonometric functions and their graphs.pptlogarithmic, exponential, trigonometric functions and their graphs.ppt
logarithmic, exponential, trigonometric functions and their graphs.ppt
YohannesAndualem1
 
3.1 Functions
3.1 Functions3.1 Functions
3.1 Functions
smiller5
 
MATH-412-TUMANDAY Report in Mat-Math.pptx
MATH-412-TUMANDAY Report in Mat-Math.pptxMATH-412-TUMANDAY Report in Mat-Math.pptx
MATH-412-TUMANDAY Report in Mat-Math.pptx
JoelynRubio1
 
Determinants
DeterminantsDeterminants
Determinants
Joey Valdriz
 
Curve_Fitting.pdf
Curve_Fitting.pdfCurve_Fitting.pdf
Curve_Fitting.pdf
Irfan Khan
 
66 calculation with log and exp
66 calculation with log and exp66 calculation with log and exp
66 calculation with log and expmath126
 
297Source NASA.5.1 Rules for Exponents5.2 Addition.docx
297Source NASA.5.1 Rules for Exponents5.2  Addition.docx297Source NASA.5.1 Rules for Exponents5.2  Addition.docx
297Source NASA.5.1 Rules for Exponents5.2 Addition.docx
gilbertkpeters11344
 
4.2 Exponential Functions
4.2 Exponential Functions4.2 Exponential Functions
4.2 Exponential Functions
smiller5
 

Similar to 24 exponential functions and periodic compound interests pina x (20)

2.2 exponential function and compound interest
2.2 exponential function and compound interest2.2 exponential function and compound interest
2.2 exponential function and compound interest
 
4.2 exponential functions and periodic compound interests pina x
4.2 exponential functions and periodic compound interests pina x4.2 exponential functions and periodic compound interests pina x
4.2 exponential functions and periodic compound interests pina x
 
4.2 exponential functions and compound interests
4.2 exponential functions and compound interests4.2 exponential functions and compound interests
4.2 exponential functions and compound interests
 
6.1 Exponential Functions
6.1 Exponential Functions6.1 Exponential Functions
6.1 Exponential Functions
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
4.2 exponential functions and periodic compound interests pina t
4.2 exponential functions and periodic compound interests pina t4.2 exponential functions and periodic compound interests pina t
4.2 exponential functions and periodic compound interests pina t
 
4.2 Exponential Functions
4.2 Exponential Functions4.2 Exponential Functions
4.2 Exponential Functions
 
maths_formula_sheet.pdf
maths_formula_sheet.pdfmaths_formula_sheet.pdf
maths_formula_sheet.pdf
 
P7
P7P7
P7
 
2.5 calculation with log and exp
2.5 calculation with log and exp2.5 calculation with log and exp
2.5 calculation with log and exp
 
Number system
Number systemNumber system
Number system
 
8.2 Exploring exponential models
8.2 Exploring exponential models8.2 Exploring exponential models
8.2 Exploring exponential models
 
logarithmic, exponential, trigonometric functions and their graphs.ppt
logarithmic, exponential, trigonometric functions and their graphs.pptlogarithmic, exponential, trigonometric functions and their graphs.ppt
logarithmic, exponential, trigonometric functions and their graphs.ppt
 
3.1 Functions
3.1 Functions3.1 Functions
3.1 Functions
 
MATH-412-TUMANDAY Report in Mat-Math.pptx
MATH-412-TUMANDAY Report in Mat-Math.pptxMATH-412-TUMANDAY Report in Mat-Math.pptx
MATH-412-TUMANDAY Report in Mat-Math.pptx
 
Determinants
DeterminantsDeterminants
Determinants
 
Curve_Fitting.pdf
Curve_Fitting.pdfCurve_Fitting.pdf
Curve_Fitting.pdf
 
66 calculation with log and exp
66 calculation with log and exp66 calculation with log and exp
66 calculation with log and exp
 
297Source NASA.5.1 Rules for Exponents5.2 Addition.docx
297Source NASA.5.1 Rules for Exponents5.2  Addition.docx297Source NASA.5.1 Rules for Exponents5.2  Addition.docx
297Source NASA.5.1 Rules for Exponents5.2 Addition.docx
 
