Maximum/Minimum Problems
Maximum/Minimum Problems
Maximum/minimum problems involve finding the vertex of a quadratic
Maximum/Minimum Problems
Maximum/minimum problems involve finding the vertex of a quadratic
Read the question carefully to see if it is the x value or the y value you
are required to find.
Maximum/Minimum Problems
2
e.g. ( ) Find the maximum value of 3 5i y x x   
Maximum/minimum problems involve finding the vertex of a quadratic
Read the question carefully to see if it is the x value or the y value you
are required to find.
Maximum/Minimum Problems
2
e.g. ( ) Find the maximum value of 3 5i y x x   
Maximum/minimum problems involve finding the vertex of a quadratic
Read the question carefully to see if it is the x value or the y value you
are required to find.
(Need to find the y value of the vertex)
Maximum/Minimum Problems
2
e.g. ( ) Find the maximum value of 3 5i y x x   
2
3 5y x x   
Maximum/minimum problems involve finding the vertex of a quadratic
Read the question carefully to see if it is the x value or the y value you
are required to find.
(Need to find the y value of the vertex)
Maximum/Minimum Problems
2
e.g. ( ) Find the maximum value of 3 5i y x x   
2
3 5y x x   
2 1
3 5
3
x x     
 
Maximum/minimum problems involve finding the vertex of a quadratic
Read the question carefully to see if it is the x value or the y value you
are required to find.
(Need to find the y value of the vertex)
Maximum/Minimum Problems
2
e.g. ( ) Find the maximum value of 3 5i y x x   
2
3 5y x x   
2 1
3 5
3
x x     
 
2
1 1
3 5
6 12
x
 
     
 
Maximum/minimum problems involve finding the vertex of a quadratic
Read the question carefully to see if it is the x value or the y value you
are required to find.
(Need to find the y value of the vertex)
Maximum/Minimum Problems
2
e.g. ( ) Find the maximum value of 3 5i y x x   
2
3 5y x x   
2 1
3 5
3
x x     
 
2
1 1
3 5
6 12
x
 
     
 
Maximum/minimum problems involve finding the vertex of a quadratic
Read the question carefully to see if it is the x value or the y value you
are required to find.
(Need to find the y value of the vertex)
2
1 11
3 4
6 12
x
 
    
 
Maximum/Minimum Problems
2
e.g. ( ) Find the maximum value of 3 5i y x x   
2
3 5y x x   
2 1
3 5
3
x x     
 
2
1 1
3 5
6 12
x
 
     
 
11
maximum value is 4
12
 
Maximum/minimum problems involve finding the vertex of a quadratic
Read the question carefully to see if it is the x value or the y value you
are required to find.
(Need to find the y value of the vertex)
2
1 11
3 4
6 12
x
 
    
 
Maximum/Minimum Problems
2
e.g. ( ) Find the maximum value of 3 5i y x x   
2
3 5y x x   
2 1
3 5
3
x x     
 
2
1 1
3 5
6 12
x
 
     
 
11
maximum value is 4
12
 
Maximum/minimum problems involve finding the vertex of a quadratic
Read the question carefully to see if it is the x value or the y value you
are required to find.
(Need to find the y value of the vertex)
2
1 11
3 4
6 12
x
 
    
 
OR   2
1 4 3 5
59
    
 
Maximum/Minimum Problems
2
e.g. ( ) Find the maximum value of 3 5i y x x   
2
3 5y x x   
2 1
3 5
3
x x     
 
2
1 1
3 5
6 12
x
 
     
 
11
maximum value is 4
12
 
Maximum/minimum problems involve finding the vertex of a quadratic
Read the question carefully to see if it is the x value or the y value you
are required to find.
(Need to find the y value of the vertex)
2
1 11
3 4
6 12
x
 
    
 
OR   2
1 4 3 5
59
    
 
maximum value
4a


Maximum/Minimum Problems
2
e.g. ( ) Find the maximum value of 3 5i y x x   
2
3 5y x x   
2 1
3 5
3
x x     
 
2
1 1
3 5
6 12
x
 
     
 
11
maximum value is 4
12
 
Maximum/minimum problems involve finding the vertex of a quadratic
Read the question carefully to see if it is the x value or the y value you
are required to find.
(Need to find the y value of the vertex)
2
1 11
3 4
6 12
x
 
    
 
