This document discusses and compares different thresholding techniques for image denoising using wavelet transforms. It introduces the concept of image denoising using wavelet transforms, which involves applying a forward wavelet transform, estimating clean coefficients using thresholding, and applying the inverse transform. It then describes several common thresholding methods - hard, soft, universal, improved, Bayes shrink, and neigh shrink. Simulation results on test images corrupted with additive white Gaussian noise show that the proposed improved thresholding technique achieves lower MSE and higher PSNR than the universal hard thresholding method, demonstrating better noise removal performance while preserving image details.