SlideShare a Scribd company logo
1 of 66
Download to read offline
Roots and Coefficients
Roots and Coefficients
     For P x   ax n  bx n 1  cx n  2 
Roots and Coefficients
           For P x   ax n  bx n 1  cx n  2 
      b
    a (sum of roots, 1 at a time i.e.        )
Roots and Coefficients
            For P x   ax n  bx n 1  cx n  2 
        b
   a (sum of roots, 1 at a time i.e.        )
        c
   
        a
           (sum of roots, 2 at a time i.e.       )
Roots and Coefficients
             For P x   ax n  bx n 1  cx n  2 
        b
    a (sum of roots, 1 at a time i.e.        )
        c
   
        a
           (sum of roots, 2 at a time i.e.       )

        d
   a (sum of roots, 3 at a time i.e.    )
Roots and Coefficients
             For P x   ax n  bx n 1  cx n  2 
         b
    a (sum of roots, 1 at a time i.e.        )
         c
    
         a
            (sum of roots, 2 at a time i.e.       )

         d
   a (sum of roots, 3 at a time i.e.    )
         e
   a (sum of roots, 4 at a time)
We have already seen that for ax 2  bx  c ;
                 2   2     2  2
We have already seen that for ax 2  bx  c ;
                 2   2     2  2
                          and
                       1 1 
                         
                                
We have already seen that for ax 2  bx  c ;
                 2   2     2  2
                          and
                       1 1 
                         
                                
This can be generalised to;
We have already seen that for ax 2  bx  c ;
                 2   2     2  2
                            and
                         1 1 
                           
                                  
This can be generalised to;

                           2 
                    2           2
We have already seen that for ax 2  bx  c ;
                 2   2     2  2
                            and
                         1 1 
                           
                                  
This can be generalised to;

                           2 
                    2           2



                    1  
                                (order 2)
We have already seen that for ax 2  bx  c ;
                 2   2     2  2
                                 and
                         1       1       
                                    
                                        
This can be generalised to;

                           2 
                    2                2



                    1  
                                      (order 2)


                                       (order 3)
                          
We have already seen that for ax 2  bx  c ;
                 2   2     2  2
                                 and
                         1       1       
                                    
                                        
This can be generalised to;

                           2 
                    2                2



                    1  
                                      (order 2)


                                       (order 3)
                          

                                          (order 4)
                          
e.g. (i) x 3  2 x 2  3 x  4  0, find;
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)  
         b)   
         c)   
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
         d)   2
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
         d)   2           2 
                                 2
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
         d)   2           2 
                                 2



                         2 2  23
                         2
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
         d)   2           2 
                                 2



                         2 2  23
                         2
         e)   3
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
         d)   2           2 
                                 2



                         2 2  23
                         2
         e)   3                       3  2 2  3  4  0
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
         d)   2           2 
                                 2



                         2 2  23
                         2
         e)   3                       3  2 2  3  4  0
                                        3  2  2  3  4  0
                                         3  2 2  3  4  0
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
         d)   2           2 
                                 2



                         2 2  23
                         2
         e)   3                       3  2 2  3  4  0
                                        3  2  2  3  4  0
                                         3  2 2  3  4  0

                                   3  2  2  3   12  0
  3  2  2  3   12  0
  3  2  2  3   12  0
  3  2  2  3   12
  3  2  2  3   12  0
  3  2  2  3   12
       2 2   32   12
      2
  3  2  2  3   12  0
   3  2  2  3   12
        2 2   32   12
       2
f)   4
  3  2  2  3   12  0
   3  2  2  3   12
        2 2   32   12
       2
f)   4                    4  2 3  3 2  4  0
  3  2  2  3   12  0
   3  2  2  3   12
        2 2   32   12
       2
f)   4                    4  2 3  3 2  4  0
                            4  2  3  3 2  4   0
                                 4  2 3  3 2  4  0
  3  2  2  3   12  0
   3  2  2  3   12
        2 2   32   12
       2
f)   4                    4  2 3  3 2  4  0
                            4  2  3  3 2  4   0
                                 4  2 3  3 2  4  0