OR   2
1 4 3 5
59
    
 
maximum value
4a


59
12
11
4
12


 
(ii) A rectangle has perimeter of 64 cm.
What dimensions would the rectangle have for maximum area?
(ii) A rectangle has perimeter of 64 cm.
What dimensions would the rectangle have for maximum area?
(ii) A rectangle has perimeter of 64 cm.
What dimensions would the rectangle have for maximum area?
s
(ii) A rectangle has perimeter of 64 cm.
What dimensions would the rectangle have for maximum area?
s
32 s
(ii) A rectangle has perimeter of 64 cm.
What dimensions would the rectangle have for maximum area?
s
32 s
 32A s s 
(ii) A rectangle has perimeter of 64 cm.
What dimensions would the rectangle have for maximum area?
s
32 s
 32A s s 
We want the dimensions, so it is the
x value of the vertex we need to find.
(ii) A rectangle has perimeter of 64 cm.
What dimensions would the rectangle have for maximum area?
s
32 s
 32A s s 
We want the dimensions, so it is the
x value of the vertex we need to find.
2
32A s s 
(ii) A rectangle has perimeter of 64 cm.
What dimensions would the rectangle have for maximum area?
s
32 s
 32A s s 
We want the dimensions, so it is the
x value of the vertex we need to find.
2
32A s s 
 2
32s s  
(ii) A rectangle has perimeter of 64 cm.
What dimensions would the rectangle have for maximum area?
s
32 s
 32A s s 
We want the dimensions, so it is the
x value of the vertex we need to find.
2
32A s s 
 2
32s s  
 
2
16 256s   
(ii) A rectangle has perimeter of 64 cm.
What dimensions would the rectangle have for maximum area?
s
32 s
 32A s s 
We want the dimensions, so it is the
x value of the vertex we need to find.
2
32A s s 
 2
32s s  
 
2
16 256s   
dimensions for a maximum area are 16cm 16cm 
(ii) A rectangle has perimeter of 64 cm.
What dimensions would the rectangle have for maximum area?
s
32 s
 32A s s 
We want the dimensions, so it is the
x value of the vertex we need to find.
2
32A s s 
 2
32s s  
 
2
16 256s   
dimensions for a maximum area are 16cm 16cm 
Exercise 8E; 1a iv, 2a iii, then multiples of 3

x1 t10 04 maximum & minimum problems (13)

