SlideShare a Scribd company logo
1 of 18
回帰分析と分散分析
1
1日目-第4講
名前:馬場真哉
所属:北大水産 修士課程2年
Webサイト: logics of blue で検索
2
正規線形モデルの理解のために
統計の基本とt検定
分散分析(ANOVA)
回帰分析と分散分析
PB検定と確率分布
モデル選択とAIC
出来れば
Type II ANOVA、交互作用
3
回帰分析とは
回帰分析
“ある数値”を変えることによって
• 結果は“有意に”変化するといえるか?
• 変化するとしたらどれくらい変わるか?
分散分析とほとんど同じ
4
“ある数値”を変えることによって
• 結果は“有意に”変化するといえるか?
• 変化するとしたらどれくらい変わるか?
回帰分析の例
例)
薬の“量”によって魚の体長は変わるか?
体長変化モデル|体長~薬の量
販促費用によって、売上高は変わるか?
売り上げ予測モデル|売上~販促費
5
回帰分析と分散分析の違い
薬の“量”によって魚の体長は変わるか?
体長変化モデル|体長~薬の量
販促費用によって、売上高は変わるか?
売り上げ予測モデル|売上~販促費
薬A, B, Cによって魚の体長は変わるか?
体長変化モデル|体長~薬の種類
施策によって、売上高は変わるか?
売り上げ予測モデル|売上~施策の種類
分散分析
回帰分析
ほとんど一緒
6
回帰分析とは
ある数値を変えることによる結果の変動のモデル化
方程式
𝑌 = 𝑎𝑋 + 𝑏 +𝜀
例)
ビールの売り上げ=a×気温+b
7
方程式の計算方法
例)
ビールの売り上げ=a×気温+b
質問どうぞ!
(Data-予測値)
2
を最小化するa,bを計算
最小二乗法
8
今回の流れ
1.Rを用いて回帰分析する
→最小二乗法のメカニズムの理解
2.回帰分析における検定方法の理解
3.Rを使って検定する
9
実演
10
回帰分析における検定
回帰分析でも分散分析をやります
検定方法は分散分析と同じです
11
まとめ
回帰分析
方程式の結果を予測値とする統計モデル
ある数値により予測値が有意に変わるかを検定
予測値の変化が大きい
予測値が比較に使える(予測残差小)
サンプルサイズが大きい
ナイーブ予測との比較ともみなせる
質問不要!
12
まとめ
=
ナイーブ予測の予測残差 ー 予測値変化モデルの残差
予測値変化モデルの予測残差の大きさ
F比
検定とは「予測残差の比較」である
質問不要!
回帰分析
方程式の結果を予測値とする統計モデル
ある数値により予測値が有意に変わるかを検定
13
ナイーブ予測との比較
コイツがナイーブ予測!
14
予測残差
コイツらが予測残差!
15
① 絶対に予測誤差がナイーブ予測と有意に
異ならないとわかっているデータをたくさん集める
F比が12.79を超えた回数が、100回中5回以内だった
→偶然でt値が12.79を超える確率は小さい
→有意差あり
② そのデータのF比を計算する
③ 0とは有意に異ならないデータにおける
F比を例えば100回計算する。
④ 100回中、F比が12.79を超えた回数を記録
F比の大小の判別方法(F比が12.79の時)
16
F比の大小の判別方法(F比が12.79の時)
100回中、F比が12.79を超えた回数を算出
=
12.79を超えた回数
100
p値
p値≦0.05なら有意とみなす
=偶然で今回計算された
統計量( F比)を超える確率
17
質問どうぞ!
18
実演

More Related Content

What's hot

第4回DARM勉強会 (構造方程式モデリング)
第4回DARM勉強会 (構造方程式モデリング)第4回DARM勉強会 (構造方程式モデリング)
第4回DARM勉強会 (構造方程式モデリング)Yoshitake Takebayashi
 
負の二項分布について
負の二項分布について負の二項分布について
負の二項分布についてHiroshi Shimizu
 
5分でわかるかもしれないglmnet
5分でわかるかもしれないglmnet5分でわかるかもしれないglmnet
5分でわかるかもしれないglmnetNagi Teramo
 
関数データ解析の概要とその方法
関数データ解析の概要とその方法関数データ解析の概要とその方法
関数データ解析の概要とその方法Hidetoshi Matsui
 
心理学におけるベイズ統計の流行を整理する
心理学におけるベイズ統計の流行を整理する心理学におけるベイズ統計の流行を整理する
心理学におけるベイズ統計の流行を整理するHiroshi Shimizu
 
