SlideShare a Scribd company logo
1 of 28
Download to read offline
1
Fluid Mechanics
(MME-2252)
VISCOUS FLOW
IV Semester, Mechanical Engineering
Department of Mechanical and Manufacturing Engineering
Manipal Institute of Technology, MAHE, Manipal
Dr. Vijay G. S.
Professor, Dept. of Mech. & Ind. Engg., MIT, Manipal
email: vijay.gs@manipal.edu
Mob.: 9980032104
Topics
2
οƒ˜ Reynold’s experiment, laminar and turbulent flows
οƒ˜ Viscous flow through a circular pipe (Hagen Poiseuille flow)
οƒ˜ Viscous flow between two parallel plates (Plain Couette flow)
1) The shear stress distribution
2) The velocity distribution
3) The ratio of maximum velocity to average velocity
4) The drop of pressure for a given length
3
Viscous Flow
Difference in Ideal and Real fluid Flow in Pipe
V
Figure (3): Velocity Profile in Real Fluid Flow
V
D V
Figure (2): Velocity Profile in Ideal Fluid Flow
β€’ Viscosity offers to viscous shear resistance (Ο„ = Β΅ du/dy) and opposes the
motion between the layers
β€’ This gives rise to change in velocity between layers i.e. velocity gradient
(du/dy) will appear normal to the flow direction
β€’ Due to the resistance to motion, power is required to maintain flow of real fluids
β€’ Hence, In fluid flow problems, effect of viscosity cannot be neglected
Why this change is appearing?
Laminar and Turbulent Flows
Depending upon the relative magnitudes of the viscous forces and inertia forces, flow can exist in
two types- Laminar Flow and Turbulent Flow
Laminar Flow: All particles move in well defined paths and
individual particles do not cross the paths taken by other particle.
Flow takes place in number of sheets or laminae. This type of flow
is also known as streamline or viscous flow.
Turbulent Flow: Particles move in zig-zag way in a flow field i.e.
the flow is disturbed and inter-mixing of particles takes place.
4
In this chapter, Our Focus is in laminar flow i.e. viscous effects are dominant and flow is well defined
5
1) Reynolds’s Experiment:
O. Reynold, a British professor demonstrated that a laminar flow changes to turbulent flow
Figure: Reynolds Dye Experimental setup and Observed dye streak lines [1]
Q V
Observations from the Reynold’s Dye Experiment
6
For general case, transition of flow is function of
β€’ Velocity of fluid (V)
β€’ Diameter of the pipe (V)
β€’ Viscosity of the fluid (πœ‡)
β€’ Density of Fluid (ρ)
Figure: Time dependence of fluid velocity at a point [1]
𝑉𝐴 = 𝑒 ΖΈ
𝑖
𝑉𝐴 = 𝑒 ΖΈ
𝑖 + 𝑣 ΖΈ
𝑗 + 𝑀෠
π‘˜
ρ = Density of Fluid,
Vavg= Average Velocity,
D= Diameter of Pipe,
Β΅= Dynamic Viscosity
𝑅𝑒 =
πœŒπ‘‰
π‘Žπ‘£π‘”π·
πœ‡
For a flow in circular pipe,
If Re < 2000, the flow is said to be laminar
If Re > 4000, the flow is said to be turbulent
If 2000 < Re < 4000, in transition from laminar to turbulent
Identifying the type of flow from Reynolds Number
Critical Reynolds Number: It is magnitude of Reynolds Number below
which the flow is definitely laminar.
7
Figure: Laminar and Turbulent
flow regimes in candle smoke [3]
2. Flow of Viscous Fluid Through a Circular Pipe
Explanation:
β€’ Consider a horizontal circular cross section pipe of radius β€˜R’, through which a viscous fluid is flowing
from left to right
β€’ Consider a cylindrical fluid element of radius r, thickness dr and length x sliding inside a cylindrical
fluid element of radius (r + dr).
β€’ Forces acting on element: A pressure forces are acting normal to the faces of element, and shear forces
