SlideShare a Scribd company logo
1 of 66
Download to read offline
Roots and Coefficients
Roots and Coefficients
     For P x   ax n  bx n 1  cx n  2 
Roots and Coefficients
           For P x   ax n  bx n 1  cx n  2 
      b
    a (sum of roots, 1 at a time i.e.        )
Roots and Coefficients
            For P x   ax n  bx n 1  cx n  2 
        b
   a (sum of roots, 1 at a time i.e.        )
        c
   
        a
           (sum of roots, 2 at a time i.e.       )
Roots and Coefficients
             For P x   ax n  bx n 1  cx n  2 
        b
    a (sum of roots, 1 at a time i.e.        )
        c
   
        a
           (sum of roots, 2 at a time i.e.       )

        d
   a (sum of roots, 3 at a time i.e.    )
Roots and Coefficients
             For P x   ax n  bx n 1  cx n  2 
         b
    a (sum of roots, 1 at a time i.e.        )
         c
    
         a
            (sum of roots, 2 at a time i.e.       )

         d
   a (sum of roots, 3 at a time i.e.    )
         e
   a (sum of roots, 4 at a time)
We have already seen that for ax 2  bx  c ;
                 2   2     2  2
We have already seen that for ax 2  bx  c ;
                 2   2     2  2
                          and
                       1 1 
                         
                                
We have already seen that for ax 2  bx  c ;
                 2   2     2  2
                          and
                       1 1 
                         
                                
This can be generalised to;
We have already seen that for ax 2  bx  c ;
                 2   2     2  2
                            and
                         1 1 
                           
                                  
This can be generalised to;

                           2 
                    2           2
We have already seen that for ax 2  bx  c ;
                 2   2     2  2
                            and
                         1 1 
                           
                                  
This can be generalised to;

                           2 
                    2           2



                    1  
                                (order 2)
We have already seen that for ax 2  bx  c ;
                 2   2     2  2
                                 and
                         1       1       
                                    
                                        
This can be generalised to;

                           2 
                    2                2



                    1  
                                      (order 2)


                                       (order 3)
                          
We have already seen that for ax 2  bx  c ;
                 2   2     2  2
                                 and
                         1       1       
                                    
                                        
This can be generalised to;

                           2 
                    2                2



                    1  
                                      (order 2)


                                       (order 3)
                          

                                          (order 4)
                          
e.g. (i) x 3  2 x 2  3 x  4  0, find;
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)  
         b)   
         c)   
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
         d)   2
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
         d)   2           2 
                                 2
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
         d)   2           2 
                                 2



                         2 2  23
                         2
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
         d)   2           2 
                                 2



                         2 2  23
                         2
         e)   3
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
         d)   2           2 
                                 2



                         2 2  23
                         2
         e)   3                       3  2 2  3  4  0
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
         d)   2           2 
                                 2



                         2 2  23
                         2
         e)   3                       3  2 2  3  4  0
                                        3  2  2  3  4  0
                                         3  2 2  3  4  0
e.g. (i) x 3  2 x 2  3 x  4  0, find;
         a)          =2
         b)         =3
         c)        =4
         d)   2           2 
                                 2



                         2 2  23
                         2
         e)   3                       3  2 2  3  4  0
                                        3  2  2  3  4  0
                                         3  2 2  3  4  0

                                   3  2  2  3   12  0
  3  2  2  3   12  0
  3  2  2  3   12  0
  3  2  2  3   12
  3  2  2  3   12  0
  3  2  2  3   12
       2 2   32   12
      2
  3  2  2  3   12  0
   3  2  2  3   12
        2 2   32   12
       2
f)   4
  3  2  2  3   12  0
   3  2  2  3   12
        2 2   32   12
       2
f)   4                    4  2 3  3 2  4  0
  3  2  2  3   12  0
   3  2  2  3   12
        2 2   32   12
       2
f)   4                    4  2 3  3 2  4  0
                            4  2  3  3 2  4   0
                                 4  2 3  3 2  4  0
  3  2  2  3   12  0
   3  2  2  3   12
        2 2   32   12
       2
f)   4                    4  2 3  3 2  4  0
                            4  2  3  3 2  4   0
                                 4  2 3  3 2  4  0