階層ベイズによるワンToワンマーケティング入門
階層ベイズによるワンToワンマーケティング入門階層ベイズによるワンToワンマーケティング入門
階層ベイズによるワンToワンマーケティング入門shima o
 
重回帰分析で交互作用効果
重回帰分析で交互作用効果重回帰分析で交互作用効果
重回帰分析で交互作用効果Makoto Hirakawa
 
比例ハザードモデルはとってもtricky!
比例ハザードモデルはとってもtricky!比例ハザードモデルはとってもtricky!
比例ハザードモデルはとってもtricky!takehikoihayashi
 
Stanコードの書き方 中級編
Stanコードの書き方 中級編Stanコードの書き方 中級編
Stanコードの書き方 中級編Hiroshi Shimizu
 
(実験心理学徒だけど)一般化線形混合モデルを使ってみた
(実験心理学徒だけど)一般化線形混合モデルを使ってみた(実験心理学徒だけど)一般化線形混合モデルを使ってみた
(実験心理学徒だけど)一般化線形混合モデルを使ってみたTakashi Yamane
 
20180118 一般化線形モデル(glm)
20180118 一般化線形モデル(glm)20180118 一般化線形モデル(glm)
20180118 一般化線形モデル(glm)Masakazu Shinoda
 
混合モデルを使って反復測定分散分析をする
混合モデルを使って反復測定分散分析をする混合モデルを使って反復測定分散分析をする
混合モデルを使って反復測定分散分析をするMasaru Tokuoka
 
MCMCでマルチレベルモデル
MCMCでマルチレベルモデルMCMCでマルチレベルモデル
MCMCでマルチレベルモデルHiroshi Shimizu
 
統計的学習の基礎 5章前半(~5.6)
統計的学習の基礎 5章前半(~5.6)統計的学習の基礎 5章前半(~5.6)
統計的学習の基礎 5章前半(~5.6)Kota Mori
 
21世紀の手法対決 (MIC vs HSIC)
21世紀の手法対決 (MIC vs HSIC)21世紀の手法対決 (MIC vs HSIC)
21世紀の手法対決 (MIC vs HSIC)Toru Imai
 
ベイズファクターとモデル選択
ベイズファクターとモデル選択ベイズファクターとモデル選択
ベイズファクターとモデル選択kazutantan
 
2012-1110「マルチレベルモデルのはなし」(censored)
2012-1110「マルチレベルモデルのはなし」(censored)2012-1110「マルチレベルモデルのはなし」(censored)
2012-1110「マルチレベルモデルのはなし」(censored)Mizumoto Atsushi
 

What's hot (20)

第4回DARM勉強会 (構造方程式モデリング)
第4回DARM勉強会 (構造方程式モデリング)第4回DARM勉強会 (構造方程式モデリング)
第4回DARM勉強会 (構造方程式モデリング)
 
負の二項分布について
負の二項分布について負の二項分布について
負の二項分布について
 
5分でわかるかもしれないglmnet
5分でわかるかもしれないglmnet5分でわかるかもしれないglmnet
5分でわかるかもしれないglmnet
 
関数データ解析の概要とその方法
関数データ解析の概要とその方法関数データ解析の概要とその方法
関数データ解析の概要とその方法
 
階層ベイズとWAIC
階層ベイズとWAIC階層ベイズとWAIC
階層ベイズとWAIC
 
心理学におけるベイズ統計の流行を整理する
心理学におけるベイズ統計の流行を整理する心理学におけるベイズ統計の流行を整理する
心理学におけるベイズ統計の流行を整理する
 
階層ベイズによるワンToワンマーケティング入門
階層ベイズによるワンToワンマーケティング入門階層ベイズによるワンToワンマーケティング入門
階層ベイズによるワンToワンマーケティング入門
 
一般化線形モデル (GLM) & 一般化加法モデル(GAM)
一般化線形モデル (GLM) & 一般化加法モデル(GAM) 一般化線形モデル (GLM) & 一般化加法モデル(GAM)
一般化線形モデル (GLM) & 一般化加法モデル(GAM)
 
重回帰分析で交互作用効果
重回帰分析で交互作用効果重回帰分析で交互作用効果
重回帰分析で交互作用効果
 
比例ハザードモデルはとってもtricky!
比例ハザードモデルはとってもtricky!比例ハザードモデルはとってもtricky!
比例ハザードモデルはとってもtricky!
 