are acting on the surface
Direction
of Flow
r
dr
A
B C
D
r
x
β–³x
R
π’‘π…π’“πŸ
𝒑 +
𝒅𝒑
𝒅𝒙
βˆ†π’™ π…π’“πŸ
𝝉 Γ— πŸπ…π’“ Γ— βˆ†π’™
8
2.1 Shear stress distribution:
As there is no acceleration, the algebraic summation of
all the forces acting on the fluid element must be zero.
𝑝 Γ— πœ‹π‘Ÿ2 βˆ’ 𝑝 +
𝑑𝑝
𝑑π‘₯
βˆ†π‘₯ πœ‹π‘Ÿ2 βˆ’ 𝜏 Γ— 2πœ‹π‘Ÿ Γ— βˆ†π‘₯ = 0
βˆ’
𝑑𝑝
𝑑π‘₯
βˆ†π‘₯ πœ‹π‘Ÿ2
βˆ’ 𝜏 Γ— 2πœ‹π‘Ÿ Γ— βˆ†π‘₯ = 0
𝜏 = βˆ’
𝑑𝑝
𝑑π‘₯
π‘Ÿ
2
(1)
9
෍
β†’+
𝑓 π‘₯ = 0
β€’ Shear stress distribution is function of radius of pipe 𝜏 ∝ π‘Ÿ
β€’ Shear stress varies linearly from zero at center of pipe to maximum at the boundary (r = R)
β€’ The negative sign for pressure gradient indicates a decrease in the pressure in the direction of fluid flow.
β€’ As potential and kinetic energies remain constant, the pressure force is the only means to compensate for
the resistance to flow.
Note: Pressure gradient remains constant
πœπ‘šπ‘Žπ‘₯ = βˆ’
𝑑𝑝
𝑑π‘₯
𝑅
2
𝜏 = βˆ’
𝑑𝑝
𝑑π‘₯
π‘Ÿ
2
10
Meaning of Mathematical Expression πœπ‘šπ‘Žπ‘₯
R
Figure: Shear stress distribution profile
A
A
r
x
2.2 Velocity Distribution
To get the velocity distribution, substitute for shear stress in equation (1)
From Newton’s law of viscosity,
In the above mathematical expression, y is measured from the pipe wall,
Substituting in the expression of Newton’s law of viscosity,
βΈ« the expression for y can be written as
𝜏 = πœ‡
𝑑𝑒
𝑑𝑦
At pipe wall, 𝑦 = 0,
At pipe center, 𝑦 = 𝑅
𝑦 = 𝑅 βˆ’ π‘Ÿ
𝜏 = βˆ’πœ‡
𝑑𝑒
π‘‘π‘Ÿ
11
dy = -dr
π‘Ÿ = 𝑅
π‘Ÿ = 0
&
(2)
Integrating the equation we get,
Where, C is the integration constant and its value can be determined from the boundary conditions.
u = 0 at r = R (velocity is zero at pipe wall). Substituting the boundary condition in equation (3)
βˆ’πœ‡
𝑑𝑒
π‘‘π‘Ÿ
= βˆ’
𝑑𝑝
𝑑π‘₯
π‘Ÿ
2
1
2
𝑑𝑒
π‘‘π‘Ÿ
=
1
2πœ‡
𝑑𝑝
𝑑π‘₯
Γ— π‘Ÿ
ΰΆ± 𝑑𝑒 = ΰΆ±
1
2πœ‡
𝑑𝑝
𝑑π‘₯
π‘Ÿ. π‘‘π‘Ÿ
𝑒 =
1
2πœ‡
Γ—
𝑑𝑝
𝑑π‘₯
Γ—
π‘Ÿ2
2
+ 𝐢
∴ 𝑒 =
1
4πœ‡
Γ—
𝑑𝑝
𝑑π‘₯
Γ— π‘Ÿ2 + 𝐢
Equating expressions (1) and (2) 20
(3)
β€’ The velocity distribution of a fully developed laminar flow in a circular pipe must be parabolic.
β€’ At the center of the pipe, the velocity is maximum. i.e. at r = 0, u = Umax
Note: In equation (4), Β΅,
𝑑𝑝
𝑑π‘₯
and R are constants.
13
0 =
1
4πœ‡
Γ—
𝑑𝑝
𝑑π‘₯
Γ— 𝑅2 + 𝐢
𝐢 = βˆ’
1
4πœ‡
Γ—
𝑑𝑝
𝑑π‘₯
Γ— 𝑅2
Back substitution of C in (3) gives,
𝑒 =
1
4πœ‡
Γ—
𝑑𝑝
𝑑π‘₯
Γ— π‘Ÿ2 βˆ’
1
4πœ‡
Γ—
𝑑𝑝
𝑑π‘₯
Γ— 𝑅2
𝑒 = βˆ’
1
4πœ‡
Γ—
𝑑𝑝
𝑑π‘₯
Γ— 𝑅2 βˆ’ π‘Ÿ2
R r
(4)
Substituting r = 0 in equation (4),
Equation (4) can be written as
Substituting (5) in (6),
14
π‘ˆπ‘šπ‘Žπ‘₯ = βˆ’
1
4πœ‡
Γ—
𝑑𝑝
𝑑π‘₯
Γ— 𝑅2
𝑒 = βˆ’
1
4πœ‡
Γ—
𝑑𝑝
𝑑π‘₯
Γ— 𝑅2
1 βˆ’
π‘Ÿ2
𝑅2
𝑒 = π‘ˆπ‘šπ‘Žπ‘₯ 1 βˆ’
π‘Ÿ2
𝑅2
πœπ‘šπ‘Žπ‘₯
R
Figure: Shear stress distribution and
Velocity profile
r π‘ˆπ‘šπ‘Žπ‘₯
(5)
(6)
(7)
15
Figure: Changes in velocity profile and pressure changes along the flow in pipe [2]
16
we need to derive mathematical expressions for the following
1. The shear stress distribution
2. The velocity distribution
3. The ratio of maximum velocity to average velocity
4. The drop of pressure for a given length
Remember the objectives,
3.3 Ratio of Maximum velocity to Average Velocity
17
The average velocity of the fluid flow can be determined by dividing the discharge Q by the
area of the pipe (Ο€R2).
dQ = (Area of the ring element) ο‚΄ (Velocity at radius r) = 𝑒 Γ— 2πœ‹π‘Ÿ Γ— π‘‘π‘Ÿ
Substitute for β€˜u’ from equation (4),
𝑑𝑄 = βˆ’
1
4πœ‡
Γ—
𝑑𝑝
𝑑π‘₯
Γ— 𝑅2
