SlideShare a Scribd company logo
1 of 25
変数選択とAIC
1
1日目-第6講
名前:馬場真哉
所属:北大水産 修士課程2年
Webサイト: logics of blue で検索
2
正規線形モデルの理解のために
統計の基本とt検定
分散分析(ANOVA)
回帰分析と分散分析
PB検定と確率分布
変数選択とAIC
是非
Type II ANOVA、交互作用
3
変数選択って?
変数選択とは、モデルに入る変数を選ぶ作業です
4
変数選択
漁獲量 天気
漁獲量 天気
5
ネコ
漁獲量 天気
ネコのデータはいらない
6
ネコのデータの是非
ネコ
漁獲量 天気
変数を増やすと、決定係数は増える
→モデルの当てはまりは(微量ながら)よくなる
7
変数選択のご利益
1.実世界に対する理解が深まる
現象の見える化
→漁獲量に効く要因は何?
→売り上げに効く要因は何?
2.実世界の模倣ができる
予測ができる
8
今回の内容
1.変数選択の方法論(検定&AIC)の理解
2.Rを使って変数選択する
9
検定を使って変数選択
=
ナイーブ予測の予測残差 ー 予測値変化モデルの残差
予測値変化モデルの予測残差の大きさ
F比
普通の分散分析(回帰分析)
検定とは「予測誤差の比較」である
=ナイーブ予測と比べてどれだけ予測残差が減ったか
10
=
モデル①の予測残差 ー モデル②の予測残差
モデル②の予測残差の大きさ
F比
検定を使って変数選択
モデル① 変数が少ないモデル
モデル② 変数が多いモデル
変数を増やすと残差は“有意に”減った?
11
ネコのデータの是非
ネコ
漁獲量 天気
変数を増やすと、決定係数は増える
→モデルの当てはまりは(微量ながら)よくなる
この当てはまりの向上は
誤差の範囲内だと示す
12
=
モデル①の予測残差 ー モデル②の予測残差
モデル②の予測残差の大きさ
F比
検定まとめ
モデル① 変数が少ないモデル
モデル② 変数が多いモデル
変数を入れても残差が“有意” に減らないなら
その変数はいらない
変数を増やすと残差は“有意に”減った?
質問どうぞ!
13
検定結果の解釈
モデル|Y ~ X1 + X2 + Option1 + Option2
モデル|Y ~ X1
ナイーブ予測
モデル|Y ~ X1 + X2
モデル|Y ~ X1 + X2 + Option1
モデル|Y ~ X1 + X2 + Option1 + Option2
予測残差は“有意に”減ったか? 検定
比較・検定
比較・検定
14
検定結果の解釈
この2種類の検定は意味が違う
モデル|Y ~ X1 + X2 + Option1
モデル|Y ~ X1 + X2 + Option1 + Option2
モデル|Y ~ X1 + X2
モデル|Y ~ X1 + X2 + Option2
検定タイプA
検定タイプB
15
情報量規準の世界
モデルに「良さの指標」があればいい
「良さの指標」がBestなモデルを選べば楽ちん
AIC
[Akaike’s Information Criterion]
16
AICとは
未知のデータへの予測誤差が
小さくなるモデルが良いモデル
AIC
細かい理屈は明日説明します!!
今日は使い方だけ!!
17
ネコ
漁獲量 天気
2000年問題
西暦2000年我が家の猫がダイエットしたら
サンマの漁獲量が減ってしまった!
18
ネコ
2000年問題
西暦2000年我が家の猫がダイエットしたら
サンマの漁獲量が減ってしまった!
でも、ほかの年ではこの関係は続かないだろう
19
ネコのデータの是非
ネコ
漁獲量 天気
変数を増やすと、決定係数は増える
→モデルの当てはまりは(微量ながら)よくなる
しかし、
未知データへの当てはまりは
良くならないはず
20
検定とAIC
検定(当てはまりの向上の有意性の検定)
要因の見える化ができる
→必要な要因を用いて将来予測ができる
AIC(未知データへの当てはまりの最適化)
(未知の)将来予測ができる
→予測に必要な変数の見える化ができる
質問どうぞ!
21
実演
22
検定とAIC
検定
色々な手法があります
→分散分析、t検定、Wald検定、スコア検定
情報量規準
いろいろあります
→AIC, AICc, BIC, TIC
ある研究者の日常
この魚の成長には水温が効いているに違いない!
AICを使ったらモデルに水温が入ってこなかった
分散分析でもダメだった
t検定したが、惜しくもダメ
BICを使ったらうまくいった。やったね!!!
ある研究者の日常
この魚の成長には水温が効いているに違いない!
AICを使ったらモデルに水温が入ってこなかった
分散分析でもダメだった
t検定したが、惜しくもダメ
BICを使ったらうまくいった。やったね!!!
25
さいごに
マナーを守って
楽しく明るく統計モデリング
質問どうぞ!