                      4  2  3  3  2  4   0
  3  2  2  3   12  0
   3  2  2  3   12
        2 2   32   12
       2
f)   4                    4  2 3  3 2  4  0
                            4  2  3  3 2  4   0
                                 4  2 3  3 2  4  0

                      4  2  3  3  2  4   0

                      4  2  3  3  2  4 
  3  2  2  3   12  0
   3  2  2  3   12
        2 2   32   12
       2
f)   4                    4  2 3  3 2  4  0
                            4  2  3  3 2  4   0
                                 4  2 3  3 2  4  0

                      4  2  3  3  2  4   0

                      4  2  3  3  2  4 
                            22   3 2   42 
                            18
g)           
g)           
                
g)           
                
    2   2   2   
g)           
                
    2   2   2   
    4  2  2    2   
    8  4  4   2   4  2  2  
    8  4   2    
g)           
                
    2   2   2   
    4  2  2    2   
    8  4  4   2   4  2  2  
    8  4   2    
    8  42   23  4
   2
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
   Roots appear in conjugate pairs when the coefficients are real.
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
   Roots appear in conjugate pairs when the coefficients are real.
 b) Show that c  k 2 a
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
   Roots appear in conjugate pairs when the coefficients are real.
 b) Show that c  k 2 a
    x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
   Roots appear in conjugate pairs when the coefficients are real.
 b) Show that c  k 2 a
    x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
                                x 2  k 2 x 2  px  q 
                                 x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q
                                 x 4  px 3  q  k 2 x 2  k 2 px  k 2 q
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
   Roots appear in conjugate pairs when the coefficients are real.
 b) Show that c  k 2 a
    x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
                                x 2  k 2 x 2  px  q 
                                 x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q
                             x 4  px 3  q  k 2 x 2  k 2 px  k 2 q
     p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4)
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
   Roots appear in conjugate pairs when the coefficients are real.
 b) Show that c  k 2 a
    x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
                                x 2  k 2 x 2  px  q 
                                 x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q
                             x 4  px 3  q  k 2 x 2  k 2 px  k 2 q
     p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4)
      Substitute (1) into (3)
(ii) (1996)
     Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0
     where a, b, c and d are all integers.
     Suppose the equation has a root of the form ki, where k is real
     and k  0
   a) State why the conjugate –ki is also a root.
   Roots appear in conjugate pairs when the coefficients are real.
 b) Show that c  k 2 a
    x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
                                x 2  k 2 x 2  px  q 
                                 x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q
                             x 4  px 3  q  k 2 x 2  k 2 px  k 2 q
     p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4)
      Substitute (1) into (3)                  k 2a  c
c) Show that c 2  a 2 d  abc
c) Show that c 2  a 2 d  abc

   Using (2); q  b  k 2
c) Show that c 2  a 2 d  abc

   Using (2); q  b  k 2
   Sub into (4); k 2 b  k 2   d
c) Show that c 2  a 2 d  abc

   Using (2); q  b  k 2
   Sub into (4); k 2 b  k 2   d
                    bk 2  k 4  d
c) Show that c 2  a 2 d  abc

   Using (2); q  b  k 2
   Sub into (4); k 2 b  k 2   d
                    bk 2  k 4  d
                     bc c 2
                         2 d
                     a a
c) Show that c 2  a 2 d  abc

   Using (2); q  b  k 2
   Sub into (4); k 2 b  k 2   d
                    bk 2  k 4  d
                     bc c 2                   c
                         2 d        ( k 2  )
                     a a                      a
c) Show that c 2  a 2 d  abc

   Using (2); q  b  k 2
   Sub into (4); k 2 b  k 2   d
                    bk 2  k 4  d
                     bc c 2                     c
                         2 d          ( k 2  )
                     a a                        a
                    abc  c 2  a 2 d
c) Show that c 2  a 2 d  abc