βˆ’ π‘Ÿ2
Γ— 2πœ‹π‘Ÿ Γ— π‘‘π‘Ÿ
βΈ« The total discharge through the pipe is
𝑄 = ΰΆ±
0
𝑅
𝑑𝑄 = ΰΆ±
0
𝑅
βˆ’
1
4πœ‡
Γ—
𝑑𝑝
𝑑π‘₯
Γ— 𝑅2
βˆ’ π‘Ÿ2
Γ— 2πœ‹π‘Ÿ Γ— π‘‘π‘Ÿ
23
r
dr
The discharge β€˜dQ’ through the circular ring element of radius β€˜r’ and thickness β€˜dr’ is,
18
𝑄 =
πœ‹
8πœ‡
βˆ’
𝑑𝑝
𝑑π‘₯
𝑅4
βΈ« Average Velocity (ΰ΄₯
π‘ˆ),
ΰ΄₯
π‘ˆ =
𝑄
π΄π‘Ÿπ‘’π‘Ž
=
πœ‹
8πœ‡
βˆ’
𝑑𝑝
𝑑π‘₯
𝑅4
πœ‹π‘…2
=
1
8πœ‡
βˆ’
𝑑𝑝
𝑑π‘₯
𝑅2
Dividing Equation (5) by (8)
π‘ˆπ‘šπ‘Žπ‘₯
ΰ΄₯
π‘ˆ
=
βˆ’
1
4πœ‡
Γ—
𝑑𝑝
𝑑π‘₯
Γ— 𝑅2
1
8πœ‡
βˆ’
𝑑𝑝
𝑑π‘₯
𝑅2
= 2.0
βΈ« Ratio of maximum velocity to average velocity is 2
π‘ˆπ‘šπ‘Žπ‘₯
ΰ΄₯
π‘ˆ
= 2.0
𝑄 = βˆ’
1
4πœ‡
Γ—
𝑑𝑝
𝑑π‘₯
Γ— 2πœ‹ ΰΆ±
0
𝑅
𝑅2 βˆ’ π‘Ÿ2 π‘Ÿ Γ— π‘‘π‘Ÿ
(8)
𝑄 = βˆ’
1
4πœ‡
Γ—
𝑑𝑝
𝑑π‘₯
Γ— 2πœ‹
𝑅2
π‘Ÿ2
2
βˆ’
π‘Ÿ4
4
𝑅
0
=
3.4 Drop of Pressure Over a Given Length of Pipe:
19
As the fluid flows through the circular pipe, its pressure reduces along the direction of flow. This
is due to the resistance at the pipe wall that has to be compensated by the pressure energy.
r
x p1 p2
x1
x2
L
1 2
Figure: Pressure drop in pipe flow
Direction
of Flow
We have expression for average velocity,
ΰ΄₯
π‘ˆ =
𝑄
π΄π‘Ÿπ‘’π‘Ž
=
1
8πœ‡
βˆ’
𝑑𝑝
𝑑π‘₯
𝑅2
βˆ’
𝑑𝑝
𝑑π‘₯
=
8πœ‡ ΰ΄₯
π‘ˆ
𝑅2
25
Integrating over the length of pipe between points 1 and 2, shown in figure.
βˆ’ ΰΆ±
𝑝1
𝑝2
𝑑𝑝 = ΰΆ±
1
2
8πœ‡ ΰ΄₯
π‘ˆ
𝑅2
𝑑π‘₯
βˆ’ 𝑝2 βˆ’ 𝑝1 =
8πœ‡ ΰ΄₯
π‘ˆ
𝑅2
π‘₯2 βˆ’ π‘₯1
𝑝1 βˆ’ 𝑝2 =
32πœ‡ ΰ΄₯
π‘ˆπΏ
𝐷2 Where, 𝐿 = π‘₯2 βˆ’ π‘₯1, 𝑅 =
𝐷
2
The β€˜pressure head lost/drop’, which is also known as the β€˜frictional head loss’ can be expressed in the
following form
(p1 – p2) = loss or drop in pressure
β„Žπ‘“ =
𝑝1 βˆ’ 𝑝2
πœŒπ‘”
=
32πœ‡ ΰ΄₯
π‘ˆπΏ
πœŒπ‘”π·2
By Substituting for ΰ΄₯
π‘ˆ = Ξ€
𝑄 πœ‹π·2/4 β„Žπ‘“ =
128πœ‡π‘„πΏ
πœŒπ‘”πœ‹π·4
β€œHagen-Poiseuille Formula”
26
21
1) The Power required to maintain the laminar flow in a pipe can be determined by the equation,
π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 𝐹 Γ— ΰ΄€
𝑒 Where,
F= Pressure Force across the
length of the pipe
Q= πœ‹π‘…2
Γ— ΰ΄€
𝑒
π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 𝑃1 βˆ’ 𝑃2 Γ— πœ‹π‘…2 Γ— ΰ΄€
𝑒
∴ π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 𝑃1 βˆ’ 𝑃2 Γ— 𝑄
2) Evaluate the total drag force on pipe of length L due to the laminar flow through it.
The drag force is appearing because of wall shear stress acting over the peripheral area of pipe.
π·π‘Ÿπ‘Žπ‘” πΉπ‘œπ‘Ÿπ‘π‘’ = πœπ‘šπ‘Žπ‘₯ Γ— 2πœ‹π‘…πΏ
πœπ‘šπ‘Žπ‘₯
R
Figure: Shear stress distribution
profile
22
Numerical -1
Calculate the loss of head in a pipe having a diameter of 15cm and length of 2 km. It carries oil
of specific gravity 0.85 and kinematic viscosity 6 stokes at the rate of 30.48 lps (Assume
Laminar Flow).
Given Information
D= 15 cm = 0.15 m
L= 2 km = 2000 m
S = 0.85
𝜈 = 6 stokes = 6 x 10-4 m2/s
Q = 30.48 lps = 30.48 x 103 cm3/s
= 30.48 x 10-3 m3/s
ρ = 850 kg/m3
¡= 𝜈 x ρ = 0.51 N-s/m2
ΰ΄₯
π‘ˆ =
𝑄
𝐴
= 1.7246 π‘š/𝑠
Other required Information
β„Žπ‘“ =
𝑝1 βˆ’ 𝑝2
πœŒπ‘”
=
32πœ‡ ΰ΄₯
π‘ˆπΏ
πœŒπ‘”π·2
β„Žπ‘“ =
32 Γ— 0.51 Γ— 1.7246 Γ— 2000
850 Γ— 9.81 Γ— 0.152
β„Žπ‘“ =300.03 m
Objective
Evaluate hf
Solution:
23
Calculate the power required to maintain a laminar flow of an oil of viscosity 10 poise through a
pipe of 100 mm diameter at the rate of 10 lps, if the length of pipe is 1 km (Assume Laminar Flow).
Numerical -2
Given Information
D= 100 mm = 0.1 m
L= 1 km = 1000 m
πœ‡ = 10 poise = 10 x 0.1= 1 N-s/m2
Q = 10 lps = 10 x 103 cm3/s
= 10 x 10-3 m3/s
Objective
