The document discusses using machine learning algorithms like Random Forest and k-Nearest Neighbors for intrusion detection. It analyzes the KDD Cup 1999 intrusion detection dataset to classify network traffic as normal or different types of attacks. The proposed model uses Random Forest for feature selection and k-Nearest Neighbors for classification to more accurately detect known and unknown attacks. Experimental results show the combined approach achieves better detection rates than other algorithms alone, especially for novel attacks not present in training data. Further combining the algorithms into a two-stage process may yield even higher accuracy.