4.2 Exponential Functions
4.2 Exponential Functions4.2 Exponential Functions
4.2 Exponential Functions
 

More from math260

36 Matrix Algebra-x.pptx
36 Matrix Algebra-x.pptx36 Matrix Algebra-x.pptx
36 Matrix Algebra-x.pptx
math260
 
35 Special Cases System of Linear Equations-x.pptx
35 Special Cases System of Linear Equations-x.pptx35 Special Cases System of Linear Equations-x.pptx
35 Special Cases System of Linear Equations-x.pptx
math260
 
19 more parabolas a&amp; hyperbolas (optional) x
19 more parabolas a&amp; hyperbolas (optional) x19 more parabolas a&amp; hyperbolas (optional) x
19 more parabolas a&amp; hyperbolas (optional) x
math260
 
18 ellipses x
18 ellipses x18 ellipses x
18 ellipses x
math260
 
11 graphs of first degree functions x
11 graphs of first degree functions x11 graphs of first degree functions x
11 graphs of first degree functions x
math260
 
9 the basic language of functions x
9 the basic language of functions x9 the basic language of functions x
9 the basic language of functions x
math260
 
22 the fundamental theorem of algebra x
22 the fundamental theorem of algebra x22 the fundamental theorem of algebra x
22 the fundamental theorem of algebra x
math260
 
8 sign charts of factorable formulas y
8 sign charts of factorable formulas y8 sign charts of factorable formulas y
8 sign charts of factorable formulas y
math260
 

More from math260 (8)

36 Matrix Algebra-x.pptx
36 Matrix Algebra-x.pptx36 Matrix Algebra-x.pptx
36 Matrix Algebra-x.pptx
 
35 Special Cases System of Linear Equations-x.pptx
35 Special Cases System of Linear Equations-x.pptx35 Special Cases System of Linear Equations-x.pptx
35 Special Cases System of Linear Equations-x.pptx
 
19 more parabolas a&amp; hyperbolas (optional) x
19 more parabolas a&amp; hyperbolas (optional) x19 more parabolas a&amp; hyperbolas (optional) x
19 more parabolas a&amp; hyperbolas (optional) x
 
18 ellipses x
18 ellipses x18 ellipses x
18 ellipses x
 
11 graphs of first degree functions x
11 graphs of first degree functions x11 graphs of first degree functions x
11 graphs of first degree functions x
 
9 the basic language of functions x
9 the basic language of functions x9 the basic language of functions x
9 the basic language of functions x
 
22 the fundamental theorem of algebra x
22 the fundamental theorem of algebra x22 the fundamental theorem of algebra x
22 the fundamental theorem of algebra x
 
8 sign charts of factorable formulas y
8 sign charts of factorable formulas y8 sign charts of factorable formulas y
8 sign charts of factorable formulas y
 

Recently uploaded

Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
EduSkills OECD
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
Nguyen Thanh Tu Collection
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
David Douglas School District
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
Israel Genealogy Research Association
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
JEE1_This_section_contains_FOUR_ questions
JEE1_This_section_contains_FOUR_ questionsJEE1_This_section_contains_FOUR_ questions
JEE1_This_section_contains_FOUR_ questions
ShivajiThube2
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
Academy of Science of South Africa
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Akanksha trivedi rama nursing college kanpur.
 
Multithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race conditionMultithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race condition
Mohammed Sikander
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBCSTRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
kimdan468
 
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdfMASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
goswamiyash170123
 
Normal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of LabourNormal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of Labour
Wasim Ak
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
tarandeep35
 

Recently uploaded (20)

Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
BÀI TẬP BỔ TRỢ TIẾNG ANH GLOBAL SUCCESS LỚP 3 - CẢ NĂM (CÓ FILE NGHE VÀ ĐÁP Á...
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
Pride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School DistrictPride Month Slides 2024 David Douglas School District
Pride Month Slides 2024 David Douglas School District
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
JEE1_This_section_contains_FOUR_ questions
JEE1_This_section_contains_FOUR_ questionsJEE1_This_section_contains_FOUR_ questions
JEE1_This_section_contains_FOUR_ questions
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
 
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama UniversityNatural birth techniques - Mrs.Akanksha Trivedi Rama University
Natural birth techniques - Mrs.Akanksha Trivedi Rama University
 
Multithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race conditionMultithreading_in_C++ - std::thread, race condition
Multithreading_in_C++ - std::thread, race condition
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBCSTRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
STRAND 3 HYGIENIC PRACTICES.pptx GRADE 7 CBC
 
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdfMASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
MASS MEDIA STUDIES-835-CLASS XI Resource Material.pdf
 
Normal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of LabourNormal Labour/ Stages of Labour/ Mechanism of Labour
Normal Labour/ Stages of Labour/ Mechanism of Labour
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
 

24 exponential functions and periodic compound interests pina x

  • 1. The Exponential Functions * The meaning of 10π * Compound interest and the periodic PINA
  • 2. The Exponential Functions The meaning positive integral exponents such as x2 is clear.
  • 3. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 The Exponential Functions K N The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 4. b0 = 1 b–K = b = ( b ) b = K N The Exponential Functions K N The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 5. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 Example A. 80 = 8 = The Exponential Functions K N 3 2 3 2 8 –2 = 8 = The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 6. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 Example A. 80 = 1 8 = The Exponential Functions K N 3 2 3 2 8 –2 = 8 = The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 7. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 Example A. 80 = 1 8 = 82 1 64 1 The Exponential Functions K N 3 2 3 2 8 –2 = = 8 = The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 8. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 Example A. 80 = 1 8 = (  8 ) = 4 3 2 82 1 64 1 The Exponential Functions K N 3 2 3 2 8 –2 = = 8 = The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 9. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 Example A. 80 = 1 8 = (  8 ) = 4 3 2 82 1 3 2  8 1 64 1 The Exponential Functions K N 3 2 3 2 8 –2 = = 8 = ( ) = 1/4 The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 10. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 Example A. 80 = 1 8 = (  8 ) = 4 3 2 82 1 3 2  8 1 64 1 The Exponential Functions K N 3 2 3 2 Decimal exponents are well defined since decimals may be represented as reduced fractions. 8 –2 = = 8 = ( ) = 1/4 The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 11. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 Example A. 80 = 1 8 = (  8 ) = 4 3 2 82 1 3 2  8 1 64 1 The Exponential Functions K N 3 2 3 2 Decimal exponents are well defined since decimals may be represented as reduced fractions. b. 101.22 = 8 –2 = = 8 = ( ) = 1/4 Example B. a. 91.50 = The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 12. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 Example A. 80 = 1 8 = (  8 ) = 4 3 2 82 1 3 2  8 1 64 1 The Exponential Functions K N 3 2 3 2 Decimal exponents are well defined since decimals may be represented as reduced fractions. b. 101.22 = 8 –2 = = 8 = ( ) = 1/4 Example B. a. 91.50 = 9 = 3 2 The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 13. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 Example A. 80 = 1 8 = (  8 ) = 4 3 2 82 1 3 2  8 1 64 1 The Exponential Functions K N 3 2 3 2 Decimal exponents are well defined since decimals may be represented as reduced fractions. b. 101.22 = 8 –2 = = 8 = ( ) = 1/4 Example B. a. 91.50 = 9 = (9 ) = 27 3 2 3 The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 14. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 Example A. 80 = 1 8 = (  8 ) = 4 3 2 82 1 3 2  8 1 64 1 The Exponential Functions K N 3 2 3 2 Decimal exponents are well defined since decimals may be represented as reduced fractions. b. 101.22 = 10 61 50 8 –2 = = 8 = ( ) = 1/4 Example B. a. 91.50 = 9 = (9 ) = 27 3 2 3 The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 15. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 Example A. 80 = 1 8 = (  8 ) = 4 3 2 82 1 3 2  8 1 64 1 The Exponential Functions K N 3 2 3 2 Decimal exponents are well defined since decimals may be represented as reduced fractions. b. 101.22 = 10 = ( 10 )  16.59586…. 61 50 50 61 8 –2 = = 8 = ( ) = 1/4 Example B. a. 91.50 = 9 = (9 ) = 27 3 2 3 The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 16. For a real-number-exponent such as , we approximate the real number with fractions then use the fractional powers to approximate the result.   3.14159.. 10  Example C. The Exponential Functions