Evaluate Power Required
π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 𝑃1 βˆ’ 𝑃2 Γ— 𝑄
β„Žπ‘“ =
𝑝1 βˆ’ 𝑝2
πœŒπ‘”
=
32πœ‡ ΰ΄₯
π‘ˆπΏ
πœŒπ‘”π·2
𝑝1 βˆ’ 𝑝2 =
32πœ‡ ΰ΄₯
π‘ˆπΏ
𝐷2
Required information
A= 7.855x 10-3 m2
ΰ΄₯
π‘ˆ =
𝑄
𝐴
= 1.2731 π‘š/𝑠
𝑝1 βˆ’ 𝑝2 = 407.38 π‘€π‘ƒπ‘Ž
Solution:
∴ π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 407.38 Γ— 10 x 10βˆ’3
π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 40.74 π‘˜π‘Š
24
Oil of viscosity 8 poise and specific gravity 1.2 flows through a horizontal pipe 80 mm in dimeter. If the
pressure drop in 100 m length of the pipe is 1500 kN/m2, determine rate of flow of oil in lpm, maximum
velocity, total frictional drag over 100 m length of pipe, power required to maintain flow, the velocity
gradient at the pipe wall, the velocity and shear stress at 10 mm from the wall.
Numerical -3
Given Information
πœ‡ = 8 poise = 8 x 0.1= 0.8 N-s/m2
S= 1.2
D= 80 mm = 0.08 m
β–³P(100m)= 1500 kN/m2
Objectives
Q (lpm), Umax, FD ( for 100 m),
Power, du/dr, u and Ο„ (at 10 mm)
β„Žπ‘“ =
𝑝1 βˆ’ 𝑝2
πœŒπ‘”
=
32πœ‡ ΰ΄₯
π‘ˆπΏ
πœŒπ‘”π·2
Solution: Flow Rate
𝑝1 βˆ’ 𝑝2 =
32πœ‡ ΰ΄₯
π‘ˆπΏ
𝐷2
ΰ΄₯
π‘ˆ = 1500 Γ— 1000 Γ—
0.082
32 Γ— 0.8 Γ— 100
= 3.75 π‘š/𝑠
𝑄 = 𝐴ΰ΄₯
π‘ˆ = 5.0272 Γ— 10βˆ’3
Γ— 3.75 = 0.018852 π‘š3/𝑠
𝑄 = 18.852 𝑙𝑝𝑠
25
π‘ˆπ‘šπ‘Žπ‘₯
ΰ΄₯
π‘ˆ
= 2.0
Maximum Velocity,
π‘ˆπ‘šπ‘Žπ‘₯ = 2 Γ— 3.75 = 7
π‘š
𝑠
(π‘Žπ‘‘ π‘‘β„Žπ‘’ π‘π‘’π‘›π‘‘π‘’π‘Ÿ π‘œπ‘“ 𝑝𝑖𝑝𝑒)
Total Frictional Drag,
π·π‘Ÿπ‘Žπ‘” πΉπ‘œπ‘Ÿπ‘π‘’ = πœπ‘šπ‘Žπ‘₯ Γ— 2πœ‹π‘…πΏ
= βˆ’
𝑃2 βˆ’ 𝑃1
𝐿
Γ—
0.04
2
=
1500 Γ— 1000
100
Γ— 0.02
πœπ‘šπ‘Žπ‘₯ = βˆ’
πœ•π‘
πœ•π‘₯
𝑅
2
= 300 N/m2
π·π‘Ÿπ‘Žπ‘” πΉπ‘œπ‘Ÿπ‘π‘’ = 300 Γ— 2πœ‹ Γ— 0.04 Γ— 100 = 7.54 kN
π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 𝑃1 βˆ’ 𝑃2 Γ— 𝑄
Power Required to Maintain Flow,
= 1500 Γ— 1000 Γ— 0.018852
=28.278 kW
Velocity Gradient at Pipe Wall
𝑒 = βˆ’
1
4πœ‡
Γ—
πœ•π‘
πœ•π‘₯
Γ— 𝑅2 βˆ’ π‘Ÿ2
𝑑𝑒
π‘‘π‘Ÿ
= βˆ’
1
4πœ‡
Γ—
πœ•π‘
πœ•π‘₯
Γ— βˆ’2π‘Ÿ
𝑑𝑒
π‘‘π‘Ÿ
=
1
4πœ‡
Γ—
𝑃1 βˆ’ 𝑃2
𝐿
Γ— βˆ’2𝑅 At pipe wall
𝑑𝑒
π‘‘π‘Ÿ
= βˆ’375 /𝑠
𝑑𝑒
𝑑𝑦
= 375 /𝑠
Differentiate the equation to get the gradient
26
Velocity at 10 mm from the wall
𝑒 = βˆ’
1
4πœ‡
Γ—
πœ•π‘
πœ•π‘₯
Γ— 𝑅2
βˆ’ π‘Ÿ2
𝑒 =
1
4 Γ— 0.8
Γ—
𝑃1 βˆ’ 𝑃2
𝐿
𝑅2 βˆ’ π‘Ÿ2
y=10 mm,
y = R-r
r= 30 mm = 0.03 m
𝑒 =
1
4 Γ— 0.8
Γ—
1500 Γ— 1000
100
0.042
βˆ’ 0.032
u= 3.28125 m/s
Shear Stress at 10 mm from the wall
𝜏 = βˆ’
πœ•π‘
πœ•π‘₯
π‘Ÿ
2
𝜏 =
𝑃1 βˆ’ 𝑃2
𝐿
π‘Ÿ
2
𝜏 =
1500 Γ— 1000
100
0.03
2
𝜏 = 225 𝑁/π‘š2
27
Numerical -4
Oil is transported from a tanker to the shore at the rate of 0.6 m3/s using a pipe of 32 cm
diameter for a distance of 20 km. If the oil has viscosity of 0.1 N-s/m2 and density of 900
kg/m3, calculate the power necessary to maintain flow.
Given Information
Q = 0.6 m3/s
D = 32 cm= 0.32 m
L = 20 km
πœ‡ = 0.1 N-s/m2
ρ = 900 kg/m3
Objectives
Power required
Solution: Power Required
π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 𝑃1 βˆ’ 𝑃2 Γ— 𝑄
β„Žπ‘“ =
𝑝1 βˆ’ 𝑝2
πœŒπ‘”
=
32πœ‡ ΰ΄₯
π‘ˆπΏ
πœŒπ‘”π·2
𝑝1 βˆ’ 𝑝2 =
32πœ‡ ΰ΄₯
π‘ˆπΏ
𝐷2
ΰ΄₯
π‘ˆ =
𝑄
𝐴
= 7.46 π‘š/𝑠
𝑝1 βˆ’ 𝑝2 =
32πœ‡ ΰ΄₯
π‘ˆπΏ
𝐷2
=
32 Γ— 0.1 Γ— 7.46 Γ— 20000
0.322
𝑝1 βˆ’ 𝑝2 = 4.6625 π‘€π‘ƒπ‘Ž
∴ π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 𝑃1 βˆ’ 𝑃2 Γ— 𝑄
π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 4.6625 Γ— 106 Γ— 0.6
π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 2.7975 𝑀𝑀
28
End of Session-1
Figure: Shear stress distribution and typical velocity profiles for fluid flow in a pipe [1].