More Related Content

What's hot

『バックドア基準の入門』@統数研研究集会
『バックドア基準の入門』@統数研研究集会『バックドア基準の入門』@統数研研究集会
『バックドア基準の入門』@統数研研究集会takehikoihayashi
 
因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説Shiga University, RIKEN
 
混合モデルを使って反復測定分散分析をする
混合モデルを使って反復測定分散分析をする混合モデルを使って反復測定分散分析をする
混合モデルを使って反復測定分散分析をするMasaru Tokuoka
 
ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定Akira Masuda
 
MCMCでマルチレベルモデル
MCMCでマルチレベルモデルMCMCでマルチレベルモデル
MCMCでマルチレベルモデルHiroshi Shimizu
 
時系列問題に対するCNNの有用性検証
時系列問題に対するCNNの有用性検証時系列問題に対するCNNの有用性検証
時系列問題に対するCNNの有用性検証Masaharu Kinoshita
 
階層ベイズによるワンToワンマーケティング入門
階層ベイズによるワンToワンマーケティング入門階層ベイズによるワンToワンマーケティング入門
階層ベイズによるワンToワンマーケティング入門shima o
 
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章nocchi_airport
 
5分でわかるかもしれないglmnet
5分でわかるかもしれないglmnet5分でわかるかもしれないglmnet
5分でわかるかもしれないglmnetNagi Teramo
 
機械学習におけるオンライン確率的最適化の理論
機械学習におけるオンライン確率的最適化の理論機械学習におけるオンライン確率的最適化の理論
機械学習におけるオンライン確率的最適化の理論Taiji Suzuki
 
Stanコードの書き方 中級編
Stanコードの書き方 中級編Stanコードの書き方 中級編
Stanコードの書き方 中級編Hiroshi Shimizu
 
PRML輪読#1
PRML輪読#1PRML輪読#1
PRML輪読#1matsuolab
 
1 3.分散分析 anova
1 3.分散分析 anova1 3.分散分析 anova
1 3.分散分析 anovalogics-of-blue
 
[DL輪読会]Inverse Constrained Reinforcement Learning
[DL輪読会]Inverse Constrained Reinforcement Learning[DL輪読会]Inverse Constrained Reinforcement Learning
[DL輪読会]Inverse Constrained Reinforcement LearningDeep Learning JP
 
因果推論の奥へ: "What works" meets "why it works"
因果推論の奥へ: "What works" meets "why it works"因果推論の奥へ: "What works" meets "why it works"
因果推論の奥へ: "What works" meets "why it works"takehikoihayashi
 
統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-Shiga University, RIKEN
 
あなたの心にBridgeSampling
あなたの心にBridgeSamplingあなたの心にBridgeSampling
あなたの心にBridgeSamplingdaiki hojo
 

What's hot (20)

一般化線形モデル (GLM) & 一般化加法モデル(GAM)
一般化線形モデル (GLM) & 一般化加法モデル(GAM) 一般化線形モデル (GLM) & 一般化加法モデル(GAM)
一般化線形モデル (GLM) & 一般化加法モデル(GAM)
 
『バックドア基準の入門』@統数研研究集会
『バックドア基準の入門』@統数研研究集会『バックドア基準の入門』@統数研研究集会
『バックドア基準の入門』@統数研研究集会
 
Stanでガウス過程
Stanでガウス過程Stanでガウス過程
Stanでガウス過程
 
因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説
 
混合モデルを使って反復測定分散分析をする
混合モデルを使って反復測定分散分析をする混合モデルを使って反復測定分散分析をする
混合モデルを使って反復測定分散分析をする
 
ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定ようやく分かった!最尤推定とベイズ推定
ようやく分かった!最尤推定とベイズ推定
 
MCMCでマルチレベルモデル
MCMCでマルチレベルモデルMCMCでマルチレベルモデル
MCMCでマルチレベルモデル
 
時系列問題に対するCNNの有用性検証
時系列問題に対するCNNの有用性検証時系列問題に対するCNNの有用性検証
時系列問題に対するCNNの有用性検証
 
階層ベイズによるワンToワンマーケティング入門
階層ベイズによるワンToワンマーケティング入門階層ベイズによるワンToワンマーケティング入門
階層ベイズによるワンToワンマーケティング入門
 
社会心理学とGlmm
社会心理学とGlmm社会心理学とGlmm
社会心理学とGlmm
 
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
 
5分でわかるかもしれないglmnet
5分でわかるかもしれないglmnet5分でわかるかもしれないglmnet
5分でわかるかもしれないglmnet
 
機械学習におけるオンライン確率的最適化の理論
機械学習におけるオンライン確率的最適化の理論機械学習におけるオンライン確率的最適化の理論
機械学習におけるオンライン確率的最適化の理論
 