  • 17. For a real-number-exponent such as , we approximate the real number with fractions then use the fractional powers to approximate the result.   3.14159.. 3.1 3.14 3.141 3.1415 10  Example C.  The Exponential Functions
  • 18. For a real-number-exponent such as , we approximate the real number with fractions then use the fractional powers to approximate the result.   3.14159.. 3.1 3.14 3.141 3.1415 10  10 Example C. 31 10  The Exponential Functions ≈1258.9..
  • 19. For a real-number-exponent such as , we approximate the real number with fractions then use the fractional powers to approximate the result.   3.14159.. 3.1 3.14 3.141 3.1415 10  10 10 Example C. 31 10 314 100  The Exponential Functions ≈1258.9.. ≈1380.3..
  • 20. For a real-number-exponent such as , we approximate the real number with fractions then use the fractional powers to approximate the result.   3.14159.. 3.1 3.14 3.141 3.1415 10  10 10 10 10 Example C. 31 10 314 100 3141 1000 31415 10000  The Exponential Functions ≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1..
  • 21. For a real-number-exponent such as , we approximate the real number with fractions then use the fractional powers to approximate the result.   3.14159.. 3.1 3.14 3.141 3.1415 10  10 10 10 10 10≈1385.45.. Example C. 31 10 314 100 3141 1000 31415 10000  The Exponential Functions ≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1..
  • 22. For a real-number-exponent such as , we approximate the real number with fractions then use the fractional powers to approximate the result.   3.14159.. 3.1 3.14 3.141 3.1415 10  10 10 10 10 10≈1385.45.. Example C. 31 10 314 100 3141 1000 31415 10000  The Exponential Functions Hence exponential functions or functions of the form f(x) = bx (b > 0 and b  1) are defined for all real numbers x. ≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1..
  • 23. For a real-number-exponent such as , we approximate the real number with fractions then use the fractional powers to approximate the result.   3.14159.. 3.1 3.14 3.141 3.1415 10  10 10 10 10 10≈1385.45.. Example C. 31 10 314 100 3141 1000 31415 10000  The Exponential Functions Hence exponential functions or functions of the form f(x) = bx (b > 0 and b  1) are defined for all real numbers x. ≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1.. Exponential functions show up in finance, bio science, computer science and physical sciences.
  • 24. For a real-number-exponent such as , we approximate the real number with fractions then use the fractional powers to approximate the result.   3.14159.. 3.1 3.14 3.141 3.1415 10  10 10 10 10 10≈1385.45.. Example C. 31 10 314 100 3141 1000 31415 10000  The Exponential Functions Hence exponential functions or functions of the form f(x) = bx (b > 0 and b  1) are defined for all real numbers x. ≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1.. Exponential functions show up in finance, bio science, computer science and physical sciences. The most used exponential functions are y = 10x, y = ex and y = 2x.
  • 25. For a real-number-exponent such as , we approximate the real number with fractions then use the fractional powers to approximate the result.   3.14159.. 3.1 3.14 3.141 3.1415 10  10 10 10 10 10≈1385.45.. Example C. 31 10 314 100 3141 1000 31415 10000  The Exponential Functions Hence exponential functions or functions of the form f(x) = bx (b > 0 and b  1) are defined for all real numbers x. ≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1.. Exponential functions show up in finance, bio science, computer science and physical sciences. The most used exponential functions are y = 10x, y = ex and y = 2x. Let’s use $ growth as applications below.