More Related Content

Similar to 009a (PPT) Viscous Flow-1 New.pdf .

Comparison of flow analysis of a sudden and gradual change of pipe diameter u...
Comparison of flow analysis of a sudden and gradual change of pipe diameter u...Comparison of flow analysis of a sudden and gradual change of pipe diameter u...
Comparison of flow analysis of a sudden and gradual change of pipe diameter u...eSAT Journals
Β 
Flowinpipe.ppt
Flowinpipe.pptFlowinpipe.ppt
Flowinpipe.pptzaid519176
Β 
update__lecture_3.ppt
update__lecture_3.pptupdate__lecture_3.ppt
update__lecture_3.pptbharatsingh300
Β 
Qb103353
Qb103353Qb103353
Qb103353manojg1990
Β 
FluidMechanicsBooklet.pdf
FluidMechanicsBooklet.pdfFluidMechanicsBooklet.pdf
FluidMechanicsBooklet.pdfJamesLumales
Β 
silo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.pptsilo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.pptKOSIREDDYASHOKDEVAKU
Β 
009b (PPT) Viscous Flow -2.pdf .
009b (PPT) Viscous Flow -2.pdf           .009b (PPT) Viscous Flow -2.pdf           .
009b (PPT) Viscous Flow -2.pdf .happycocoman
Β 
Ch.1 fluid dynamic
Ch.1 fluid dynamicCh.1 fluid dynamic
Ch.1 fluid dynamicMalika khalil
Β 
Me 2204 fluid mechanics and machinery
Me 2204 fluid mechanics and machineryMe 2204 fluid mechanics and machinery
Me 2204 fluid mechanics and machineryanish antony
Β 
Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)Mohsin Siddique
Β 
Flow In Pipes
Flow In PipesFlow In Pipes
Flow In PipesIla Lee
Β 
Chapter 4.pptx
Chapter 4.pptxChapter 4.pptx
Chapter 4.pptxjazzcashlimit
Β 
0 open channel intro 5
0 open channel   intro 50 open channel   intro 5
0 open channel intro 5Refee Lubong
Β 
Uniform flow computations in open channel flow
Uniform flow computations in open channel flowUniform flow computations in open channel flow
Uniform flow computations in open channel flowASHWINIKUMAR359
Β 
Flow of incompressible fluids through pipes
Flow of incompressible fluids through pipes Flow of incompressible fluids through pipes
Flow of incompressible fluids through pipes MAULIKM1
Β 
Diapositivas ecuaciΓ³n de continuidad
Diapositivas ecuaciΓ³n de continuidadDiapositivas ecuaciΓ³n de continuidad
Diapositivas ecuaciΓ³n de continuidadErikCalvopia
Β 
EcuaciΓ³n de continuidad
EcuaciΓ³n de continuidad EcuaciΓ³n de continuidad
EcuaciΓ³n de continuidad ErikCalvopia
Β 
Fluid Mech. Presentation 2nd year B.Tech.
Fluid Mech. Presentation 2nd year B.Tech.Fluid Mech. Presentation 2nd year B.Tech.
Fluid Mech. Presentation 2nd year B.Tech.shivam gautam
Β 