                      4  2  3  3  2  4   0
  3  2  2  3   12  0
   3  2  2  3   12
        2 2   32   12
       2
f)   4                    4  2 3  3 2  4  0
                            4  2  3  3 2  4   0
                                 4  2 3  3 2  4  0

                      4  2  3  3  2  4   0

                      4  2  3  3  2  4 
  3  2  2  3   12  0
   3  2  2  3   12
        2 2   32   12
       2
f)   4                    4  2 3  3 2  4  0
                            4  2  3  3 2  4   0
                                 4  2 3  3 2  4  0

                      4  2  3  3  2  4   0

                      4  2  3  3  2  4 
                            22   3 2   42 
                            18
g)           
g)           
                
g)           
                
    2   2   2   
g)           
                
    2   2   2   
    4  2  2    2   
    8  4  4   2   4  2  2  
    8  4   2    
g)           
                
    2   2   2   
    4  2  2    2   
    8  4  4   2   4  2  2  
    8  4   2    
    8  42   23  4
   2
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
   Roots appear in conjugate pairs when the coefficients are real.
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
   Roots appear in conjugate pairs when the coefficients are real.
 b) Show that c  k 2 a
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
   Roots appear in conjugate pairs when the coefficients are real.
 b) Show that c  k 2 a
    x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
   Roots appear in conjugate pairs when the coefficients are real.
 b) Show that c  k 2 a
    x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
                                x 2  k 2 x 2  px  q 
                                 x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q
                                 x 4  px 3  q  k 2 x 2  k 2 px  k 2 q
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
   Roots appear in conjugate pairs when the coefficients are real.
 b) Show that c  k 2 a
    x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
                                x 2  k 2 x 2  px  q 
                                 x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q
                             x 4  px 3  q  k 2 x 2  k 2 px  k 2 q
     p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4)
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
   Roots appear in conjugate pairs when the coefficients are real.
 b) Show that c  k 2 a
    x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
                                x 2  k 2 x 2  px  q 
                                 x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q
                             x 4  px 3  q  k 2 x 2  k 2 px  k 2 q
     p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4)
      Substitute (1) into (3)
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
   Roots appear in conjugate pairs when the coefficients are real.
 b) Show that c  k 2 a
    x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
                                x 2  k 2 x 2  px  q 
                                 x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q
                             x 4  px 3  q  k 2 x 2  k 2 px  k 2 q
     p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4)
      Substitute (1) into (3)                  k 2a  c
c) Show that c 2  a 2 d  abc
c) Show that c 2  a 2 d  abc

   Using (2); q  b  k 2
c) Show that c 2  a 2 d  abc

   Using (2); q  b  k 2
   Sub into (4); k 2 b  k 2   d
c) Show that c 2  a 2 d  abc

   Using (2); q  b  k 2
   Sub into (4); k 2 b  k 2   d
                    bk 2  k 4  d
c) Show that c 2  a 2 d  abc

   Using (2); q  b  k 2
   Sub into (4); k 2 b  k 2   d
                    bk 2  k 4  d
                     bc c 2
                         2 d
                     a a
c) Show that c 2  a 2 d  abc

   Using (2); q  b  k 2
   Sub into (4); k 2 b  k 2   d
                    bk 2  k 4  d
                     bc c 2                   c
                         2 d        ( k 2  )
                     a a                      a
c) Show that c 2  a 2 d  abc

   Using (2); q  b  k 2
   Sub into (4); k 2 b  k 2   d
                    bk 2  k 4  d
                     bc c 2                     c
                         2 d          ( k 2  )
                     a a                        a
                    abc  c 2  a 2 d
c) Show that c 2  a 2 d  abc