  • 26. Example D. We deposit $1,000 in an account that gives 1% interest compounded monthly. How much money is there after 1 month? 2 months? 3 months? and after 4 months? Compound Interest
  • 27. Example D. We deposit $1,000 in an account that gives 1% interest compounded monthly. How much money is there after 1 month? 2 months? 3 months? and after 4 months? Compound Interest Let P = principal, i = (periodic) interest rate, A = accumulation. After 1 period A = P(1 + i)
  • 28. Example D. We deposit $1,000 in an account that gives 1% interest compounded monthly. How much money is there after 1 month? 2 months? 3 months? and after 4 months? After 1 month: 1000(1 + 0.01) = $1010. Compound Interest Let P = principal, i = (periodic) interest rate, A = accumulation. After 1 period A = P(1 + i)
  • 29. Example D. We deposit $1,000 in an account that gives 1% interest compounded monthly. How much money is there after 1 month? 2 months? 3 months? and after 4 months? After 1 month: 1000(1 + 0.01) = $1010. After 2 months: 1010(1 + 0.01) Compound Interest Let P = principal, i = (periodic) interest rate, A = accumulation. After 1 period A = P(1 + i)
  • 30. Example D. We deposit $1,000 in an account that gives 1% interest compounded monthly. How much money is there after 1 month? 2 months? 3 months? and after 4 months? After 1 month: 1000(1 + 0.01) = $1010. After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01) Compound Interest Let P = principal, i = (periodic) interest rate, A = accumulation. After 1 period A = P(1 + i)
  • 31. Example D. We deposit $1,000 in an account that gives 1% interest compounded monthly. How much money is there after 1 month? 2 months? 3 months? and after 4 months? After 1 month: 1000(1 + 0.01) = $1010. After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01) = 1000(1 + 0.01)2 = $1020.10 Compound Interest Let P = principal, i = (periodic) interest rate, A = accumulation. After 1 period A = P(1 + i)
  • 32. Example D. We deposit $1,000 in an account that gives 1% interest compounded monthly. How much money is there after 1 month? 2 months? 3 months? and after 4 months? After 1 month: 1000(1 + 0.01) = $1010. After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01) = 1000(1 + 0.01)2 = $1020.10 Compound Interest Let P = principal, i = (periodic) interest rate, A = accumulation. After 1 period A = P(1 + i) After 2 periods A = P(1 + i)(1 + i) = P(1 + i)2
  • 33. Example D. We deposit $1,000 in an account that gives 1% interest compounded monthly. How much money is there after 1 month? 2 months? 3 months? and after 4 months? After 1 month: 1000(1 + 0.01) = $1010. After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01) = 1000(1 + 0.01)2 = $1020.10 After 3 months: 1020(1 + 0.01) = 1000(1 + 0.01)2(1 + 0.01) = 1000(1 + 0.01)3 = $1030.30 Compound Interest Let P = principal, i = (periodic) interest rate, A = accumulation. After 1 period A = P(1 + i) After 2 periods A = P(1 + i)(1 + i) = P(1 + i)2
  • 34. Example D. We deposit $1,000 in an account that gives 1% interest compounded monthly. How much money is there after 1 month? 2 months? 3 months? and after 4 months? After 1 month: 1000(1 + 0.01) = $1010. After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01) = 1000(1 + 0.01)2 = $1020.10 After 3 months: 1020(1 + 0.01) = 1000(1 + 0.01)2(1 + 0.01) = 1000(1 + 0.01)3 = $1030.30 Compound Interest Let P = principal, i = (periodic) interest rate, A = accumulation. After 1 period A = P(1 + i) After 2 periods A = P(1 + i)(1 + i) = P(1 + i)2 After 3 periods A = P(1 + i)2(1 + i) = P(1 + i)3
  • 35. Example D. We deposit $1,000 in an account that gives 1% interest compounded monthly. How much money is there after 1 month? 2 months? 3 months? and after 4 months? After 1 month: 1000(1 + 0.01) = $1010. After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01) = 1000(1 + 0.01)2 = $1020.10 After 3 months: 1020(1 + 0.01) = 1000(1 + 0.01)2(1 + 0.01) = 1000(1 + 0.01)3 = $1030.30 After 4 months: 1030(1 + 0.01) = 1000(1 + 0.01)3(1 + 0.01) = 1000(1 + 0.01)4 = $1040.60 Compound Interest Let P = principal, i = (periodic) interest rate, A = accumulation. After 1 period A = P(1 + i) After 2 periods A = P(1 + i)(1 + i) = P(1 + i)2 After 3 periods A = P(1 + i)2(1 + i) = P(1 + i)3
