SlideShare a Scribd company logo
交互作用
1
1日目-第8講
名前:馬場真哉
所属:北大水産 修士課程2年
Webサイト: logics of blue で検索
2
正規線形モデルの理解のために
統計の基本とt検定
分散分析(ANOVA)
回帰分析と分散分析
PB検定と確率分布
変数選択とAIC
ラスト!!
Type II ANOVA、交互作用
3
交互作用って?
 交互作用がない時
気温が1度上がると、ビールが100本追加で売れる
 交互作用がある時
晴れの日)
気温が1度上がると、ビールが150本追加で売れる
雨の日)
気温が1度上がると、売れるビールが50本減る
気温と天気が
交互に影響を与え合っている
4
実演
5
交互作用の解釈
> model.beer$coef
(Intercept) temperature weatherrain temperature:weatherrain
-6.423869 9.020507 241.73962 -13.844963
気温が1度上がると、利益は9増える?
5 10 15 20 25 30 35
-1000100200300400
お天気別ビールによる利益
気温
ビールによる利益
fine
rain
気温
交互作用の解釈
気温が1度増で
利益は9増?
7
交互作用の解釈
> model.beer$coef
(Intercept) temperature weatherrain temperature:weatherrain
-6.423869 9.020507 241.73962 -13.844963
主効果の数字は解釈に使わない!!
じゃあどうすればよい?
8
交互作用の解釈
> model.beer$coef
(Intercept) temperature weatherrain temperature:weatherrain
-6.423869 9.020507 241.73962 -13.844963
気温と天気の交互作用があるなら、
両方合わせて考察する
晴れの時!
-6.423869 + 気温 × 9.020507
雨の時!
-6.423869 + 241.73962
+ 気温 × (9.020507 -13.844963)
9
色々な交互作用
今回の例
定量データ : 選択肢(カテゴリデータ)の交互作用
選択肢毎に、異なる切片と傾きを持つ回帰モデル
(共分散分析ともいう:死語)
ほかにも・・・
カテゴリデータ : カテゴリデータの交互作用
定量データ : 定量データ の交互作用
10
パターン②
カテゴリデータ : カテゴリデータの交互作用
色々な交互作用
施策Aを実行 → 未実施に比べ売り上げ +5
施策Bを実行 → 未実施に比べ売り上げ +3
施策A、Bを同時に実行 → 未実施に比べ売り上げ +50
11
パターン②
カテゴリデータ : カテゴリデータの交互作用
色々な交互作用
> model.Category$coef
(Intercept) 施策A実施 施策B実施 交互作用
A B C D
施策A 施策B 結果
未実施 未実施 A
実施 未実施 A + B
未実施 実施 A + C
実施 実施 A + B + C + D
12
パターン③
定量データ : 定量データ の交互作用
色々な交互作用
湿度30% → 気温の傾きは5
湿度60% → 気温の傾きは12
> model.numeric$coef
(Intercept) 気温 湿度 気温:湿度
A B C D
13
パターン③
定量データ : 定量データ の交互作用
色々な交互作用
> model.numeric$coef
(Intercept) 気温 湿度 気温:湿度
A B C D
利益
= A + B×気温 + C×湿度 + D×気温×湿度
質問どうぞ!
= A +(B + D×湿度)×気温 + C×湿度

More Related Content

What's hot

2 7.一般化線形混合モデル
2 7.一般化線形混合モデル2 7.一般化線形混合モデル
2 7.一般化線形混合モデル
logics-of-blue
 
1 7.Type II ANOVA
1 7.Type II ANOVA1 7.Type II ANOVA
1 7.Type II ANOVA
logics-of-blue
 
1 6.変数選択とAIC
1 6.変数選択とAIC1 6.変数選択とAIC
1 6.変数選択とAIC
logics-of-blue
 
正準相関分析
正準相関分析正準相関分析
正準相関分析
Akisato Kimura
 
階層ベイズとWAIC
階層ベイズとWAIC階層ベイズとWAIC
階層ベイズとWAIC
Hiroshi Shimizu
 
1 3.分散分析 anova
1 3.分散分析 anova1 3.分散分析 anova
1 3.分散分析 anova
logics-of-blue
 
SEMを用いた縦断データの解析 潜在曲線モデル
SEMを用いた縦断データの解析 潜在曲線モデルSEMを用いた縦断データの解析 潜在曲線モデル
SEMを用いた縦断データの解析 潜在曲線モデル
Masaru Tokuoka
 
2 5 1.一般化線形モデル色々_CPUE標準化
2 5 1.一般化線形モデル色々_CPUE標準化2 5 1.一般化線形モデル色々_CPUE標準化
2 5 1.一般化線形モデル色々_CPUE標準化
logics-of-blue
 