Similar to 009a (PPT) Viscous Flow-1 New.pdf . (20)

Comparison of flow analysis of a sudden and gradual change of pipe diameter u...
Comparison of flow analysis of a sudden and gradual change of pipe diameter u...Comparison of flow analysis of a sudden and gradual change of pipe diameter u...
Comparison of flow analysis of a sudden and gradual change of pipe diameter u...
Β 
Flowinpipe.ppt
Flowinpipe.pptFlowinpipe.ppt
Flowinpipe.ppt
Β 
update__lecture_3.ppt
update__lecture_3.pptupdate__lecture_3.ppt
update__lecture_3.ppt
Β 
Qb103353
Qb103353Qb103353
Qb103353
Β 
FluidMechanicsBooklet.pdf
FluidMechanicsBooklet.pdfFluidMechanicsBooklet.pdf
FluidMechanicsBooklet.pdf
Β 
silo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.pptsilo.tips_pete-203-drilling-engineering.ppt
silo.tips_pete-203-drilling-engineering.ppt
Β 
009b (PPT) Viscous Flow -2.pdf .
009b (PPT) Viscous Flow -2.pdf           .009b (PPT) Viscous Flow -2.pdf           .
009b (PPT) Viscous Flow -2.pdf .
Β 
Ch.1 fluid dynamic
Ch.1 fluid dynamicCh.1 fluid dynamic
Ch.1 fluid dynamic
Β 
Flow through pipes
Flow through pipesFlow through pipes
Flow through pipes
Β 
Me 2204 fluid mechanics and machinery
Me 2204 fluid mechanics and machineryMe 2204 fluid mechanics and machinery
Me 2204 fluid mechanics and machinery
Β 
Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)
Β 
Flow In Pipes
Flow In PipesFlow In Pipes
Flow In Pipes
Β 
Chapter 4.pptx
Chapter 4.pptxChapter 4.pptx
Chapter 4.pptx
Β 
0 open channel intro 5
0 open channel   intro 50 open channel   intro 5
0 open channel intro 5
Β 
Uniform flow computations in open channel flow
Uniform flow computations in open channel flowUniform flow computations in open channel flow
Uniform flow computations in open channel flow
Β 
Flow of incompressible fluids through pipes
Flow of incompressible fluids through pipes Flow of incompressible fluids through pipes
Flow of incompressible fluids through pipes
Β 
Diapositivas ecuaciΓ³n de continuidad
Diapositivas ecuaciΓ³n de continuidadDiapositivas ecuaciΓ³n de continuidad
Diapositivas ecuaciΓ³n de continuidad
Β 
EcuaciΓ³n de continuidad
EcuaciΓ³n de continuidad EcuaciΓ³n de continuidad
EcuaciΓ³n de continuidad
Β 
Presentation Pipes
Presentation PipesPresentation Pipes
Presentation Pipes
Β 
Fluid Mech. Presentation 2nd year B.Tech.
Fluid Mech. Presentation 2nd year B.Tech.Fluid Mech. Presentation 2nd year B.Tech.
Fluid Mech. Presentation 2nd year B.Tech.
Β 

More from happycocoman

gas turbine cycles.pptx .
gas turbine cycles.pptx                    .gas turbine cycles.pptx                    .
gas turbine cycles.pptx .happycocoman
Β 
RECIPROCATING_AIR_COMPRESSOR.ppt .
RECIPROCATING_AIR_COMPRESSOR.ppt         .RECIPROCATING_AIR_COMPRESSOR.ppt         .
RECIPROCATING_AIR_COMPRESSOR.ppt .happycocoman
Β 
SURFACE TEXTURE 2022.pptx .
SURFACE TEXTURE 2022.pptx                  .SURFACE TEXTURE 2022.pptx                  .
SURFACE TEXTURE 2022.pptx .happycocoman
Β 
Numericals on Raciprocating air compressor.ppt
Numericals on  Raciprocating air compressor.pptNumericals on  Raciprocating air compressor.ppt
Numericals on Raciprocating air compressor.ppthappycocoman
Β 
Vapor_power cycles KM.pptx ..
Vapor_power cycles KM.pptx            ..Vapor_power cycles KM.pptx            ..
Vapor_power cycles KM.pptx ..happycocoman
Β 
Vapor power cycles by Anupama.pptx .
Vapor power cycles by Anupama.pptx     .Vapor power cycles by Anupama.pptx     .
Vapor power cycles by Anupama.pptx .happycocoman
Β 
Performance and Testing of Internal Combustion Engines.ppt
Performance and Testing of Internal Combustion Engines.pptPerformance and Testing of Internal Combustion Engines.ppt
Performance and Testing of Internal Combustion Engines.ppthappycocoman
Β 
ICenginesNumericals (1).pptx .
ICenginesNumericals (1).pptx             .ICenginesNumericals (1).pptx             .
ICenginesNumericals (1).pptx .happycocoman
Β 
Air standard cycles_PPT KM1.pptx .
Air standard cycles_PPT KM1.pptx          .Air standard cycles_PPT KM1.pptx          .
Air standard cycles_PPT KM1.pptx .happycocoman
Β 
Pressure Measurement ppt.pptx .
Pressure Measurement ppt.pptx               .Pressure Measurement ppt.pptx               .
Pressure Measurement ppt.pptx .happycocoman
Β 
Measurements & Measurement .Systems.pptx
Measurements & Measurement .Systems.pptxMeasurements & Measurement .Systems.pptx
Measurements & Measurement .Systems.pptxhappycocoman
Β 
Strain Measurement (NEW).pptx .
Strain Measurement (NEW).pptx               .Strain Measurement (NEW).pptx               .
Strain Measurement (NEW).pptx .happycocoman
Β 
Force and torque measurements.pptx .
Force and torque measurements.pptx      .Force and torque measurements.pptx      .
Force and torque measurements.pptx .happycocoman
Β 
FLOW(NEW).pptx .
FLOW(NEW).pptx                          .FLOW(NEW).pptx                          .
FLOW(NEW).pptx .happycocoman
Β 
Chapter 11 - SCREW THREADS sllides.pdf .
Chapter 11 - SCREW THREADS sllides.pdf       .Chapter 11 - SCREW THREADS sllides.pdf       .
Chapter 11 - SCREW THREADS sllides.pdf .happycocoman
Β 
Measurement of form errors.pptx .
Measurement of form errors.pptx            .Measurement of form errors.pptx            .
Measurement of form errors.pptx .happycocoman
Β 
9. Surface Texture - PPT.pdf .
9. Surface Texture - PPT.pdf               .9. Surface Texture - PPT.pdf               .
9. Surface Texture - PPT.pdf .happycocoman
Β 
10. Screw Threads - PPT.pdf .
10. Screw Threads - PPT.pdf                    .10. Screw Threads - PPT.pdf                    .
10. Screw Threads - PPT.pdf .happycocoman
Β 
Measurement of Form errors complete slides.pdf
Measurement of Form errors complete slides.pdfMeasurement of Form errors complete slides.pdf
Measurement of Form errors complete slides.pdfhappycocoman
Β 
Limits Fits and Tolerances ppt.pdf .
Limits Fits and Tolerances ppt.pdf     .Limits Fits and Tolerances ppt.pdf     .
Limits Fits and Tolerances ppt.pdf .happycocoman
Β 