  • 36. Example D. We deposit $1,000 in an account that gives 1% interest compounded monthly. How much money is there after 1 month? 2 months? 3 months? and after 4 months? After 1 month: 1000(1 + 0.01) = $1010. After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01) = 1000(1 + 0.01)2 = $1020.10 After 3 months: 1020(1 + 0.01) = 1000(1 + 0.01)2(1 + 0.01) = 1000(1 + 0.01)3 = $1030.30 After 4 months: 1030(1 + 0.01) = 1000(1 + 0.01)3(1 + 0.01) = 1000(1 + 0.01)4 = $1040.60 Compound Interest Let P = principal, i = (periodic) interest rate, A = accumulation. After 1 period A = P(1 + i) After 2 periods A = P(1 + i)(1 + i) = P(1 + i)2 After 3 periods A = P(1 + i)2(1 + i) = P(1 + i)3 Continue the pattern, after N periods, we obtain the exponential periodic-compound formula (PINA): P(1 + i)N = A.
  • 37. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation The PINA Formula (Periodic Interest)
  • 38. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest)
  • 39. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. 0 1 2 3 Nth period N–1
  • 40. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. P 0 1 2 3 Nth period N–1 Rule: Multiply (1 + i) each period forward
  • 41. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. P 0 1 2 3 Nth period N–1 Rule: Multiply (1 + i) each period forward P(1 + i)
  • 42. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. P 0 1 2 3 Nth period N–1 Rule: Multiply (1 + i) each period forward P(1 + i) P(1 + i) 2
  • 43. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. P 0 1 2 3 Nth period N–1 Rule: Multiply (1 + i) each period forward P(1 + i) P(1 + i) 2 P(1 + i) 3
  • 44. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. P 0 1 2 3 Nth period N–1 Rule: Multiply (1 + i) each period forward P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1
  • 45. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. P 0 1 2 3 Nth period N–1 Rule: Multiply (1 + i) each period forward P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N
  • 46. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. P 0 1 2 3 Nth period N–1 Rule: Multiply (1 + i) each period forward P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N Example E. $1,000 is in an account that has a monthly interest rate of 1%. How much will be there after 60 years?
  • 47. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. P 0 1 2 3 Nth period N–1 Rule: Multiply (1 + i) each period forward P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N Example E. $1,000 is in an account that has a monthly interest rate of 1%. How much will be there after 60 years? We have P = $1,000, i = 1% = 0.01,
  • 48. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. P 0 1 2 3 Nth period N–1 Rule: Multiply (1 + i) each period forward P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N Example E. $1,000 is in an account that has a monthly interest rate of 1%. How much will be there after 60 years? We have P = $1,000, i = 1% = 0.01, N = 60 *12 = 720 months
  • 49. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. P 0 1 2 3 Nth period N–1 Rule: Multiply (1 + i) each period forward P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N Example E. $1,000 is in an account that has a monthly interest rate of 1%. How much will be there after 60 years? We have P = $1,000, i = 1% = 0.01, N = 60 *12 = 720 months so by PINA, there will be 1000(1 + 0.01) 720
  • 50. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. P 0 1 2 3 Nth period N–1 Rule: Multiply (1 + i) each period forward P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N Example E. $1,000 is in an account that has a monthly interest rate of 1%. How much will be there after 60 years? We have P = $1,000, i = 1% = 0.01, N = 60 *12 = 720 months so by PINA, there will be 1000(1 + 0.01) 720 = $1,292,376.71 after 60 years.
  • 51. Compound Interest In practice, compound interests are usually quoted in annual interest rate r and the frequency f, the number of times of compounding in one year, so the periodic rate i = . r f
