SlideShare a Scribd company logo
1 of 33
Download to read offline
Binomial Theorem
Binomial Theorem
Binomial Expansions
A binomial expression is one which contains two terms.
Binomial Theorem
Binomial Expansions
A binomial expression is one which contains two terms.
 1  x 0  1
Binomial Theorem
Binomial Expansions
A binomial expression is one which contains two terms.
 1  x 0  1
1  x 1  1  1x
Binomial Theorem
Binomial Expansions
A binomial expression is one which contains two terms.
 1  x 0  1
 1  x 1  1  1x
1  x 2  1  2 x  1x 2
Binomial Theorem
Binomial Expansions
A binomial expression is one which contains two terms.
 1  x 0  1
 1  x 1  1  1x
1  x 2  1  2 x  1x 2
1  x   1  x 1  2 x  1x 2 
         3


          1  2 x  x 2  x  2 x 2  x3
          1  3x  3x 2  x 3
Binomial Theorem
Binomial Expansions
A binomial expression is one which contains two terms.
 1  x 0  1
 1  x 1  1  1x
1  x 2  1  2 x  1x 2
1  x   1  x 1  2 x  1x 2 
         3


          1  2 x  x 2  x  2 x 2  x3
          1  3x  3x 2  x 3
1  x 4  1  x 1  3x  3x 2  x 3 
          1  3x  3x 2  x 3  x  3x 2  3x 3  x 4
          1  4 x  6 x 2  4 x3  x 4
Blaise Pascal saw a pattern which we now know as Pascal’s Triangle
Blaise Pascal saw a pattern which we now know as Pascal’s Triangle

                               1
Blaise Pascal saw a pattern which we now know as Pascal’s Triangle

                                 1
                             1       1
Blaise Pascal saw a pattern which we now know as Pascal’s Triangle

                                 1
                             1       1
                         1       2       1
Blaise Pascal saw a pattern which we now know as Pascal’s Triangle

                                  1
                              1       1
                          1       2       1
                      1       3       3       1
Blaise Pascal saw a pattern which we now know as Pascal’s Triangle

                                   1
                               1       1
                           1       2       1
                       1       3       3       1
                   1       4       6       4       1
Blaise Pascal saw a pattern which we now know as Pascal’s Triangle

                                      1
                                 1        1
                             1        2        1
                         1       3        3        1
                     1       4        6        4       1
                 1       5       10       10       5       1
Blaise Pascal saw a pattern which we now know as Pascal’s Triangle

                                        1
                                   1         1
                              1         2         1
                          1        3         3         1
                      1       4         6         4        1
                  1       5        10        10        5       1
              1       6       15        20        15       6       1
Blaise Pascal saw a pattern which we now know as Pascal’s Triangle

                                           1
                                      1         1
                                 1         2         1
                            1         3         3         1
                        1        4         6         4         1
                    1       5         10        10        5        1
                1       6        15        20        15        6       1
            1       7       21        35        35        21       7       1
Blaise Pascal saw a pattern which we now know as Pascal’s Triangle

                                             1
                                        1         1
                                   1         2         1
                              1         3         3         1
                         1         4         6         4         1
                     1        5         10        10        5         1
                 1       6         15        20        15        6        1
             1       7        21        35        35        21        7       1
         1       8       28        56        70        56        28       8       1
Blaise Pascal saw a pattern which we now know as Pascal’s Triangle

                                              1
                                         1         1
                                    1         2         1
                               1         3         3         1
                           1        4         6         4         1
                       1       5         10        10        5        1
                   1       6        15        20        15        6       1
               1       7       21        35        35        21       7       1
           1       8     28  56    70   56    28 8   1
       1       9       36 84    126 126    84   36 9   1
Blaise Pascal saw a pattern which we now know as Pascal’s Triangle

                                            1
                                       1         1
                                  1         2         1
                             1         3         3         1
                         1        4         6         4         1
                     1       5         10        10        5        1
                 1       6        15        20        15        6       1
             1       7       21        35        35        21       7       1
         1    28 856    70   56    28 8   1
      1  9  36 84    126 126    84   36 9   1
     1 10 45 120 210 252 210 120 45 10 1
7
           2x 
e.g .i 1     
            3
7
           2x 
e.g .i 1     
            3
                            2         3            4               5