   Using (2); q  b  k 2
   Sub into (4); k 2 b  k 2   d
                    bk 2  k 4  d
                     bc c 2                     c
                         2 d          ( k 2  )
                     a a                        a
                    abc  c 2  a 2 d
                   c 2  a 2 d  abc
d) If 2 is also a root of the equation, and b = 0, show that c is even.
d) If 2 is also a root of the equation, and b = 0, show that c is even.
   Let  be the 4th root
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b     
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b     
                                                 k 2  2  0
                                                       k 2  2
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b     
                                                 k 2  2  0
                                                       k 2  2
    From c)  c  k 2 a
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b     
                                                 k 2  2  0
                                                       k 2  2
    From c)  c  k 2 a
                c  2a
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b     
                                                 k 2  2  0
                                                       k 2  2
    From c)  c  k 2 a
                c  2a
                 c  2M
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b     
                                                 k 2  2  0
                                                       k 2  2
    From c)  c  k 2 a
                c  2a
                 c  2 M  and a are both integers, M is an integer
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b     
                                                 k 2  2  0
                                                       k 2  2
    From c)  c  k 2 a
                c  2a
                 c  2 M  and a are both integers, M is an integer
        Thus c is an even number, as it is divisible by 2
Exercise 5D; 1 to 9

More Related Content

What's hot

1. ct 1 (paper-1) 10 aug 2014
1. ct 1 (paper-1) 10 aug 20141. ct 1 (paper-1) 10 aug 2014
1. ct 1 (paper-1) 10 aug 2014shikha112
 
AA Section 2-9
AA Section 2-9AA Section 2-9
AA Section 2-9Jimbo Lamb
 
On Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsOn Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsIJERA Editor
 
12X1 T01 01 log laws
12X1 T01 01 log laws12X1 T01 01 log laws
12X1 T01 01 log lawsNigel Simmons
 
Ee107 mock exam1_q&s_20feb2013_khl
Ee107 mock exam1_q&s_20feb2013_khlEe107 mock exam1_q&s_20feb2013_khl
Ee107 mock exam1_q&s_20feb2013_khlSporsho
 
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)paperpublications3
 
11X1 T14 07 approximations
11X1 T14 07 approximations11X1 T14 07 approximations
11X1 T14 07 approximationsNigel Simmons
 

What's hot (10)

1. ct 1 (paper-1) 10 aug 2014
1. ct 1 (paper-1) 10 aug 20141. ct 1 (paper-1) 10 aug 2014
1. ct 1 (paper-1) 10 aug 2014
 
AA Section 2-9
AA Section 2-9AA Section 2-9
AA Section 2-9
 
J1066069
J1066069J1066069
J1066069
 
On Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsOn Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their Applications
 
12X1 T01 01 log laws
12X1 T01 01 log laws12X1 T01 01 log laws
12X1 T01 01 log laws
 
ฟังก์ชัน 1
ฟังก์ชัน 1ฟังก์ชัน 1
ฟังก์ชัน 1
 
C024015024
C024015024C024015024
C024015024
 
Ee107 mock exam1_q&s_20feb2013_khl
Ee107 mock exam1_q&s_20feb2013_khlEe107 mock exam1_q&s_20feb2013_khl
Ee107 mock exam1_q&s_20feb2013_khl
 
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
 
11X1 T14 07 approximations
11X1 T14 07 approximations11X1 T14 07 approximations
11X1 T14 07 approximations
 

Viewers also liked

11 X1 T05 03 Equation Of Lines
11 X1 T05 03 Equation Of Lines11 X1 T05 03 Equation Of Lines
11 X1 T05 03 Equation Of LinesNigel Simmons
 
11X1 T07 03 angle theorems 2
11X1 T07 03 angle theorems 211X1 T07 03 angle theorems 2
11X1 T07 03 angle theorems 2Nigel Simmons
 
11X1 T13 01 polynomial definitions
11X1 T13 01 polynomial definitions11X1 T13 01 polynomial definitions
11X1 T13 01 polynomial definitionsNigel Simmons
 
11X1 T14 02 definite integral
11X1 T14 02 definite integral11X1 T14 02 definite integral
11X1 T14 02 definite integralNigel Simmons
 