   Using (2); q  b  k 2
   Sub into (4); k 2 b  k 2   d
                    bk 2  k 4  d
                     bc c 2                     c
                         2 d          ( k 2  )
                     a a                        a
                    abc  c 2  a 2 d
                   c 2  a 2 d  abc
d) If 2 is also a root of the equation, and b = 0, show that c is even.
d) If 2 is also a root of the equation, and b = 0, show that c is even.
   Let  be the 4th root
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b     
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b     
                                                 k 2  2  0
                                                       k 2  2
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b     
                                                 k 2  2  0
                                                       k 2  2
    From c)  c  k 2 a
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b     
                                                 k 2  2  0
                                                       k 2  2
    From c)  c  k 2 a
                c  2a
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b     
                                                 k 2  2  0
                                                       k 2  2
    From c)  c  k 2 a
                c  2a
                 c  2M
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b     
                                                 k 2  2  0
                                                       k 2  2
    From c)  c  k 2 a
                c  2a
                 c  2 M  and a are both integers, M is an integer
d) If 2 is also a root of the equation, and b = 0, show that c is even.
  Let  be the 4th root
  As the other three roots are integer multiples, and the product of
  the roots is an integer;
   is an integer

  ki ki   2 ki   2ki     ki    ki   2  b     
                                                 k 2  2  0
                                                       k 2  2
    From c)  c  k 2 a
                c  2a
                 c  2 M  and a are both integers, M is an integer
        Thus c is an even number, as it is divisible by 2
Exercise 5D; 1 to 9

More Related Content

What's hot

12X1 T01 01 log laws
12X1 T01 01 log laws12X1 T01 01 log laws
12X1 T01 01 log laws
Nigel Simmons
 
X2 T02 03 roots & coefficients
X2 T02 03 roots & coefficientsX2 T02 03 roots & coefficients
X2 T02 03 roots & coefficients
Nigel Simmons
 
11X1 T14 07 approximations
11X1 T14 07 approximations11X1 T14 07 approximations
11X1 T14 07 approximations
Nigel Simmons
 

What's hot (11)

1. ct 1 (paper-1) 10 aug 2014
1. ct 1 (paper-1) 10 aug 20141. ct 1 (paper-1) 10 aug 2014
1. ct 1 (paper-1) 10 aug 2014
 
AA Section 2-9
AA Section 2-9AA Section 2-9
AA Section 2-9
 
J1066069
J1066069J1066069
J1066069
 
On Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsOn Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their Applications
 
12X1 T01 01 log laws
12X1 T01 01 log laws12X1 T01 01 log laws
12X1 T01 01 log laws
 
ฟังก์ชัน 1
ฟังก์ชัน 1ฟังก์ชัน 1
ฟังก์ชัน 1
 
C024015024
C024015024C024015024
C024015024
 
Ee107 mock exam1_q&s_20feb2013_khl
Ee107 mock exam1_q&s_20feb2013_khlEe107 mock exam1_q&s_20feb2013_khl
Ee107 mock exam1_q&s_20feb2013_khl
 
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
 
X2 T02 03 roots & coefficients
X2 T02 03 roots & coefficientsX2 T02 03 roots & coefficients
X2 T02 03 roots & coefficients
 
11X1 T14 07 approximations
11X1 T14 07 approximations11X1 T14 07 approximations
11X1 T14 07 approximations
 

Viewers also liked

11X1 T11 09 locus problems (2010)
11X1 T11 09 locus problems (2010)11X1 T11 09 locus problems (2010)
11X1 T11 09 locus problems (2010)
Nigel Simmons
 
11X1 T07 02 triangle theorems (2010)
11X1 T07 02 triangle theorems (2010)11X1 T07 02 triangle theorems (2010)
11X1 T07 02 triangle theorems (2010)
Nigel Simmons
 
11X1 T08 06 trig equations (2010)
11X1 T08 06 trig equations (2010)11X1 T08 06 trig equations (2010)
11X1 T08 06 trig equations (2010)
Nigel Simmons
 
11 x1 t13 02 angle theorems 1
11 x1 t13 02 angle theorems 111 x1 t13 02 angle theorems 1
11 x1 t13 02 angle theorems 1
Nigel Simmons
 
11X1 T10 04 maximum and minimum problems (2010)
11X1 T10 04 maximum and minimum problems (2010)11X1 T10 04 maximum and minimum problems (2010)
11X1 T10 04 maximum and minimum problems (2010)
Nigel Simmons
 
12X1 T07 02 SHM (2010)
12X1 T07 02 SHM (2010)12X1 T07 02 SHM (2010)
12X1 T07 02 SHM (2010)
Nigel Simmons
 