 17  71    211    351    351    211  
           6 2x        5 2x        4 2x        3 2x        2 2x
                                                     
             3         3         3         3         3
            6           7
       2x    2x 
 71   
       3  3
7
           2x 
e.g .i 1     
            3
                            2             3             4          5

 17  71    211    351    351    211  
           6 2x        5 2x        4 2x        3 2x        2 2x
                                                     
             3         3         3         3         3
            6           7
       2x    2x 
 71   
       3  3
      14 x 84 x 2 280 x 3 560 x 4 672 x 5 448 x 6 128 x 7
 1                                        
        3     9       27    81     243     729     2187
7
            2x 
 e.g .i 1     
             3
                                 2               3               4              5

  17  71    211    351    351    211  
            6 2x        5 2x        4 2x        3 2x        2 2x
                                                      
              3         3         3         3         3
             6           7
        2x    2x 
  71   
        3  3
       14 x 84 x 2 280 x 3 560 x 4 672 x 5 448 x 6 128 x 7
  1                                        
         3     9       27    81     243     729     2187
ii  Use the expansion of 1  x 10 to find the value of 0.99810 to 8 dps
7
           1  2 x 
  e.g .i         
                3
                                     2                 3                 4                5

  17  71    211    351    351    211  
            6 2x        5 2x        4 2x        3 2x        2 2x
                                                      
              3         3         3         3         3
               6            7
        2x    2x 
  71   
        3  3
       14 x 84 x 2 280 x 3 560 x 4 672 x 5 448 x 6 128 x 7
  1                                        
         3     9       27    81     243     729     2187
ii  Use the expansion of 1  x 10 to find the value of 0.99810 to 8 dps
   1  x 10  1  10 x  45 x 2  120 x 3  210 x 4  252 x 5  210 x 6  120 x 7  45 x8
   10 x 9  x10
7
           1  2 x 
  e.g .i         
                3
                                     2                 3                 4                5

  17  71    211    351    351    211  
            6 2x        5 2x        4 2x        3 2x        2 2x
                                                      
              3         3         3         3         3
               6            7
        2x    2x 
  71   
        3  3
       14 x 84 x 2 280 x 3 560 x 4 672 x 5 448 x 6 128 x 7
  1                                        
         3     9       27    81     243     729     2187
ii  Use the expansion of 1  x 10 to find the value of 0.99810 to 8 dps
   1  x 10  1  10 x  45 x 2  120 x 3  210 x 4  252 x 5  210 x 6  120 x 7  45 x8
   10 x 9  x10
         0.99810  1  100.002  450.0022  1200.0023
7
           1  2 x 
  e.g .i         
                3
                                       2                 3                4               5

  17  71    211    351    351    211  
            6 2x        5 2x        4 2x        3 2x        2 2x
                                                      
              3         3         3         3         3
               6              7
        2x    2x 
  71   
        3  3
       14 x 84 x 2 280 x 3 560 x 4 672 x 5 448 x 6 128 x 7
  1                                        
         3     9       27    81     243     729     2187
ii  Use the expansion of 1  x 10 to find the value of 0.99810 to 8 dps
   1  x 10  1  10 x  45 x 2  120 x 3  210 x 4  252 x 5  210 x 6  120 x 7  45 x8
   10 x 9  x10
         0.998  1  100.002  450.002  1200.002
                   10                                2                3


                             0.98017904
iii  Find the coefficient of x 2 in 2  3x 4  5 x 4
iii  Find the coefficient of x 2 in 2  3x 4  5 x 4
       2  3x 4  5 x 4
        2  3 x 44  443 5x   642 5x 2  445x 3  5x 4 
iii  Find the coefficient of x 2 in 2  3x 4  5 x 4
       2  3x 4  5 x 4
        2  3 x 44  443 5x   642 5x 2  445x 3  5x 4 
iii  Find the coefficient of x 2 in 2  3x 4  5 x 4
       2  3x 4  5 x 4
        2  3 x 44  443 5x   642 5x 2  445x 3  5x 4 
iii  Find the coefficient of x 2 in 2  3x 4  5 x 4
       2  3x 4  5 x 4
        2  3 x 44  443 5x   642 5x 2  445x 3  5x 4 

      coefficient of x 2  26 4  5  34 4  5
                                         2   2            3
iii  Find the coefficient of x 2 in 2  3x 4  5 x 4
       2  3x 4  5 x 4
        2  3 x 44  443 5x   642 5x 2  445x 3  5x 4 

      coefficient of x 2  26 4  5  34 4  5
                                         2   2            3