  • 1.
  • 2.
    Maximum/Minimum Problems Maximum/minimum problemsinvolve finding the vertex of a quadratic
  • 3.
    Maximum/Minimum Problems Maximum/minimum problemsinvolve finding the vertex of a quadratic Read the question carefully to see if it is the x value or the y value you are required to find.
  • 4.
    Maximum/Minimum Problems 2 e.g. () Find the maximum value of 3 5i y x x    Maximum/minimum problems involve finding the vertex of a quadratic Read the question carefully to see if it is the x value or the y value you are required to find.
  • 5.
    Maximum/Minimum Problems 2 e.g. () Find the maximum value of 3 5i y x x    Maximum/minimum problems involve finding the vertex of a quadratic Read the question carefully to see if it is the x value or the y value you are required to find. (Need to find the y value of the vertex)
  • 6.
    Maximum/Minimum Problems 2 e.g. () Find the maximum value of 3 5i y x x    2 3 5y x x    Maximum/minimum problems involve finding the vertex of a quadratic Read the question carefully to see if it is the x value or the y value you are required to find. (Need to find the y value of the vertex)
  • 7.
    Maximum/Minimum Problems 2 e.g. () Find the maximum value of 3 5i y x x    2 3 5y x x    2 1 3 5 3 x x        Maximum/minimum problems involve finding the vertex of a quadratic Read the question carefully to see if it is the x value or the y value you are required to find. (Need to find the y value of the vertex)
  • 8.
    Maximum/Minimum Problems 2 e.g. () Find the maximum value of 3 5i y x x    2 3 5y x x    2 1 3 5 3 x x        2 1 1 3 5 6 12 x           Maximum/minimum problems involve finding the vertex of a quadratic Read the question carefully to see if it is the x value or the y value you are required to find. (Need to find the y value of the vertex)
  • 9.
    Maximum/Minimum Problems 2 e.g. () Find the maximum value of 3 5i y x x    2 3 5y x x    2 1 3 5 3 x x        2 1 1 3 5 6 12 x           Maximum/minimum problems involve finding the vertex of a quadratic Read the question carefully to see if it is the x value or the y value you are required to find. (Need to find the y value of the vertex) 2 1 11 3 4 6 12 x         
  • 10.
    Maximum/Minimum Problems 2 e.g. () Find the maximum value of 3 5i y x x    2 3 5y x x    2 1 3 5 3 x x        2 1 1 3 5 6 12 x           11 maximum value is 4 12   Maximum/minimum problems involve finding the vertex of a quadratic Read the question carefully to see if it is the x value or the y value you are required to find. (Need to find the y value of the vertex) 2 1 11 3 4 6 12 x         
  • 11.
    Maximum/Minimum Problems 2 e.g. () Find the maximum value of 3 5i y x x    2 3 5y x x    2 1 3 5 3 x x        2 1 1 3 5 6 12 x           11 maximum value is 4 12   Maximum/minimum problems involve finding the vertex of a quadratic Read the question carefully to see if it is the x value or the y value you are required to find. (Need to find the y value of the vertex) 2 1 11 3 4 6 12 x          OR   2 1 4 3 5 59       
  • 12.
    Maximum/Minimum Problems 2 e.g. () Find the maximum value of 3 5i y x x    2 3 5y x x    2 1 3 5 3 x x        2 1 1 3 5 6 12 x           11 maximum value is 4 12   Maximum/minimum problems involve finding the vertex of a quadratic Read the question carefully to see if it is the x value or the y value you are required to find. (Need to find the y value of the vertex) 2 1 11 3 4 6 12 x          OR   2 1 4 3 5 59        maximum value 4a  
  • 13.
    Maximum/Minimum Problems 2 e.g. () Find the maximum value of 3 5i y x x    2 3 5y x x    2 1 3 5 3 x x        2 1 1 3 5 6 12 x           11 maximum value is 4 12   Maximum/minimum problems involve finding the vertex of a quadratic Read the question carefully to see if it is the x value or the y value you are required to find. (Need to find the y value of the vertex) 2 1 11 3 4 6 12 x          OR   2 1 4 3 5 59        maximum value 4a   59 12 11 4 12    
  • 14.
    (ii) A rectanglehas perimeter of 64 cm. What dimensions would the rectangle have for maximum area?
  • 15.
    (ii) A rectanglehas perimeter of 64 cm. What dimensions would the rectangle have for maximum area?
  • 16.
    (ii) A rectanglehas perimeter of 64 cm. What dimensions would the rectangle have for maximum area? s
  • 17.
    (ii) A rectanglehas perimeter of 64 cm. What dimensions would the rectangle have for maximum area? s 32 s
  • 18.
    (ii) A rectanglehas perimeter of 64 cm. What dimensions would the rectangle have for maximum area? s 32 s  32A s s 
  • 19.
    (ii) A rectanglehas perimeter of 64 cm. What dimensions would the rectangle have for maximum area? s 32 s  32A s s  We want the dimensions, so it is the x value of the vertex we need to find.
  • 20.
    (ii) A rectanglehas perimeter of 64 cm. What dimensions would the rectangle have for maximum area? s 32 s  32A s s  We want the dimensions, so it is the x value of the vertex we need to find. 2 32A s s 
  • 21.
    (ii) A rectanglehas perimeter of 64 cm. What dimensions would the rectangle have for maximum area? s 32 s  32A s s  We want the dimensions, so it is the x value of the vertex we need to find. 2 32A s s   2 32s s  
  • 22.
    (ii) A rectanglehas perimeter of 64 cm. What dimensions would the rectangle have for maximum area? s 32 s  32A s s  We want the dimensions, so it is the x value of the vertex we need to find. 2 32A s s   2 32s s     2 16 256s   
  • 23.
    (ii) A rectanglehas perimeter of 64 cm. What dimensions would the rectangle have for maximum area? s 32 s  32A s s  We want the dimensions, so it is the x value of the vertex we need to find. 2 32A s s   2 32s s     2 16 256s    dimensions for a maximum area are 16cm 16cm 
  • 24.
    (ii) A rectanglehas perimeter of 64 cm. What dimensions would the rectangle have for maximum area? s 32 s  32A s s  We want the dimensions, so it is the x value of the vertex we need to find. 2 32A s s   2 32s s     2 16 256s    dimensions for a maximum area are 16cm 16cm  Exercise 8E; 1a iv, 2a iii, then multiples of 3