Stanコードの書き方 中級編
Stanコードの書き方 中級編Stanコードの書き方 中級編
Stanコードの書き方 中級編
 
(実験心理学徒だけど)一般化線形混合モデルを使ってみた
(実験心理学徒だけど)一般化線形混合モデルを使ってみた(実験心理学徒だけど)一般化線形混合モデルを使ってみた
(実験心理学徒だけど)一般化線形混合モデルを使ってみた
 
20180118 一般化線形モデル(glm)
20180118 一般化線形モデル(glm)20180118 一般化線形モデル(glm)
20180118 一般化線形モデル(glm)
 
混合モデルを使って反復測定分散分析をする
混合モデルを使って反復測定分散分析をする混合モデルを使って反復測定分散分析をする
混合モデルを使って反復測定分散分析をする
 
MCMCでマルチレベルモデル
MCMCでマルチレベルモデルMCMCでマルチレベルモデル
MCMCでマルチレベルモデル
 
統計的学習の基礎 5章前半(~5.6)
統計的学習の基礎 5章前半(~5.6)統計的学習の基礎 5章前半(~5.6)
統計的学習の基礎 5章前半(~5.6)
 
21世紀の手法対決 (MIC vs HSIC)
21世紀の手法対決 (MIC vs HSIC)21世紀の手法対決 (MIC vs HSIC)
21世紀の手法対決 (MIC vs HSIC)
 
ベイズファクターとモデル選択
ベイズファクターとモデル選択ベイズファクターとモデル選択
ベイズファクターとモデル選択
 
2012-1110「マルチレベルモデルのはなし」(censored)
2012-1110「マルチレベルモデルのはなし」(censored)2012-1110「マルチレベルモデルのはなし」(censored)
2012-1110「マルチレベルモデルのはなし」(censored)
 
潜在クラス分析
潜在クラス分析潜在クラス分析
潜在クラス分析
 

Viewers also liked

1 6.変数選択とAIC
1 6.変数選択とAIC1 6.変数選択とAIC
1 6.変数選択とAIClogics-of-blue
 
2 5 1.一般化線形モデル色々_CPUE標準化
2 5 1.一般化線形モデル色々_CPUE標準化2 5 1.一般化線形モデル色々_CPUE標準化
2 5 1.一般化線形モデル色々_CPUE標準化logics-of-blue
 
2 5 3.一般化線形モデル色々_Gamma回帰と対数線形モデル
2 5 3.一般化線形モデル色々_Gamma回帰と対数線形モデル2 5 3.一般化線形モデル色々_Gamma回帰と対数線形モデル
2 5 3.一般化線形モデル色々_Gamma回帰と対数線形モデルlogics-of-blue
 
2 5 2.一般化線形モデル色々_ロジスティック回帰
2 5 2.一般化線形モデル色々_ロジスティック回帰2 5 2.一般化線形モデル色々_ロジスティック回帰
2 5 2.一般化線形モデル色々_ロジスティック回帰logics-of-blue
 
2 1.予測と確率分布
2 1.予測と確率分布2 1.予測と確率分布
2 1.予測と確率分布logics-of-blue
 
2 2.尤度と最尤法
2 2.尤度と最尤法2 2.尤度と最尤法
2 2.尤度と最尤法logics-of-blue
 
2 7.一般化線形混合モデル
2 7.一般化線形混合モデル2 7.一般化線形混合モデル
2 7.一般化線形混合モデルlogics-of-blue
 
ベイズ主義による研究の報告方法
ベイズ主義による研究の報告方法ベイズ主義による研究の報告方法
ベイズ主義による研究の報告方法Masaru Tokuoka
 
予測理論とpredictability
予測理論とpredictability予測理論とpredictability
予測理論とpredictabilitylogics-of-blue
 
El naixement d'una llengua
El naixement d'una llenguaEl naixement d'una llengua
El naixement d'una llenguagerard vilanova
 
アンサンブル学習
アンサンブル学習アンサンブル学習
アンサンブル学習Hidekazu Tanaka
 
機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話Ryota Kamoshida
 
エクセルで統計分析 統計プログラムHADについて
エクセルで統計分析 統計プログラムHADについてエクセルで統計分析 統計プログラムHADについて
エクセルで統計分析 統計プログラムHADについてHiroshi Shimizu
 

Viewers also liked (17)

1 7.Type II ANOVA
1 7.Type II ANOVA1 7.Type II ANOVA
1 7.Type II ANOVA
 
1 1.はじめに
1 1.はじめに1 1.はじめに
1 1.はじめに
 
1 2.t検定
1 2.t検定1 2.t検定
1 2.t検定
 
1 8.交互作用
1 8.交互作用1 8.交互作用
1 8.交互作用
 
1 6.変数選択とAIC
1 6.変数選択とAIC1 6.変数選択とAIC
1 6.変数選択とAIC
 
2 5 1.一般化線形モデル色々_CPUE標準化
2 5 1.一般化線形モデル色々_CPUE標準化2 5 1.一般化線形モデル色々_CPUE標準化
2 5 1.一般化線形モデル色々_CPUE標準化
 