11X1 T17 03 indefinite integral
11X1 T17 03 indefinite integral11X1 T17 03 indefinite integral
11X1 T17 03 indefinite integral
Nigel Simmons
 
11X1 T10 08 quadratic identities (2010)
11X1 T10 08 quadratic identities (2010)11X1 T10 08 quadratic identities (2010)
11X1 T10 08 quadratic identities (2010)
Nigel Simmons
 
11X1 T13 05 tangent theorems 1 (2010)
11X1 T13 05 tangent theorems 1 (2010)11X1 T13 05 tangent theorems 1 (2010)
11X1 T13 05 tangent theorems 1 (2010)
Nigel Simmons
 
X2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical ShellsX2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical Shells
Nigel Simmons
 
Xαρταετοί πάνω από την πόλη των Αρλεκίνων
Xαρταετοί πάνω από την πόλη των ΑρλεκίνωνXαρταετοί πάνω από την πόλη των Αρλεκίνων
Xαρταετοί πάνω από την πόλη των Αρλεκίνων
Νατάσα Ζωγάνα
 
Xbrl The Future Of Financial And Business Reporting Presented By Liv Apneseth...
Xbrl The Future Of Financial And Business Reporting Presented By Liv Apneseth...Xbrl The Future Of Financial And Business Reporting Presented By Liv Apneseth...
Xbrl The Future Of Financial And Business Reporting Presented By Liv Apneseth...
Workiva
 
xcel energy Q308_Presentation
xcel energy Q308_Presentationxcel energy Q308_Presentation
xcel energy Q308_Presentation
finance26
 
鐵馬影展 X 彎腰市集
鐵馬影展 X 彎腰市集鐵馬影展 X 彎腰市集
鐵馬影展 X 彎腰市集
yusuke225
 
Xen_and_Rails_deployment
Xen_and_Rails_deploymentXen_and_Rails_deployment
Xen_and_Rails_deployment
Abhishek Singh
 

Viewers also liked (20)

11X1 T11 09 locus problems (2010)
11X1 T11 09 locus problems (2010)11X1 T11 09 locus problems (2010)
11X1 T11 09 locus problems (2010)
 
11X1 T07 02 triangle theorems (2010)
11X1 T07 02 triangle theorems (2010)11X1 T07 02 triangle theorems (2010)
11X1 T07 02 triangle theorems (2010)
 
11X1 T08 06 trig equations (2010)
11X1 T08 06 trig equations (2010)11X1 T08 06 trig equations (2010)
11X1 T08 06 trig equations (2010)
 
11 x1 t13 02 angle theorems 1
11 x1 t13 02 angle theorems 111 x1 t13 02 angle theorems 1
11 x1 t13 02 angle theorems 1
 
11X1 T10 04 maximum and minimum problems (2010)
11X1 T10 04 maximum and minimum problems (2010)11X1 T10 04 maximum and minimum problems (2010)
11X1 T10 04 maximum and minimum problems (2010)
 
12X1 T07 02 SHM (2010)
12X1 T07 02 SHM (2010)12X1 T07 02 SHM (2010)
12X1 T07 02 SHM (2010)
 
11X1 T17 03 indefinite integral
11X1 T17 03 indefinite integral11X1 T17 03 indefinite integral
11X1 T17 03 indefinite integral
 
11X1 T10 08 quadratic identities (2010)
11X1 T10 08 quadratic identities (2010)11X1 T10 08 quadratic identities (2010)
11X1 T10 08 quadratic identities (2010)
 
11X1 T13 05 tangent theorems 1 (2010)
11X1 T13 05 tangent theorems 1 (2010)11X1 T13 05 tangent theorems 1 (2010)
11X1 T13 05 tangent theorems 1 (2010)
 
X4102188192
X4102188192X4102188192
X4102188192
 
X2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical ShellsX2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical Shells
 
X1 6
X1 6X1 6
X1 6
 
xa7o4.pdf
xa7o4.pdfxa7o4.pdf
xa7o4.pdf
 
Xαρταετοί πάνω από την πόλη των Αρλεκίνων
Xαρταετοί πάνω από την πόλη των ΑρλεκίνωνXαρταετοί πάνω από την πόλη των Αρλεκίνων
Xαρταετοί πάνω από την πόλη των Αρλεκίνων
 
