This document discusses different techniques for image denoising using wavelet thresholding. It begins with an introduction to image denoising and the wavelet transform approach. Then it describes various thresholding methods used in wavelet-based image denoising, including hard, soft, universal, improved, Bayes shrink, and neigh shrink thresholding. It also reviews prior literature comparing these different techniques. Finally, it presents simulated results on test images comparing the performance of universal hard thresholding and improved thresholding based on mean squared error and peak signal-to-noise ratio metrics under varying levels of additive white Gaussian noise. The improved thresholding method achieved better denoising performance according to the quantitative metrics.