This document discusses the challenges and opportunities biology faces with increasing data generation. It outlines four key points:
1) Research approaches for analyzing infinite genomic data streams, such as digital normalization which compresses data while retaining information.
2) The need for usable software and decentralized infrastructure to perform real-time, streaming data analysis.
3) The importance of open science and reproducibility given most researchers cannot replicate their own computational analyses.
4) The lack of data analysis training in biology and efforts at UC Davis to address this through workshops and community building.