ベイズ統計入門
ベイズ統計入門ベイズ統計入門
ベイズ統計入門
Miyoshi Yuya
 
一般化線形混合モデル入門の入門
一般化線形混合モデル入門の入門一般化線形混合モデル入門の入門
一般化線形混合モデル入門の入門
Yu Tamura
 
一般化線形モデル (GLM) & 一般化加法モデル(GAM)
一般化線形モデル (GLM) & 一般化加法モデル(GAM) 一般化線形モデル (GLM) & 一般化加法モデル(GAM)
一般化線形モデル (GLM) & 一般化加法モデル(GAM)
Deep Learning Lab(ディープラーニング・ラボ)
 
3分でわかる多項分布とディリクレ分布
3分でわかる多項分布とディリクレ分布3分でわかる多項分布とディリクレ分布
3分でわかる多項分布とディリクレ分布
Junya Saito
 
GEE(一般化推定方程式)の理論
GEE(一般化推定方程式)の理論GEE(一般化推定方程式)の理論
GEE(一般化推定方程式)の理論
Koichiro Gibo
 
グラフィカルモデル入門
グラフィカルモデル入門グラフィカルモデル入門
グラフィカルモデル入門
Kawamoto_Kazuhiko
 
変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)
Takao Yamanaka
 
心理学者のためのGlmm・階層ベイズ
心理学者のためのGlmm・階層ベイズ心理学者のためのGlmm・階層ベイズ
心理学者のためのGlmm・階層ベイズ
Hiroshi Shimizu
 
マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)
マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)
マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)
Yoshitake Takebayashi
 
WBICによる混合正規分布の分離と抽出
WBICによる混合正規分布の分離と抽出WBICによる混合正規分布の分離と抽出
WBICによる混合正規分布の分離と抽出
Yusuke TAMAI
 
分布から見た線形モデル・GLM・GLMM
分布から見た線形モデル・GLM・GLMM分布から見た線形モデル・GLM・GLMM
分布から見た線形モデル・GLM・GLMM
. .
 

What's hot (20)

2 7.一般化線形混合モデル
2 7.一般化線形混合モデル2 7.一般化線形混合モデル
2 7.一般化線形混合モデル
 
1 7.Type II ANOVA
1 7.Type II ANOVA1 7.Type II ANOVA
1 7.Type II ANOVA
 
1 6.変数選択とAIC
1 6.変数選択とAIC1 6.変数選択とAIC
1 6.変数選択とAIC
 
正準相関分析
正準相関分析正準相関分析
正準相関分析
 
階層ベイズとWAIC
階層ベイズとWAIC階層ベイズとWAIC
階層ベイズとWAIC
 
1 3.分散分析 anova
1 3.分散分析 anova1 3.分散分析 anova
1 3.分散分析 anova
 
SEMを用いた縦断データの解析 潜在曲線モデル
SEMを用いた縦断データの解析 潜在曲線モデルSEMを用いた縦断データの解析 潜在曲線モデル
SEMを用いた縦断データの解析 潜在曲線モデル
 
2 5 1.一般化線形モデル色々_CPUE標準化
2 5 1.一般化線形モデル色々_CPUE標準化2 5 1.一般化線形モデル色々_CPUE標準化
2 5 1.一般化線形モデル色々_CPUE標準化
 
ベイズ統計入門
ベイズ統計入門ベイズ統計入門
ベイズ統計入門
 
一般化線形混合モデル入門の入門
一般化線形混合モデル入門の入門一般化線形混合モデル入門の入門
一般化線形混合モデル入門の入門
 
一般化線形モデル (GLM) & 一般化加法モデル(GAM)
一般化線形モデル (GLM) & 一般化加法モデル(GAM) 一般化線形モデル (GLM) & 一般化加法モデル(GAM)
一般化線形モデル (GLM) & 一般化加法モデル(GAM)
 
PRML8章
PRML8章PRML8章
PRML8章
 
3分でわかる多項分布とディリクレ分布
3分でわかる多項分布とディリクレ分布3分でわかる多項分布とディリクレ分布
3分でわかる多項分布とディリクレ分布
 
GEE(一般化推定方程式)の理論
GEE(一般化推定方程式)の理論GEE(一般化推定方程式)の理論
GEE(一般化推定方程式)の理論
 
グラフィカルモデル入門
グラフィカルモデル入門グラフィカルモデル入門
グラフィカルモデル入門
 
変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)
 
心理学者のためのGlmm・階層ベイズ
心理学者のためのGlmm・階層ベイズ心理学者のためのGlmm・階層ベイズ
心理学者のためのGlmm・階層ベイズ
 
マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)
マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)
マルコフ連鎖モンテカルロ法 (2/3はベイズ推定の話)
 
WBICによる混合正規分布の分離と抽出
WBICによる混合正規分布の分離と抽出WBICによる混合正規分布の分離と抽出
WBICによる混合正規分布の分離と抽出
 
分布から見た線形モデル・GLM・GLMM
分布から見た線形モデル・GLM・GLMM分布から見た線形モデル・GLM・GLMM
分布から見た線形モデル・GLM・GLMM
 

