X2 t07 06 roots of functions (2012)

1,067 views

Published on

Published in: Education, Technology
  • Be the first to comment

  • Be the first to like this

X2 t07 06 roots of functions (2012)

  1. 1. (I)Graphs of the Form y  f  xThe graph of y  f  x  can be sketched by first drawing y  f  x and noticing; f  x  is only defined if f  x   0
  2. 2. y  f x y 1 x -1
  3. 3. (I)Graphs of the Form y  f  xThe graph of y  f  x  can be sketched by first drawing y  f  x and noticing; f  x  is only defined if f  x   0 f  x   0 for all x in the domain f  x   f  x  if f  x   1 and f  x   f  x  if f  x   1
  4. 4. y  f x y 1 x -1
  5. 5. (I)Graphs of the Form y  f  xThe graph of y  f  x  can be sketched by first drawing y  f  x and noticing; f  x  is only defined if f  x   0 f  x   0 for all x in the domain f  x   f  x  if f  x   1 and f  x   f  x  if f  x   1 dy f  x   implies; dx f x  stationary points must still be stationary points  there are critical points where f  x   0
  6. 6. y  f x y y f x 1 x -1
  7. 7. y  f x y y f x 1 x -1
  8. 8. y1 y 2  f x x-1

×