Xbrl The Future Of Financial And Business Reporting Presented By Liv Apneseth...
Xbrl The Future Of Financial And Business Reporting Presented By Liv Apneseth...Xbrl The Future Of Financial And Business Reporting Presented By Liv Apneseth...
Xbrl The Future Of Financial And Business Reporting Presented By Liv Apneseth...
 
xcel energy Q308_Presentation
xcel energy Q308_Presentationxcel energy Q308_Presentation
xcel energy Q308_Presentation
 
Xbrl Solution presented at Tel Aviv
Xbrl Solution presented at Tel AvivXbrl Solution presented at Tel Aviv
Xbrl Solution presented at Tel Aviv
 
XCREATELABS.BRUSSELS: UPCYCLING LOCAL ECONOMY
XCREATELABS.BRUSSELS: UPCYCLING LOCAL ECONOMYXCREATELABS.BRUSSELS: UPCYCLING LOCAL ECONOMY
XCREATELABS.BRUSSELS: UPCYCLING LOCAL ECONOMY
 
鐵馬影展 X 彎腰市集
鐵馬影展 X 彎腰市集鐵馬影展 X 彎腰市集
鐵馬影展 X 彎腰市集
 
Xen_and_Rails_deployment
Xen_and_Rails_deploymentXen_and_Rails_deployment
Xen_and_Rails_deployment
 

Similar to X2 T02 03 roots & coefficients (2010)

X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)
Nigel Simmons
 
11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)
Nigel Simmons
 
11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of roots11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of roots
Nigel Simmons
 
11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)
Nigel Simmons
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)
Nigel Simmons
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)
Nigel Simmons
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
Nigel Simmons
 
14 +3+practice+b+adv
14 +3+practice+b+adv14 +3+practice+b+adv
14 +3+practice+b+adv
Nene Thomas
 
X2 T02 03 roots & coefficients (2011)
X2 T02 03 roots & coefficients (2011)X2 T02 03 roots & coefficients (2011)
X2 T02 03 roots & coefficients (2011)
Nigel Simmons
 
11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)
Nigel Simmons
 
Tutorial 2 mth 3201
Tutorial 2 mth 3201Tutorial 2 mth 3201
Tutorial 2 mth 3201
Drradz Maths
 
Calculus :Tutorial 2
Calculus :Tutorial 2Calculus :Tutorial 2
Calculus :Tutorial 2
Nuril Ekma
 
Chapter 4 Extra Practice Answers
Chapter 4 Extra Practice AnswersChapter 4 Extra Practice Answers
Chapter 4 Extra Practice Answers
leblance
 
Tutorial 2 -_sem_a102
Tutorial 2 -_sem_a102Tutorial 2 -_sem_a102
Tutorial 2 -_sem_a102
nurulhanim
 
11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)
Nigel Simmons
 
04 quadratic equations
04   quadratic equations04   quadratic equations
04 quadratic equations
profashfaq
 

Similar to X2 T02 03 roots & coefficients (2010) (20)

X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)
 
11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)
 
11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of roots11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of roots
 
11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
 
14 +3+practice+b+adv
14 +3+practice+b+adv14 +3+practice+b+adv
14 +3+practice+b+adv
 
X2 T02 03 roots & coefficients (2011)
X2 T02 03 roots & coefficients (2011)X2 T02 03 roots & coefficients (2011)
X2 T02 03 roots & coefficients (2011)
 
11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)
 
Tutorial 2 mth 3201
Tutorial 2 mth 3201Tutorial 2 mth 3201
Tutorial 2 mth 3201
 
Calculus :Tutorial 2
Calculus :Tutorial 2Calculus :Tutorial 2
Calculus :Tutorial 2
 
Chapter 4 Extra Practice Answers
Chapter 4 Extra Practice AnswersChapter 4 Extra Practice Answers
Chapter 4 Extra Practice Answers
 
Algebra practice paper
Algebra practice paperAlgebra practice paper
Algebra practice paper
 
Tutorial 2 -_sem_a102
Tutorial 2 -_sem_a102Tutorial 2 -_sem_a102
Tutorial 2 -_sem_a102
 
