Upcoming SlideShare
×

# 11 x1 t15 06 roots & coefficients (2013)

801 views

Published on

Published in: Education, Spiritual
1 Like
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

Views
Total views
801
On SlideShare
0
From Embeds
0
Number of Embeds
153
Actions
Shares
0
20
0
Likes
1
Embeds 0
No embeds

No notes for slide

### 11 x1 t15 06 roots & coefficients (2013)

1. 1. Roots and Coefficients
2. 2. Roots and Coefficients Quadratics ax 2  bx  c  0
3. 3. Roots and Coefficients Quadratics ax 2  bx  c  0 b    a
4. 4. Roots and Coefficients Quadratics ax 2  bx  c  0 b    a c   a
5. 5. Roots and Coefficients Quadratics ax 2  bx  c  0 b    a Cubics ax 3  bx 2  cx  d  0 c   a
6. 6. Roots and Coefficients Quadratics ax 2  bx  c  0 b    a Cubics ax 3  bx 2  cx  d  0       b a c   a
7. 7. Roots and Coefficients Quadratics ax 2  bx  c  0 c   a b    a Cubics ax 3  bx 2  cx  d  0 b       a c       a
8. 8. Roots and Coefficients Quadratics ax 2  bx  c  0 c   a b    a Cubics ax 3  bx 2  cx  d  0 b       a d    a c       a
9. 9. Roots and Coefficients Quadratics ax 2  bx  c  0 c   a b    a Cubics ax 3  bx 2  cx  d  0 b       a Quartics d    a c       a ax 4  bx 3  cx 2  dx  e  0
10. 10. Roots and Coefficients Quadratics ax 2  bx  c  0 c   a b    a Cubics ax 3  bx 2  cx  d  0 b       a Quartics d    a c       a ax 4  bx 3  cx 2  dx  e  0 b        a
11. 11. Roots and Coefficients Quadratics ax 2  bx  c  0 c   a b    a Cubics ax 3  bx 2  cx  d  0 b       a Quartics d    a c       a ax 4  bx 3  cx 2  dx  e  0 b        a c             a
12. 12. Roots and Coefficients Quadratics ax 2  bx  c  0 c   a b    a Cubics ax 3  bx 2  cx  d  0 b       a Quartics d    a c       a ax 4  bx 3  cx 2  dx  e  0 c b                    a a d          a
13. 13. Roots and Coefficients Quadratics ax 2  bx  c  0 c   a b    a Cubics ax 3  bx 2  cx  d  0 b       a Quartics d    a c       a ax 4  bx 3  cx 2  dx  e  0 c b                    a a d e            a a
14. 14. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0
15. 15. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0 b    a (sum of roots, one at a time)
16. 16. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0 b    a c   a (sum of roots, one at a time) (sum of roots, two at a time)
17. 17. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0 b    a c   a d    a (sum of roots, one at a time) (sum of roots, two at a time) (sum of roots, three at a time)
18. 18. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0     b  a c  a d  a e  a (sum of roots, one at a time) (sum of roots, two at a time) (sum of roots, three at a time) (sum of roots, four at a time)
19. 19. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0     b  a c  a d  a e  a Note:  (sum of roots, one at a time) (sum of roots, two at a time) (sum of roots, three at a time) (sum of roots, four at a time) 2      2  2
20. 20. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7
21. 21. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2
22. 22. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        3 2
23. 23. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        3 2    1 2
24. 24. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        5  1 4  4   4  7  4    7    2  2 3 2    1 2
25. 25. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        5  1 4  4   4  7  4    7    2  2 27  2 3 2    1 2
26. 26. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        5  1 4  4   4  7  4    7    2  2 27  2 1 1 1 b)      3 2    1 2
27. 27. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)        3 2    1 2
28. 28. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)        3  2 1  2  3 2    1 2
29. 29. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)        3  2 1  2  3  3 2    1 2
30. 30. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        3 2    5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)    c)  2   2   2     3  2 1  2  3  1 2
31. 31. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        3 2    1 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)    c)  2   2   2    2          2       3   2 1  2  3
32. 32. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        3 2    1 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)    c)  2   2   2    2          2       3 2  5   3     2    2 2  2 1  2  3
33. 33. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        3 2    1 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)    c)  2   2   2    2          2       3 2  5   3     2    2 2  2 1  37 2  4  3
34. 34. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)     
35. 35. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)           0
36. 36. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)           0 (ii) 
37. 37. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)           0 (ii)    1
38. 38. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)           0 (ii)    1 (iii) 1   1   1 
39. 39. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)           0 (ii)    1 (iii) 1   1   1              1 1 1
40. 40. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)           0 (ii)    1 (iii) 1   1   1              1 1 1  3 1
41. 41. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)           0 (ii)    1 (iii) 1   1   1              1 1 1 3 1 3 
42. 42. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k.
43. 43. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and  
44. 44. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and   1      6    2   
45. 45. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and   1      6    2     3 
46. 46. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and   1      6    2     3  P   3  0
47. 47. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and   1      6    2     3  P   3  0 2 3   3  k  3  6  0 3 2
48. 48. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and   1      6    2     3  P   3  0 2 3   3  k  3  6  0 3 2  54  9  3k  6  0
49. 49. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and   1      6    2     3  P   3  0 2 3   3  k  3  6  0 3 2  54  9  3k  6  0 3k  39
50. 50. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and   1      6    2     3  P   3  0 2 3   3  k  3  6  0 3 2  54  9  3k  6  0 3k  39 k  13
51. 51. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r
52. 52. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r
53. 53. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1
54. 54. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t
55. 55. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s
56. 56. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s s   2
57. 57. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s s   2 1     t
58. 58. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s s   2 1     t t 2
59. 59. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s s   2 1     t t 2 s  t  0
60. 60. Exercise 4F; 2, 4, 5ac, 6ac, 8, 10a, 13, 15, 16ad, 17, 18, 19