                              4800  3840
                              960
iii  Find the coefficient of x 2 in 2  3x 4  5 x 4
       2  3x 4  5 x 4
        2  3 x 44  443 5x   642 5x 2  445x 3  5x 4 

      coefficient of x 2  26 4  5  34 4  5
                                         2   2            3


                              4800  3840
                              960




    Exercise 5A; 2ace etc, 4, 6, 7, 9ad, 12b, 13ac, 14ace, 16a, 22, 23

More Related Content

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 

Recently uploaded (20)

POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 

Binomial Theorem Expansions

  • 2. Binomial Theorem Binomial Expansions A binomial expression is one which contains two terms.
  • 3. Binomial Theorem Binomial Expansions A binomial expression is one which contains two terms. 1  x 0  1
  • 4. Binomial Theorem Binomial Expansions A binomial expression is one which contains two terms. 1  x 0  1 1  x 1  1  1x
  • 5. Binomial Theorem Binomial Expansions A binomial expression is one which contains two terms. 1  x 0  1 1  x 1  1  1x 1  x 2  1  2 x  1x 2
  • 6. Binomial Theorem Binomial Expansions A binomial expression is one which contains two terms. 1  x 0  1 1  x 1  1  1x 1  x 2  1  2 x  1x 2 1  x   1  x 1  2 x  1x 2  3  1  2 x  x 2  x  2 x 2  x3  1  3x  3x 2  x 3
  • 7. Binomial Theorem Binomial Expansions A binomial expression is one which contains two terms. 1  x 0  1 1  x 1  1  1x 1  x 2  1  2 x  1x 2 1  x   1  x 1  2 x  1x 2  3  1  2 x  x 2  x  2 x 2  x3  1  3x  3x 2  x 3 1  x 4  1  x 1  3x  3x 2  x 3   1  3x  3x 2  x 3  x  3x 2  3x 3  x 4  1  4 x  6 x 2  4 x3  x 4
  • 8. Blaise Pascal saw a pattern which we now know as Pascal’s Triangle
  • 9. Blaise Pascal saw a pattern which we now know as Pascal’s Triangle 1
  • 10. Blaise Pascal saw a pattern which we now know as Pascal’s Triangle 1 1 1
  • 11. Blaise Pascal saw a pattern which we now know as Pascal’s Triangle 1 1 1 1 2 1
  • 12. Blaise Pascal saw a pattern which we now know as Pascal’s Triangle 1 1 1 1 2 1 1 3 3 1
  • 13. Blaise Pascal saw a pattern which we now know as Pascal’s Triangle 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1
  • 14. Blaise Pascal saw a pattern which we now know as Pascal’s Triangle 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1
  • 15. Blaise Pascal saw a pattern which we now know as Pascal’s Triangle 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1
  • 16. Blaise Pascal saw a pattern which we now know as Pascal’s Triangle 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1
  • 17. Blaise Pascal saw a pattern which we now know as Pascal’s Triangle 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1
  • 18. Blaise Pascal saw a pattern which we now know as Pascal’s Triangle 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1
  • 19. Blaise Pascal saw a pattern which we now know as Pascal’s Triangle 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 28 856 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 1 10 45 120 210 252 210 120 45 10 1