  • 52. Example F. We open an account with annual rate r = 9%, compounded monthly, i.e. 12 times a year. Compound Interest In practice, compound interests are usually quoted in annual interest rate r and the frequency f, the number of times of compounding in one year, so the periodic rate i = . r f
  • 53. Example F. We open an account with annual rate r = 9%, compounded monthly, i.e. 12 times a year. We have r = 9% = 0.09 for one year, and f = 12 is the number of times of compounding in one year, Compound Interest In practice, compound interests are usually quoted in annual interest rate r and the frequency f, the number of times of compounding in one year, so the periodic rate i = . r f
  • 54. Example F. We open an account with annual rate r = 9%, compounded monthly, i.e. 12 times a year. We have r = 9% = 0.09 for one year, and f = 12 is the number of times of compounding in one year, so the periodic or monthly rate i = 0.09/12. Compound Interest In practice, compound interests are usually quoted in annual interest rate r and the frequency f, the number of times of compounding in one year, so the periodic rate i = . r f
  • 55. Example F. We open an account with annual rate r = 9%, compounded monthly, i.e. 12 times a year. After 40 years the total return is $250,000, what was the initial principal? We have r = 9% = 0.09 for one year, and f = 12 is the number of times of compounding in one year, so the periodic or monthly rate i = 0.09/12. Compound Interest In practice, compound interests are usually quoted in annual interest rate r and the frequency f, the number of times of compounding in one year, so the periodic rate i = . r f
  • 56. Example F. We open an account with annual rate r = 9%, compounded monthly, i.e. 12 times a year. After 40 years the total return is $250,000, what was the initial principal? We have r = 9% = 0.09 for one year, and f = 12 is the number of times of compounding in one year, so the periodic or monthly rate i = 0.09/12. After 40 years, i.e. N = 40(12) = 480 months the return A = 250,000 Compound Interest In practice, compound interests are usually quoted in annual interest rate r and the frequency f, the number of times of compounding in one year, so the periodic rate i = . r f
  • 57. Example F. We open an account with annual rate r = 9%, compounded monthly, i.e. 12 times a year. After 40 years the total return is $250,000, what was the initial principal? We have r = 9% = 0.09 for one year, and f = 12 is the number of times of compounding in one year, so the periodic or monthly rate i = 0.09/12. After 40 years, i.e. N = 40(12) = 480 months the return A = 250,000, so by PINA: Compound Interest P (1 + ) 480 = 250,000 0.09 12 In practice, compound interests are usually quoted in annual interest rate r and the frequency f, the number of times of compounding in one year, so the periodic rate i = . r f
  • 58. Example F. We open an account with annual rate r = 9%, compounded monthly, i.e. 12 times a year. After 40 years the total return is $250,000, what was the initial principal? We have r = 9% = 0.09 for one year, and f = 12 is the number of times of compounding in one year, so the periodic or monthly rate i = 0.09/12. After 40 years, i.e. N = 40(12) = 480 months the return A = 250,000, so by PINA: Compound Interest P (1 + ) 480 = 250,000 0.09 12 or (1 + ) 480 P = 250,000 0.09 12 In practice, compound interests are usually quoted in annual interest rate r and the frequency f, the number of times of compounding in one year, so the periodic rate i = . r f
  • 59. Example F. We open an account with annual rate r = 9%, compounded monthly, i.e. 12 times a year. After 40 years the total return is $250,000, what was the initial principal? We have r = 9% = 0.09 for one year, and f = 12 is the number of times of compounding in one year, so the periodic or monthly rate i = 0.09/12. After 40 years, i.e. N = 40(12) = 480 months the return A = 250,000, so by PINA: Compound Interest P (1 + ) 480 = 250,000 0.09 12 or (1 + ) 480 P = 250,000 0.09 12 P = $6,923.31 by calculator Hence the initial deposit is $6,923.31. In practice, compound interests are usually quoted in annual interest rate r and the frequency f, the number of times of compounding in one year, so the periodic rate i = . r f
