This document summarizes various data mining techniques that have been used for intrusion detection systems. It first describes the architecture of a data mining-based IDS, including sensors to collect data, detectors to evaluate the data using detection models, a data warehouse for storage, and a model generator. It then discusses supervised and unsupervised learning approaches that have been applied, including neural networks, support vector machines, K-means clustering, and self-organizing maps. Finally, it reviews several related works applying these techniques and compares their results, finding that combinations of approaches can improve detection rates while reducing false alarms.