This document summarizes a research paper that examines the effect of feature reduction in sentiment analysis of online reviews. It uses principle component analysis to reduce the number of features (product attributes) from a dataset of 500 camera reviews labeled as positive or negative. Two models are developed - one using the original set of 95 product attributes, and one using the reduced set. Support vector machines and naive Bayes classifiers are applied to both models and their performance is evaluated to determine if classification accuracy can be maintained while using fewer features. The results show it is possible to achieve similar accuracy levels with less features, improving computational efficiency.