More from happycocoman (20)

gas turbine cycles.pptx .
gas turbine cycles.pptx                    .gas turbine cycles.pptx                    .
gas turbine cycles.pptx .
Β 
RECIPROCATING_AIR_COMPRESSOR.ppt .
RECIPROCATING_AIR_COMPRESSOR.ppt         .RECIPROCATING_AIR_COMPRESSOR.ppt         .
RECIPROCATING_AIR_COMPRESSOR.ppt .
Β 
SURFACE TEXTURE 2022.pptx .
SURFACE TEXTURE 2022.pptx                  .SURFACE TEXTURE 2022.pptx                  .
SURFACE TEXTURE 2022.pptx .
Β 
Numericals on Raciprocating air compressor.ppt
Numericals on  Raciprocating air compressor.pptNumericals on  Raciprocating air compressor.ppt
Numericals on Raciprocating air compressor.ppt
Β 
Vapor_power cycles KM.pptx ..
Vapor_power cycles KM.pptx            ..Vapor_power cycles KM.pptx            ..
Vapor_power cycles KM.pptx ..
Β 
Vapor power cycles by Anupama.pptx .
Vapor power cycles by Anupama.pptx     .Vapor power cycles by Anupama.pptx     .
Vapor power cycles by Anupama.pptx .
Β 
Performance and Testing of Internal Combustion Engines.ppt
Performance and Testing of Internal Combustion Engines.pptPerformance and Testing of Internal Combustion Engines.ppt
Performance and Testing of Internal Combustion Engines.ppt
Β 
ICenginesNumericals (1).pptx .
ICenginesNumericals (1).pptx             .ICenginesNumericals (1).pptx             .
ICenginesNumericals (1).pptx .
Β 
Air standard cycles_PPT KM1.pptx .
Air standard cycles_PPT KM1.pptx          .Air standard cycles_PPT KM1.pptx          .
Air standard cycles_PPT KM1.pptx .
Β 
Pressure Measurement ppt.pptx .
Pressure Measurement ppt.pptx               .Pressure Measurement ppt.pptx               .
Pressure Measurement ppt.pptx .
Β 
Measurements & Measurement .Systems.pptx
Measurements & Measurement .Systems.pptxMeasurements & Measurement .Systems.pptx
Measurements & Measurement .Systems.pptx
Β 
Strain Measurement (NEW).pptx .
Strain Measurement (NEW).pptx               .Strain Measurement (NEW).pptx               .
Strain Measurement (NEW).pptx .
Β 
Force and torque measurements.pptx .
Force and torque measurements.pptx      .Force and torque measurements.pptx      .
Force and torque measurements.pptx .
Β 
FLOW(NEW).pptx .
FLOW(NEW).pptx                          .FLOW(NEW).pptx                          .
FLOW(NEW).pptx .
Β 
Chapter 11 - SCREW THREADS sllides.pdf .
Chapter 11 - SCREW THREADS sllides.pdf       .Chapter 11 - SCREW THREADS sllides.pdf       .
Chapter 11 - SCREW THREADS sllides.pdf .
Β 
Measurement of form errors.pptx .
Measurement of form errors.pptx            .Measurement of form errors.pptx            .
Measurement of form errors.pptx .
Β 
9. Surface Texture - PPT.pdf .
9. Surface Texture - PPT.pdf               .9. Surface Texture - PPT.pdf               .
9. Surface Texture - PPT.pdf .
Β 
10. Screw Threads - PPT.pdf .
10. Screw Threads - PPT.pdf                    .10. Screw Threads - PPT.pdf                    .
10. Screw Threads - PPT.pdf .
Β 
Measurement of Form errors complete slides.pdf
Measurement of Form errors complete slides.pdfMeasurement of Form errors complete slides.pdf
Measurement of Form errors complete slides.pdf
Β 
Limits Fits and Tolerances ppt.pdf .
Limits Fits and Tolerances ppt.pdf     .Limits Fits and Tolerances ppt.pdf     .
Limits Fits and Tolerances ppt.pdf .
Β 

Recently uploaded

Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoΓ£o Esperancinha
Β 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
Β 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
Β 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
Β 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
Β 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
Β 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
Β 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
Β 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
Β 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
Β 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
Β 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
Β 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
Β 
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”soniya singh
Β 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
Β 

Recently uploaded (20)

Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Β 
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCRβ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
Β 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
Β 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
Β 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Β 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
Β 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
Β 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
Β 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
Β 
young call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Service
young call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Serviceyoung call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Service
young call girls in Rajiv ChowkπŸ” 9953056974 πŸ” Delhi escort Service
Β 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
Β 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
Β 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Β 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
Β 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
Β 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
Β 
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Β 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
Β 

009a (PPT) Viscous Flow-1 New.pdf .