Stanコードの書き方 中級編
Stanコードの書き方 中級編Stanコードの書き方 中級編
Stanコードの書き方 中級編
 
PRML輪読#1
PRML輪読#1PRML輪読#1
PRML輪読#1
 
1 3.分散分析 anova
1 3.分散分析 anova1 3.分散分析 anova
1 3.分散分析 anova
 
[DL輪読会]Inverse Constrained Reinforcement Learning
[DL輪読会]Inverse Constrained Reinforcement Learning[DL輪読会]Inverse Constrained Reinforcement Learning
[DL輪読会]Inverse Constrained Reinforcement Learning
 
因果推論の奥へ: "What works" meets "why it works"
因果推論の奥へ: "What works" meets "why it works"因果推論の奥へ: "What works" meets "why it works"
因果推論の奥へ: "What works" meets "why it works"
 
統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-
 
あなたの心にBridgeSampling
あなたの心にBridgeSamplingあなたの心にBridgeSampling
あなたの心にBridgeSampling
 

Viewers also liked

1 5.パラメトリックブートストラップ検定と確率分布
1 5.パラメトリックブートストラップ検定と確率分布1 5.パラメトリックブートストラップ検定と確率分布
1 5.パラメトリックブートストラップ検定と確率分布logics-of-blue
 
2 5 1.一般化線形モデル色々_CPUE標準化
2 5 1.一般化線形モデル色々_CPUE標準化2 5 1.一般化線形モデル色々_CPUE標準化
2 5 1.一般化線形モデル色々_CPUE標準化logics-of-blue
 
2 5 2.一般化線形モデル色々_ロジスティック回帰
2 5 2.一般化線形モデル色々_ロジスティック回帰2 5 2.一般化線形モデル色々_ロジスティック回帰
2 5 2.一般化線形モデル色々_ロジスティック回帰logics-of-blue
 
2 5 3.一般化線形モデル色々_Gamma回帰と対数線形モデル
2 5 3.一般化線形モデル色々_Gamma回帰と対数線形モデル2 5 3.一般化線形モデル色々_Gamma回帰と対数線形モデル
2 5 3.一般化線形モデル色々_Gamma回帰と対数線形モデルlogics-of-blue
 
2 2.尤度と最尤法
2 2.尤度と最尤法2 2.尤度と最尤法
2 2.尤度と最尤法logics-of-blue
 
2 4.devianceと尤度比検定
2 4.devianceと尤度比検定2 4.devianceと尤度比検定
2 4.devianceと尤度比検定logics-of-blue
 
2 6.ゼロ切断・過剰モデル
2 6.ゼロ切断・過剰モデル2 6.ゼロ切断・過剰モデル
2 6.ゼロ切断・過剰モデルlogics-of-blue
 
2 7.一般化線形混合モデル
2 7.一般化線形混合モデル2 7.一般化線形混合モデル
2 7.一般化線形混合モデルlogics-of-blue
 
変数選択におけるAICの利用:理論と実装
変数選択におけるAICの利用:理論と実装変数選択におけるAICの利用:理論と実装
変数選択におけるAICの利用:理論と実装sstat3
 
「予測にいかす統計モデリングの基本」勉強会 第一章
「予測にいかす統計モデリングの基本」勉強会 第一章「予測にいかす統計モデリングの基本」勉強会 第一章
「予測にいかす統計モデリングの基本」勉強会 第一章Takahiro Yoshinaga
 
Kobe.R #18: 本の紹介: 通称「緑本」
Kobe.R #18: 本の紹介: 通称「緑本」Kobe.R #18: 本の紹介: 通称「緑本」
Kobe.R #18: 本の紹介: 通称「緑本」tnoda
 
データ解析のための統計モデリング入門4章
データ解析のための統計モデリング入門4章データ解析のための統計モデリング入門4章
データ解析のための統計モデリング入門4章Hirofumi Tsuruta
 
幾何を使った統計のはなし
幾何を使った統計のはなし幾何を使った統計のはなし
幾何を使った統計のはなしToru Imai
 
時系列データ分析とPython
時系列データ分析とPython時系列データ分析とPython
時系列データ分析とPythonHirofumi Tsuruta
 
みどりぼん読書会 第4章
みどりぼん読書会 第4章みどりぼん読書会 第4章
みどりぼん読書会 第4章Masanori Takano
 
予測理論とpredictability
予測理論とpredictability予測理論とpredictability
予測理論とpredictabilitylogics-of-blue
 

Viewers also liked (20)