X2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical ShellsX2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical ShellsNigel Simmons
 
12X1 T08 05 binomial coefficients
12X1 T08 05 binomial coefficients12X1 T08 05 binomial coefficients
12X1 T08 05 binomial coefficientsNigel Simmons
 

Viewers also liked (6)

11 X1 T05 03 Equation Of Lines
11 X1 T05 03 Equation Of Lines11 X1 T05 03 Equation Of Lines
11 X1 T05 03 Equation Of Lines
 
11X1 T07 03 angle theorems 2
11X1 T07 03 angle theorems 211X1 T07 03 angle theorems 2
11X1 T07 03 angle theorems 2
 
11X1 T13 01 polynomial definitions
11X1 T13 01 polynomial definitions11X1 T13 01 polynomial definitions
11X1 T13 01 polynomial definitions
 
11X1 T14 02 definite integral
11X1 T14 02 definite integral11X1 T14 02 definite integral
11X1 T14 02 definite integral
 
X2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical ShellsX2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical Shells
 
12X1 T08 05 binomial coefficients
12X1 T08 05 binomial coefficients12X1 T08 05 binomial coefficients
12X1 T08 05 binomial coefficients
 

Similar to X2 T02 03 roots & coefficients

X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)Nigel Simmons
 
11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)Nigel Simmons
 
11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of roots11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of rootsNigel Simmons
 
11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)Nigel Simmons
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)Nigel Simmons
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)Nigel Simmons
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)Nigel Simmons
 
14 +3+practice+b+adv
14 +3+practice+b+adv14 +3+practice+b+adv
14 +3+practice+b+advNene Thomas
 
X2 T02 03 roots & coefficients (2011)
X2 T02 03 roots & coefficients (2011)X2 T02 03 roots & coefficients (2011)
X2 T02 03 roots & coefficients (2011)Nigel Simmons
 
11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)Nigel Simmons
 
Tutorial 2 mth 3201
Tutorial 2 mth 3201Tutorial 2 mth 3201
Tutorial 2 mth 3201Drradz Maths
 
Calculus :Tutorial 2
Calculus :Tutorial 2Calculus :Tutorial 2
Calculus :Tutorial 2Nuril Ekma
 
Chapter 4 Extra Practice Answers
Chapter 4 Extra Practice AnswersChapter 4 Extra Practice Answers
Chapter 4 Extra Practice Answersleblance
 
Tutorial 2 -_sem_a102
Tutorial 2 -_sem_a102Tutorial 2 -_sem_a102
Tutorial 2 -_sem_a102nurulhanim
 
LISTA DE EXERCÍCIOS - OPERAÇÕES COM NÚMEROS REAIS
LISTA DE EXERCÍCIOS - OPERAÇÕES COM NÚMEROS REAISLISTA DE EXERCÍCIOS - OPERAÇÕES COM NÚMEROS REAIS
LISTA DE EXERCÍCIOS - OPERAÇÕES COM NÚMEROS REAISwillianv
 
11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)Nigel Simmons
 
04 quadratic equations
04   quadratic equations04   quadratic equations
04 quadratic equationsprofashfaq
 

Similar to X2 T02 03 roots & coefficients (20)

X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)
 
11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)
 
11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of roots11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of roots
 
11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
 
14 +3+practice+b+adv
14 +3+practice+b+adv14 +3+practice+b+adv
14 +3+practice+b+adv
 
X2 T02 03 roots & coefficients (2011)
X2 T02 03 roots & coefficients (2011)X2 T02 03 roots & coefficients (2011)
X2 T02 03 roots & coefficients (2011)
 
11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)
 
Tutorial 2 mth 3201
Tutorial 2 mth 3201Tutorial 2 mth 3201
Tutorial 2 mth 3201
 
Calculus :Tutorial 2
Calculus :Tutorial 2Calculus :Tutorial 2
Calculus :Tutorial 2
 
Chapter 4 Extra Practice Answers
Chapter 4 Extra Practice AnswersChapter 4 Extra Practice Answers
Chapter 4 Extra Practice Answers
 