Viewers also liked

1 1.はじめに
1 1.はじめに1 1.はじめに
1 1.はじめに
logics-of-blue
 
1 5.パラメトリックブートストラップ検定と確率分布
1 5.パラメトリックブートストラップ検定と確率分布1 5.パラメトリックブートストラップ検定と確率分布
1 5.パラメトリックブートストラップ検定と確率分布
logics-of-blue
 
1 4.回帰分析と分散分析
1 4.回帰分析と分散分析1 4.回帰分析と分散分析
1 4.回帰分析と分散分析
logics-of-blue
 
2 6.ゼロ切断・過剰モデル
2 6.ゼロ切断・過剰モデル2 6.ゼロ切断・過剰モデル
2 6.ゼロ切断・過剰モデル
logics-of-blue
 
変数選択におけるAICの利用:理論と実装
変数選択におけるAICの利用:理論と実装変数選択におけるAICの利用:理論と実装
変数選択におけるAICの利用:理論と実装
sstat3
 
幾何を使った統計のはなし
幾何を使った統計のはなし幾何を使った統計のはなし
幾何を使った統計のはなし
Toru Imai
 
予測理論とpredictability
予測理論とpredictability予測理論とpredictability
予測理論とpredictability
logics-of-blue
 
El naixement d'una llengua
El naixement d'una llenguaEl naixement d'una llengua
El naixement d'una llengua
gerard vilanova
 
シンギュラリティを知らずに機械学習を語るな
シンギュラリティを知らずに機械学習を語るなシンギュラリティを知らずに機械学習を語るな
シンギュラリティを知らずに機械学習を語るな
hoxo_m
 

Viewers also liked (9)

1 1.はじめに
1 1.はじめに1 1.はじめに
1 1.はじめに
 
1 5.パラメトリックブートストラップ検定と確率分布
1 5.パラメトリックブートストラップ検定と確率分布1 5.パラメトリックブートストラップ検定と確率分布
1 5.パラメトリックブートストラップ検定と確率分布
 
1 4.回帰分析と分散分析
1 4.回帰分析と分散分析1 4.回帰分析と分散分析
1 4.回帰分析と分散分析
 
2 6.ゼロ切断・過剰モデル
2 6.ゼロ切断・過剰モデル2 6.ゼロ切断・過剰モデル
2 6.ゼロ切断・過剰モデル
 
変数選択におけるAICの利用:理論と実装
変数選択におけるAICの利用:理論と実装変数選択におけるAICの利用:理論と実装
変数選択におけるAICの利用:理論と実装
 
幾何を使った統計のはなし
幾何を使った統計のはなし幾何を使った統計のはなし
幾何を使った統計のはなし
 
予測理論とpredictability
予測理論とpredictability予測理論とpredictability
予測理論とpredictability
 
El naixement d'una llengua
El naixement d'una llenguaEl naixement d'una llengua
El naixement d'una llengua
 
シンギュラリティを知らずに機械学習を語るな
シンギュラリティを知らずに機械学習を語るなシンギュラリティを知らずに機械学習を語るな
シンギュラリティを知らずに機械学習を語るな
 

Recently uploaded

論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
Toru Tamaki
 
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit IntroductionMatsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo Lab
 
Kyndryl Developer Services のご紹介 2024年7月
Kyndryl Developer Services のご紹介  2024年7月Kyndryl Developer Services のご紹介  2024年7月
Kyndryl Developer Services のご紹介 2024年7月
Takayuki Nakayama
 
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit IntroductionMatsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo Lab
 
Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)
Natsutani Minoru
 
20240717_IoTLT_vol113_kitazaki_v1___.pdf
20240717_IoTLT_vol113_kitazaki_v1___.pdf20240717_IoTLT_vol113_kitazaki_v1___.pdf
20240717_IoTLT_vol113_kitazaki_v1___.pdf
Ayachika Kitazaki
 
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
Sony - Neural Network Libraries
 
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
Toru Tamaki
 
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ..."ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
たけおか しょうぞう
 
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
ARISE analytics
 
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit IntroductionMatsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo Lab
 
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログLoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
CRI Japan, Inc.
 
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
chisatotakane
 
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
Sony - Neural Network Libraries
 

Recently uploaded (14)

論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
 
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit IntroductionMatsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit Introduction
 
Kyndryl Developer Services のご紹介 2024年7月
Kyndryl Developer Services のご紹介  2024年7月Kyndryl Developer Services のご紹介  2024年7月
Kyndryl Developer Services のご紹介 2024年7月
 
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit IntroductionMatsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit Introduction
 
Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)
 
20240717_IoTLT_vol113_kitazaki_v1___.pdf
20240717_IoTLT_vol113_kitazaki_v1___.pdf20240717_IoTLT_vol113_kitazaki_v1___.pdf
20240717_IoTLT_vol113_kitazaki_v1___.pdf
 
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
 
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
 
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ..."ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
 
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
【JSAI2024】J-NER大規模言語モデルのための固有表現認識における拡張固有表現階層を考慮したベンチマークデータセット.pdf
 
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit IntroductionMatsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit Introduction
 
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログLoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
 
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
 
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
 

1 8.交互作用