1 8.交互作用
1 8.交互作用1 8.交互作用
1 8.交互作用
 
1 2.t検定
1 2.t検定1 2.t検定
1 2.t検定
 
1 7.Type II ANOVA
1 7.Type II ANOVA1 7.Type II ANOVA
1 7.Type II ANOVA
 
1 1.はじめに
1 1.はじめに1 1.はじめに
1 1.はじめに
 
1 5.パラメトリックブートストラップ検定と確率分布
1 5.パラメトリックブートストラップ検定と確率分布1 5.パラメトリックブートストラップ検定と確率分布
1 5.パラメトリックブートストラップ検定と確率分布
 
2 5 1.一般化線形モデル色々_CPUE標準化
2 5 1.一般化線形モデル色々_CPUE標準化2 5 1.一般化線形モデル色々_CPUE標準化
2 5 1.一般化線形モデル色々_CPUE標準化
 
2 5 2.一般化線形モデル色々_ロジスティック回帰
2 5 2.一般化線形モデル色々_ロジスティック回帰2 5 2.一般化線形モデル色々_ロジスティック回帰
2 5 2.一般化線形モデル色々_ロジスティック回帰
 
2 5 3.一般化線形モデル色々_Gamma回帰と対数線形モデル
2 5 3.一般化線形モデル色々_Gamma回帰と対数線形モデル2 5 3.一般化線形モデル色々_Gamma回帰と対数線形モデル
2 5 3.一般化線形モデル色々_Gamma回帰と対数線形モデル
 
2 2.尤度と最尤法
2 2.尤度と最尤法2 2.尤度と最尤法
2 2.尤度と最尤法
 
2 4.devianceと尤度比検定
2 4.devianceと尤度比検定2 4.devianceと尤度比検定
2 4.devianceと尤度比検定
 
2 6.ゼロ切断・過剰モデル
2 6.ゼロ切断・過剰モデル2 6.ゼロ切断・過剰モデル
2 6.ゼロ切断・過剰モデル
 
2 7.一般化線形混合モデル
2 7.一般化線形混合モデル2 7.一般化線形混合モデル
2 7.一般化線形混合モデル
 
変数選択におけるAICの利用:理論と実装
変数選択におけるAICの利用:理論と実装変数選択におけるAICの利用:理論と実装
変数選択におけるAICの利用:理論と実装
 
「予測にいかす統計モデリングの基本」勉強会 第一章
「予測にいかす統計モデリングの基本」勉強会 第一章「予測にいかす統計モデリングの基本」勉強会 第一章
「予測にいかす統計モデリングの基本」勉強会 第一章
 
Kobe.R #18: 本の紹介: 通称「緑本」
Kobe.R #18: 本の紹介: 通称「緑本」Kobe.R #18: 本の紹介: 通称「緑本」
Kobe.R #18: 本の紹介: 通称「緑本」
 
データ解析のための統計モデリング入門4章
データ解析のための統計モデリング入門4章データ解析のための統計モデリング入門4章
データ解析のための統計モデリング入門4章
 
幾何を使った統計のはなし
幾何を使った統計のはなし幾何を使った統計のはなし
幾何を使った統計のはなし
 
時系列データ分析とPython
時系列データ分析とPython時系列データ分析とPython
時系列データ分析とPython
 
みどりぼん読書会 第4章
みどりぼん読書会 第4章みどりぼん読書会 第4章
みどりぼん読書会 第4章
 
予測理論とpredictability
予測理論とpredictability予測理論とpredictability
予測理論とpredictability
 

Recently uploaded

Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介Hyperleger Tokyo Meetup
 
情報を表現するときのポイント
情報を表現するときのポイント情報を表現するときのポイント
情報を表現するときのポイントonozaty
 
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用KLab Inc. / Tech
 
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。iPride Co., Ltd.
 
Keywordmap overview material/CINC.co.ltd
Keywordmap overview material/CINC.co.ltdKeywordmap overview material/CINC.co.ltd
Keywordmap overview material/CINC.co.ltdkokinagano2
 
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイル
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイルLoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイル
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイルCRI Japan, Inc.
 
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアル
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアルLoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアル
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアルCRI Japan, Inc.
 
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdf
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdfネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdf
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdfTakayuki Nakayama
 

Recently uploaded (8)

Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
 
情報を表現するときのポイント
情報を表現するときのポイント情報を表現するときのポイント
情報を表現するときのポイント
 
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用
 
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
 
Keywordmap overview material/CINC.co.ltd
Keywordmap overview material/CINC.co.ltdKeywordmap overview material/CINC.co.ltd
Keywordmap overview material/CINC.co.ltd
 
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイル
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイルLoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイル
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイル
 
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアル
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアルLoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアル
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアル
 
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdf
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdfネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdf
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdf
 

1 6.変数選択とAIC