Algebra practice paper
Algebra practice paperAlgebra practice paper
Algebra practice paper
 
Tutorial 2 -_sem_a102
Tutorial 2 -_sem_a102Tutorial 2 -_sem_a102
Tutorial 2 -_sem_a102
 
0207 ch 2 day 7
0207 ch 2 day 70207 ch 2 day 7
0207 ch 2 day 7
 
LISTA DE EXERCÍCIOS - OPERAÇÕES COM NÚMEROS REAIS
LISTA DE EXERCÍCIOS - OPERAÇÕES COM NÚMEROS REAISLISTA DE EXERCÍCIOS - OPERAÇÕES COM NÚMEROS REAIS
LISTA DE EXERCÍCIOS - OPERAÇÕES COM NÚMEROS REAIS
 
Chapter 01
Chapter 01Chapter 01
Chapter 01
 
11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)
 
04 quadratic equations
04   quadratic equations04   quadratic equations
04 quadratic equations
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 

Recently uploaded

The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 

Recently uploaded (20)

The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 

X2 T02 03 roots & coefficients

  • 2. Roots and Coefficients For P x   ax n  bx n 1  cx n  2 
  • 3. Roots and Coefficients For P x   ax n  bx n 1  cx n  2  b   a (sum of roots, 1 at a time i.e.        )
  • 4. Roots and Coefficients For P x   ax n  bx n 1  cx n  2  b   a (sum of roots, 1 at a time i.e.        ) c    a (sum of roots, 2 at a time i.e.       )
  • 5. Roots and Coefficients For P x   ax n  bx n 1  cx n  2  b   a (sum of roots, 1 at a time i.e.        ) c    a (sum of roots, 2 at a time i.e.       ) d   a (sum of roots, 3 at a time i.e.    )
  • 6. Roots and Coefficients For P x   ax n  bx n 1  cx n  2  b   a (sum of roots, 1 at a time i.e.        ) c    a (sum of roots, 2 at a time i.e.       ) d   a (sum of roots, 3 at a time i.e.    ) e   a (sum of roots, 4 at a time)
  • 7. We have already seen that for ax 2  bx  c ;  2   2     2  2
  • 8. We have already seen that for ax 2  bx  c ;  2   2     2  2 and 1 1      
  • 9. We have already seen that for ax 2  bx  c ;  2   2     2  2 and 1 1       This can be generalised to;
  • 10. We have already seen that for ax 2  bx  c ;  2   2     2  2 and 1 1       This can be generalised to;       2  2 2
  • 11. We have already seen that for ax 2  bx  c ;  2   2     2  2 and 1 1       This can be generalised to;       2  2 2 1      (order 2)
  • 12. We have already seen that for ax 2  bx  c ;  2   2     2  2 and 1 1       This can be generalised to;       2  2 2 1      (order 2)   (order 3) 
  • 13. We have already seen that for ax 2  bx  c ;  2   2     2  2 and 1 1       This can be generalised to;       2  2 2 1      (order 2)   (order 3)    (order 4) 
  • 14. e.g. (i) x 3  2 x 2  3 x  4  0, find;
  • 15. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   b)    c)   
  • 16. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4
  • 17. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4 d)   2
  • 18. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4 d)   2      2  2
  • 19. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4 d)   2      2  2  2 2  23  2
  • 20. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4 d)   2      2  2  2 2  23  2 e)   3
  • 21. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4 d)   2      2  2  2 2  23  2 e)   3  3  2 2  3  4  0
  • 22. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4 d)   2      2  2  2 2  23  2 e)   3  3  2 2  3  4  0  3  2  2  3  4  0  3  2 2  3  4  0
  • 23. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4 d)   2      2  2  2 2  23  2 e)   3  3  2 2  3  4  0  3  2  2  3  4  0  3  2 2  3  4  0   3  2  2  3   12  0
  • 24.   3  2  2  3   12  0
  • 25.   3  2  2  3   12  0   3  2  2  3   12
  • 26.   3  2  2  3   12  0   3  2  2  3   12  2 2   32   12 2
  • 27.   3  2  2  3   12  0   3  2  2  3   12  2 2   32   12 2 f)   4
  • 28.   3  2  2  3   12  0   3  2  2  3   12  2 2   32   12 2 f)   4  4  2 3  3 2  4  0
  • 29.   3  2  2  3   12  0   3  2  2  3   12  2 2   32   12 2 f)   4  4  2 3  3 2  4  0  4  2  3  3 2  4   0  4  2 3  3 2  4  0