  • 20. 7   2x  e.g .i 1   3
  • 21. 7   2x  e.g .i 1   3 2 3 4 5  17  71    211    351    351    211   6 2x 5 2x 4 2x 3 2x 2 2x            3  3  3  3  3 6 7  2x    2x   71     3  3
  • 22. 7   2x  e.g .i 1   3 2 3 4 5  17  71    211    351    351    211   6 2x 5 2x 4 2x 3 2x 2 2x            3  3  3  3  3 6 7  2x    2x   71     3  3 14 x 84 x 2 280 x 3 560 x 4 672 x 5 448 x 6 128 x 7  1       3 9 27 81 243 729 2187
  • 23. 7   2x  e.g .i 1   3 2 3 4 5  17  71    211    351    351    211   6 2x 5 2x 4 2x 3 2x 2 2x            3  3  3  3  3 6 7  2x    2x   71     3  3 14 x 84 x 2 280 x 3 560 x 4 672 x 5 448 x 6 128 x 7  1       3 9 27 81 243 729 2187 ii  Use the expansion of 1  x 10 to find the value of 0.99810 to 8 dps
  • 24. 7 1  2 x  e.g .i    3 2 3 4 5  17  71    211    351    351    211   6 2x 5 2x 4 2x 3 2x 2 2x            3  3  3  3  3 6 7  2x    2x   71     3  3 14 x 84 x 2 280 x 3 560 x 4 672 x 5 448 x 6 128 x 7  1       3 9 27 81 243 729 2187 ii  Use the expansion of 1  x 10 to find the value of 0.99810 to 8 dps 1  x 10  1  10 x  45 x 2  120 x 3  210 x 4  252 x 5  210 x 6  120 x 7  45 x8  10 x 9  x10
  • 25. 7 1  2 x  e.g .i    3 2 3 4 5  17  71    211    351    351    211   6 2x 5 2x 4 2x 3 2x 2 2x            3  3  3  3  3 6 7  2x    2x   71     3  3 14 x 84 x 2 280 x 3 560 x 4 672 x 5 448 x 6 128 x 7  1       3 9 27 81 243 729 2187 ii  Use the expansion of 1  x 10 to find the value of 0.99810 to 8 dps 1  x 10  1  10 x  45 x 2  120 x 3  210 x 4  252 x 5  210 x 6  120 x 7  45 x8  10 x 9  x10 0.99810  1  100.002  450.0022  1200.0023
  • 26. 7 1  2 x  e.g .i    3 2 3 4 5  17  71    211    351    351    211   6 2x 5 2x 4 2x 3 2x 2 2x            3  3  3  3  3 6 7  2x    2x   71     3  3 14 x 84 x 2 280 x 3 560 x 4 672 x 5 448 x 6 128 x 7  1       3 9 27 81 243 729 2187 ii  Use the expansion of 1  x 10 to find the value of 0.99810 to 8 dps 1  x 10  1  10 x  45 x 2  120 x 3  210 x 4  252 x 5  210 x 6  120 x 7  45 x8  10 x 9  x10 0.998  1  100.002  450.002  1200.002 10 2 3  0.98017904
  • 27. iii  Find the coefficient of x 2 in 2  3x 4  5 x 4
  • 28. iii  Find the coefficient of x 2 in 2  3x 4  5 x 4 2  3x 4  5 x 4  2  3 x 44  443 5x   642 5x 2  445x 3  5x 4 
  • 29. iii  Find the coefficient of x 2 in 2  3x 4  5 x 4 2  3x 4  5 x 4  2  3 x 44  443 5x   642 5x 2  445x 3  5x 4 
  • 30. iii  Find the coefficient of x 2 in 2  3x 4  5 x 4 2  3x 4  5 x 4  2  3 x 44  443 5x   642 5x 2  445x 3  5x 4 
  • 31. iii  Find the coefficient of x 2 in 2  3x 4  5 x 4 2  3x 4  5 x 4  2  3 x 44  443 5x   642 5x 2  445x 3  5x 4   coefficient of x 2  26 4  5  34 4  5 2 2 3
  • 32. iii  Find the coefficient of x 2 in 2  3x 4  5 x 4 2  3x 4  5 x 4  2  3 x 44  443 5x   642 5x 2  445x 3  5x 4   coefficient of x 2  26 4  5  34 4  5 2 2 3  4800  3840  960
  • 33. iii  Find the coefficient of x 2 in 2  3x 4  5 x 4 2  3x 4  5 x 4  2  3 x 44  443 5x   642 5x 2  445x 3  5x 4   coefficient of x 2  26 4  5  34 4  5 2 2 3  4800  3840  960 Exercise 5A; 2ace etc, 4, 6, 7, 9ad, 12b, 13ac, 14ace, 16a, 22, 23