2 5 3.一般化線形モデル色々_Gamma回帰と対数線形モデル
2 5 3.一般化線形モデル色々_Gamma回帰と対数線形モデル2 5 3.一般化線形モデル色々_Gamma回帰と対数線形モデル
2 5 3.一般化線形モデル色々_Gamma回帰と対数線形モデル
 
2 5 2.一般化線形モデル色々_ロジスティック回帰
2 5 2.一般化線形モデル色々_ロジスティック回帰2 5 2.一般化線形モデル色々_ロジスティック回帰
2 5 2.一般化線形モデル色々_ロジスティック回帰
 
2 1.予測と確率分布
2 1.予測と確率分布2 1.予測と確率分布
2 1.予測と確率分布
 
2 2.尤度と最尤法
2 2.尤度と最尤法2 2.尤度と最尤法
2 2.尤度と最尤法
 
2 7.一般化線形混合モデル
2 7.一般化線形混合モデル2 7.一般化線形混合モデル
2 7.一般化線形混合モデル
 
ベイズ主義による研究の報告方法
ベイズ主義による研究の報告方法ベイズ主義による研究の報告方法
ベイズ主義による研究の報告方法
 
予測理論とpredictability
予測理論とpredictability予測理論とpredictability
予測理論とpredictability
 
El naixement d'una llengua
El naixement d'una llenguaEl naixement d'una llengua
El naixement d'una llengua
 
アンサンブル学習
アンサンブル学習アンサンブル学習
アンサンブル学習
 
機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話
 
エクセルで統計分析 統計プログラムHADについて
エクセルで統計分析 統計プログラムHADについてエクセルで統計分析 統計プログラムHADについて
エクセルで統計分析 統計プログラムHADについて
 

Recently uploaded

Keywordmap overview material/CINC.co.ltd
Keywordmap overview material/CINC.co.ltdKeywordmap overview material/CINC.co.ltd
Keywordmap overview material/CINC.co.ltdkokinagano2
 
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアル
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアルLoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアル
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアルCRI Japan, Inc.
 
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdf
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdfネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdf
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdfTakayuki Nakayama
 
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイル
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイルLoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイル
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイルCRI Japan, Inc.
 
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。iPride Co., Ltd.
 
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員Sadaomi Nishi
 
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一瑛一 西口
 
Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )iwashiira2ctf
 
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介Hyperleger Tokyo Meetup
 
情報を表現するときのポイント
情報を表現するときのポイント情報を表現するときのポイント
情報を表現するときのポイントonozaty
 
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521Satoshi Makita
 
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計atsushi061452
 
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑Akihiro Kadohata
 
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用KLab Inc. / Tech
 

Recently uploaded (14)

Keywordmap overview material/CINC.co.ltd
Keywordmap overview material/CINC.co.ltdKeywordmap overview material/CINC.co.ltd
Keywordmap overview material/CINC.co.ltd
 
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアル
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアルLoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアル
LoRaWAN無位置ロープ式水漏れセンサーWL03A 日本語マニュアル
 
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdf
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdfネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdf
ネットワーク可視化 振る舞い検知(NDR)ご紹介_キンドリル202405.pdf
 
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイル
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイルLoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイル
LoRaWAN無位置ロープ型水漏れセンサー WL03A-LB/LSカタログ ファイル
 
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
MPAなWebフレームワーク、Astroの紹介 (その1) 2024/05/17の勉強会で発表されたものです。
 
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
部内勉強会(IT用語ざっくり学習) 実施日:2024年5月17日(金) 対象者:営業部社員
 
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
5/22 第23回 Customer系エンジニア座談会のスライド 公開用 西口瑛一
 
Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )Intranet Development v1.0 (TSG LIVE! 12 LT )
Intranet Development v1.0 (TSG LIVE! 12 LT )
 
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
Hyperledger Fabricコミュニティ活動体験& Hyperledger Fabric最新状況ご紹介
 
情報を表現するときのポイント
情報を表現するときのポイント情報を表現するときのポイント
情報を表現するときのポイント
 
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
ロボットマニピュレーションの作業・動作計画 / rosjp_planning_for_robotic_manipulation_20240521
 
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
研究紹介スライド: オフライン強化学習に基づくロボティックスワームの制御器の設計
 
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
クラウド時代におけるSREとUPWARDの取組ーUPWARD株式会社 CTO門畑
 
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用
2024年5月17日 先駆的科学計算フォーラム2024 機械学習を用いた新たなゲーム体験の創出の応用
 

1 4.回帰分析と分散分析