  • 60. x -4 -3 -2 -1 0 1 2 3 4 y=2x 1/16 1/8 1/4 1/2 1 2 4 8 16 Graphs of the Exponential Functions Here is a table of y = 2x for plotting its graph.
  • 61. (0,1) (1,2) (2,4) (3,8) (-1,1/2) (-2,1/4) y=2x Graph of y = 2x x -4 -3 -2 -1 0 1 2 3 4 y=2x 1/16 1/8 1/4 1/2 1 2 4 8 16 Graphs of the Exponential Functions Here is a table of y = 2x for plotting its graph.
  • 62. (0,1) (1,2) (2,4) (3,8) (-1,1/2) (-2,1/4) y=2x Graph of y = 2x x -4 -3 -2 -1 0 1 2 3 4 y=2x 1/16 1/8 1/4 1/2 1 2 4 8 16 Graphs of the Exponential Functions Graph of y = bx where b>1 Here is a table of y = 2x for plotting its graph. This is the shape of the graphs of y = bx for b > 1.
  • 63. x -4 -3 -2 -1 0 1 2 3 4 y=(½)x 16 8 4 2 1 1/2 1/4 1/8 1/16 Here is a table of y = (½)x for plotting its graph. Graphs of the Exponential Functions
  • 64. (0,1) (-1,2) (-2,4) (-3,8) (1,1/2) (2,1/4) y= (½)x Graph of y = (½)x x -4 -3 -2 -1 0 1 2 3 4 y=(½)x 16 8 4 2 1 1/2 1/4 1/8 1/16 Here is a table of y = (½)x for plotting its graph. Graphs of the Exponential Functions
  • 65. (0,1) (-1,2) (-2,4) (-3,8) (1,1/2) (2,1/4) y= (½)x Graph of y = bx where 0<b<1 Graph of y = (½)x x -4 -3 -2 -1 0 1 2 3 4 y=(½)x 16 8 4 2 1 1/2 1/4 1/8 1/16 Here is a table of y = (½)x for plotting its graph. Graphs of the Exponential Functions This is the shape of the graphs of y = bx for b < 1.
  • 66. The graphs shown here are the different returns with r = 20% with different compounding frequencies. Compounded return on $1,000 with annual interest rate r = 20% (Wikipedia) Compound Interest
  • 67. The graphs shown here are the different returns with r = 20% with different compounding frequencies. We observe that I. the more frequently we compound, the bigger the return Compounded return on $1,000 with annual interest rate r = 20% (Wikipedia) Compound Interest
  • 68. The graphs shown here are the different returns with r = 20% with different compounding frequencies. We observe that I. the more frequently we compound, the bigger the return II. but the returns do not go above the blue-line the continuous compound return, which is the next topic. Compounded return on $1,000 with annual interest rate r = 20% (Wikipedia) Compound Interest
  • 69. Compound Interest B. Given the monthly compounded periodic rate i, find the principal needed to obtain a return of $1,000 after the given amount the time. 1. i = 1%, time = 60 months. Exercise A. Given the monthly compounded periodic rate i and the amount the time, find the return with a principal of $1,000. 2. i = 1%, time = 60 years. 3. i = ½ %, time = 60 years 4. i = ½ %, time = 60 months. 5. i = 1¼ %, time = 6 months. 6. i = 1¼ %, time = 5½ years. . 7. i = 3/8%, time = 52 months. 8. i = 2/3%, time = 27 months. 1. i = 1%, time = 60 months. 2. i = 1%, time = 60 years. 3. i = ½ %, time = 60 years 4. i = ½ %, time = 60 months. 5. i = 1¼ %, time = 60 months. 6. i = 1¼ %, time = 60 years. 7. i = 3/8%, time = 60 years 8. i = 2/3%, time = 60 months.
  • 70. Compound Interest D. Given the annual rate r, convert it into the monthly compounded periodic rate i and find the principal needed to obtain $1,000 after the given amount the time. 1. r = 1%, time = 60 months. C. Given the annual rate r, convert it into the monthly compounded periodic rate i and find the return with a principal of $1,000 after the given amount the time. 2. r = 1%, time = 60 years. 3. r = 3 %, time = 60 years 4. r = 3½ %, time = 60 months. 1. r = 1%, time = 60 months. 2. r = 1%, time = 60 years. 3. r = 3 %, time = 60 years 4. r = 3½ %, time = 60 months. 5. r = 1¼ %, time = 6 months. 6. r = 1¼ %, time = 5½ years. . 7. r = 3/8%, time = 52 months. 8. r = 2/3%, time = 27 months. 5. r = 1¼ %, time = 6 months. 6. r = 1¼ %, time = 5½ years. . 7. r = 3/8%, time = 52 months. 8. r = 2/3%, time = 27 months.
  • 71. Exercise B. 1. 𝐴 ≈ 1816.7 (Answers to the odd problems) Exercise A. 3. 𝐴 ≈ 36271.41 5. 𝐴 ≈ 1077.39 7. 𝐴 ≈ 1214.87 1. P ≈ 550.45 3. P ≈ 27.57 5. P ≈ 474.57 7. P ≈ 67.55 1. 𝐴 ≈ 1051.25 Exercise C. 3. 𝐴 ≈ 6036.07 5. 𝐴 ≈ 1006.27 7. 𝐴 ≈ 1016.39 Exercise D. 1. 𝑃 ≈ 951.25 3. 𝑃 ≈ 165.67 5. 𝑃 ≈ 993.78 7. 𝑃 ≈ 983.88 Compound Interest