0207 ch 2 day 7
0207 ch 2 day 70207 ch 2 day 7
0207 ch 2 day 7
 
LISTA DE EXERCÍCIOS - OPERAÇÕES COM NÚMEROS REAIS
LISTA DE EXERCÍCIOS - OPERAÇÕES COM NÚMEROS REAISLISTA DE EXERCÍCIOS - OPERAÇÕES COM NÚMEROS REAIS
LISTA DE EXERCÍCIOS - OPERAÇÕES COM NÚMEROS REAIS
 
Chapter 01
Chapter 01Chapter 01
Chapter 01
 
11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)
 
04 quadratic equations
04   quadratic equations04   quadratic equations
04 quadratic equations
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 

Recently uploaded

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Recently uploaded (20)

Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 

X2 T02 03 roots & coefficients (2010)

  • 2. Roots and Coefficients For P x   ax n  bx n 1  cx n  2 
  • 3. Roots and Coefficients For P x   ax n  bx n 1  cx n  2  b   a (sum of roots, 1 at a time i.e.        )
  • 4. Roots and Coefficients For P x   ax n  bx n 1  cx n  2  b   a (sum of roots, 1 at a time i.e.        ) c    a (sum of roots, 2 at a time i.e.       )
  • 5. Roots and Coefficients For P x   ax n  bx n 1  cx n  2  b   a (sum of roots, 1 at a time i.e.        ) c    a (sum of roots, 2 at a time i.e.       ) d   a (sum of roots, 3 at a time i.e.    )
  • 6. Roots and Coefficients For P x   ax n  bx n 1  cx n  2  b   a (sum of roots, 1 at a time i.e.        ) c    a (sum of roots, 2 at a time i.e.       ) d   a (sum of roots, 3 at a time i.e.    ) e   a (sum of roots, 4 at a time)
  • 7. We have already seen that for ax 2  bx  c ;  2   2     2  2
  • 8. We have already seen that for ax 2  bx  c ;  2   2     2  2 and 1 1      
  • 9. We have already seen that for ax 2  bx  c ;  2   2     2  2 and 1 1       This can be generalised to;
  • 10. We have already seen that for ax 2  bx  c ;  2   2     2  2 and 1 1       This can be generalised to;       2  2 2
  • 11. We have already seen that for ax 2  bx  c ;  2   2     2  2 and 1 1       This can be generalised to;       2  2 2 1      (order 2)
  • 12. We have already seen that for ax 2  bx  c ;  2   2     2  2 and 1 1       This can be generalised to;       2  2 2 1      (order 2)   (order 3) 
  • 13. We have already seen that for ax 2  bx  c ;  2   2     2  2 and 1 1       This can be generalised to;       2  2 2 1      (order 2)   (order 3)    (order 4) 
  • 14. e.g. (i) x 3  2 x 2  3 x  4  0, find;
  • 15. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   b)    c)   
  • 16. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4
  • 17. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4 d)   2
  • 18. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4 d)   2      2  2
  • 19. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4 d)   2      2  2  2 2  23  2
  • 20. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4 d)   2      2  2  2 2  23  2 e)   3
  • 21. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4 d)   2      2  2  2 2  23  2 e)   3  3  2 2  3  4  0
  • 22. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4 d)   2      2  2  2 2  23  2 e)   3  3  2 2  3  4  0  3  2  2  3  4  0  3  2 2  3  4  0
  • 23. e.g. (i) x 3  2 x 2  3 x  4  0, find; a)   =2 b)    =3 c)    =4 d)   2      2  2  2 2  23  2 e)   3  3  2 2  3  4  0  3  2  2  3  4  0  3  2 2  3  4  0   3  2  2  3   12  0
  • 24.   3  2  2  3   12  0
  • 25.   3  2  2  3   12  0   3  2  2  3   12
  • 26.   3  2  2  3   12  0   3  2  2  3   12  2 2   32   12 2
  • 27.   3  2  2  3   12  0   3  2  2  3   12  2 2   32   12 2 f)   4
  • 28.   3  2  2  3   12  0   3  2  2  3   12  2 2   32   12 2 f)   4  4  2 3  3 2  4  0
  • 29.   3  2  2  3   12  0   3  2  2  3   12  2 2   32   12 2 f)   4  4  2 3  3 2  4  0  4  2  3  3 2  4   0  4  2 3  3 2  4  0
  • 30.   3  2  2  3   12  0   3  2  2  3   12  2 2   32   12 2 f)   4  4  2 3  3 2  4  0  4  2  3  3 2  4   0  4  2 3  3 2  4  0   4  2  3  3  2  4   0
  • 31.   3  2  2  3   12  0   3  2  2  3   12  2 2   32   12 2 f)   4  4  2 3  3 2  4  0  4  2  3  3 2  4   0  4  2 3  3 2  4  0   4  2  3  3  2  4   0   4  2  3  3  2  4 