  • 30.   3  2  2  3   12  0   3  2  2  3   12  2 2   32   12 2 f)   4  4  2 3  3 2  4  0  4  2  3  3 2  4   0  4  2 3  3 2  4  0   4  2  3  3  2  4   0
  • 31.   3  2  2  3   12  0   3  2  2  3   12  2 2   32   12 2 f)   4  4  2 3  3 2  4  0  4  2  3  3 2  4   0  4  2 3  3 2  4  0   4  2  3  3  2  4   0   4  2  3  3  2  4 
  • 32.   3  2  2  3   12  0   3  2  2  3   12  2 2   32   12 2 f)   4  4  2 3  3 2  4  0  4  2  3  3 2  4   0  4  2 3  3 2  4  0   4  2  3  3  2  4   0   4  2  3  3  2  4   22   3 2   42   18
  • 33. g)           
  • 34. g)                         
  • 35. g)                           2   2   2   
  • 36. g)                           2   2   2     4  2  2    2     8  4  4   2   4  2  2    8  4   2    
  • 37. g)                           2   2   2     4  2  2    2     8  4  4   2   4  2  2    8  4   2      8  42   23  4 2
  • 38. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0
  • 39. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root.
  • 40. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real.
  • 41. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a
  • 42. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
  • 43. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q   x 2  k 2 x 2  px  q   x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q  x 4  px 3  q  k 2 x 2  k 2 px  k 2 q
  • 44. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q   x 2  k 2 x 2  px  q   x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q  x 4  px 3  q  k 2 x 2  k 2 px  k 2 q  p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4)
  • 45. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q   x 2  k 2 x 2  px  q   x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q  x 4  px 3  q  k 2 x 2  k 2 px  k 2 q  p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4) Substitute (1) into (3)
  • 46. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q   x 2  k 2 x 2  px  q   x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q  x 4  px 3  q  k 2 x 2  k 2 px  k 2 q  p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4) Substitute (1) into (3) k 2a  c
  • 47. c) Show that c 2  a 2 d  abc
  • 48. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2
  • 49. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d
  • 50. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d bk 2  k 4  d
  • 51. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d bk 2  k 4  d bc c 2  2 d a a
  • 52. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d bk 2  k 4  d bc c 2 c  2 d ( k 2  ) a a a
  • 53. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d bk 2  k 4  d bc c 2 c  2 d ( k 2  ) a a a abc  c 2  a 2 d
  • 54. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d bk 2  k 4  d bc c 2 c  2 d ( k 2  ) a a a abc  c 2  a 2 d c 2  a 2 d  abc
  • 55. d) If 2 is also a root of the equation, and b = 0, show that c is even.
  • 56. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root
  • 57. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer
  • 58. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b
  • 59. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b   
  • 60. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b    k 2  2  0 k 2  2
  • 61. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b    k 2  2  0 k 2  2 From c)  c  k 2 a
  • 62. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b    k 2  2  0 k 2  2 From c)  c  k 2 a c  2a
  • 63. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b    k 2  2  0 k 2  2 From c)  c  k 2 a c  2a c  2M
  • 64. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b    k 2  2  0 k 2  2 From c)  c  k 2 a c  2a c  2 M  and a are both integers, M is an integer
  • 65. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b    k 2  2  0 k 2  2 From c)  c  k 2 a c  2a c  2 M  and a are both integers, M is an integer Thus c is an even number, as it is divisible by 2