  • 32.   3  2  2  3   12  0   3  2  2  3   12  2 2   32   12 2 f)   4  4  2 3  3 2  4  0  4  2  3  3 2  4   0  4  2 3  3 2  4  0   4  2  3  3  2  4   0   4  2  3  3  2  4   22   3 2   42   18
  • 33. g)           
  • 34. g)                         
  • 35. g)                           2   2   2   
  • 36. g)                           2   2   2     4  2  2    2     8  4  4   2   4  2  2    8  4   2    
  • 37. g)                           2   2   2     4  2  2    2     8  4  4   2   4  2  2    8  4   2      8  42   23  4 2
  • 38. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0
  • 39. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root.
  • 40. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real.
  • 41. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a
  • 42. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q 
  • 43. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q   x 2  k 2 x 2  px  q   x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q  x 4  px 3  q  k 2 x 2  k 2 px  k 2 q
  • 44. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q   x 2  k 2 x 2  px  q   x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q  x 4  px 3  q  k 2 x 2  k 2 px  k 2 q  p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4)
  • 45. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q   x 2  k 2 x 2  px  q   x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q  x 4  px 3  q  k 2 x 2  k 2 px  k 2 q  p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4) Substitute (1) into (3)
  • 46. (ii) (1996) Consider the polynomial equation x 4  ax 3  bx 2  cx  d  0 where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where k is real and k  0 a) State why the conjugate –ki is also a root. Roots appear in conjugate pairs when the coefficients are real. b) Show that c  k 2 a x 4  ax 3  bx 2  cx  d   x  ki  x  ki x 2  px  q   x 2  k 2 x 2  px  q   x 4  px 3  qx 2  k 2 x 2  k 2 px  k 2 q  x 4  px 3  q  k 2 x 2  k 2 px  k 2 q  p  a  (1) q  k 2  b  (2) k 2 p  c  (3) k 2 q  d  (4) Substitute (1) into (3) k 2a  c
  • 47. c) Show that c 2  a 2 d  abc
  • 48. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2
  • 49. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d
  • 50. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d bk 2  k 4  d
  • 51. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d bk 2  k 4  d bc c 2  2 d a a
  • 52. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d bk 2  k 4  d bc c 2 c  2 d ( k 2  ) a a a
  • 53. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d bk 2  k 4  d bc c 2 c  2 d ( k 2  ) a a a abc  c 2  a 2 d
  • 54. c) Show that c 2  a 2 d  abc Using (2); q  b  k 2 Sub into (4); k 2 b  k 2   d bk 2  k 4  d bc c 2 c  2 d ( k 2  ) a a a abc  c 2  a 2 d c 2  a 2 d  abc
  • 55. d) If 2 is also a root of the equation, and b = 0, show that c is even.
  • 56. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root
  • 57. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer
  • 58. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b
  • 59. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b   
  • 60. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b    k 2  2  0 k 2  2
  • 61. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b    k 2  2  0 k 2  2 From c)  c  k 2 a
  • 62. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b    k 2  2  0 k 2  2 From c)  c  k 2 a c  2a
  • 63. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b    k 2  2  0 k 2  2 From c)  c  k 2 a c  2a c  2M
  • 64. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b    k 2  2  0 k 2  2 From c)  c  k 2 a c  2a c  2 M  and a are both integers, M is an integer
  • 65. d) If 2 is also a root of the equation, and b = 0, show that c is even. Let  be the 4th root As the other three roots are integer multiples, and the product of the roots is an integer;  is an integer  ki ki   2 ki   2ki     ki    ki   2  b    k 2  2  0 k 2  2 From c)  c  k 2 a c  2a c  2 M  and a are both integers, M is an integer Thus c is an even number, as it is divisible by 2