  • 1. 1 Fluid Mechanics (MME-2252) VISCOUS FLOW IV Semester, Mechanical Engineering Department of Mechanical and Manufacturing Engineering Manipal Institute of Technology, MAHE, Manipal Dr. Vijay G. S. Professor, Dept. of Mech. & Ind. Engg., MIT, Manipal email: vijay.gs@manipal.edu Mob.: 9980032104
  • 2. Topics 2 οƒ˜ Reynold’s experiment, laminar and turbulent flows οƒ˜ Viscous flow through a circular pipe (Hagen Poiseuille flow) οƒ˜ Viscous flow between two parallel plates (Plain Couette flow) 1) The shear stress distribution 2) The velocity distribution 3) The ratio of maximum velocity to average velocity 4) The drop of pressure for a given length
  • 3. 3 Viscous Flow Difference in Ideal and Real fluid Flow in Pipe V Figure (3): Velocity Profile in Real Fluid Flow V D V Figure (2): Velocity Profile in Ideal Fluid Flow β€’ Viscosity offers to viscous shear resistance (Ο„ = Β΅ du/dy) and opposes the motion between the layers β€’ This gives rise to change in velocity between layers i.e. velocity gradient (du/dy) will appear normal to the flow direction β€’ Due to the resistance to motion, power is required to maintain flow of real fluids β€’ Hence, In fluid flow problems, effect of viscosity cannot be neglected Why this change is appearing?
  • 4. Laminar and Turbulent Flows Depending upon the relative magnitudes of the viscous forces and inertia forces, flow can exist in two types- Laminar Flow and Turbulent Flow Laminar Flow: All particles move in well defined paths and individual particles do not cross the paths taken by other particle. Flow takes place in number of sheets or laminae. This type of flow is also known as streamline or viscous flow. Turbulent Flow: Particles move in zig-zag way in a flow field i.e. the flow is disturbed and inter-mixing of particles takes place. 4 In this chapter, Our Focus is in laminar flow i.e. viscous effects are dominant and flow is well defined
  • 5. 5 1) Reynolds’s Experiment: O. Reynold, a British professor demonstrated that a laminar flow changes to turbulent flow Figure: Reynolds Dye Experimental setup and Observed dye streak lines [1] Q V
  • 6. Observations from the Reynold’s Dye Experiment 6 For general case, transition of flow is function of β€’ Velocity of fluid (V) β€’ Diameter of the pipe (V) β€’ Viscosity of the fluid (πœ‡) β€’ Density of Fluid (ρ) Figure: Time dependence of fluid velocity at a point [1] 𝑉𝐴 = 𝑒 ΖΈ 𝑖 𝑉𝐴 = 𝑒 ΖΈ 𝑖 + 𝑣 ΖΈ 𝑗 + 𝑀෠ π‘˜
  • 7. ρ = Density of Fluid, Vavg= Average Velocity, D= Diameter of Pipe, Β΅= Dynamic Viscosity 𝑅𝑒 = πœŒπ‘‰ π‘Žπ‘£π‘”π· πœ‡ For a flow in circular pipe, If Re < 2000, the flow is said to be laminar If Re > 4000, the flow is said to be turbulent If 2000 < Re < 4000, in transition from laminar to turbulent Identifying the type of flow from Reynolds Number Critical Reynolds Number: It is magnitude of Reynolds Number below which the flow is definitely laminar. 7 Figure: Laminar and Turbulent flow regimes in candle smoke [3]
  • 8. 2. Flow of Viscous Fluid Through a Circular Pipe Explanation: β€’ Consider a horizontal circular cross section pipe of radius β€˜R’, through which a viscous fluid is flowing from left to right β€’ Consider a cylindrical fluid element of radius r, thickness dr and length x sliding inside a cylindrical fluid element of radius (r + dr). β€’ Forces acting on element: A pressure forces are acting normal to the faces of element, and shear forces are acting on the surface Direction of Flow r dr A B C D r x β–³x R π’‘π…π’“πŸ 𝒑 + 𝒅𝒑 𝒅𝒙 βˆ†π’™ π…π’“πŸ 𝝉 Γ— πŸπ…π’“ Γ— βˆ†π’™ 8
  • 9. 2.1 Shear stress distribution: As there is no acceleration, the algebraic summation of all the forces acting on the fluid element must be zero. 𝑝 Γ— πœ‹π‘Ÿ2 βˆ’ 𝑝 + 𝑑𝑝 𝑑π‘₯ βˆ†π‘₯ πœ‹π‘Ÿ2 βˆ’ 𝜏 Γ— 2πœ‹π‘Ÿ Γ— βˆ†π‘₯ = 0 βˆ’ 𝑑𝑝 𝑑π‘₯ βˆ†π‘₯ πœ‹π‘Ÿ2 βˆ’ 𝜏 Γ— 2πœ‹π‘Ÿ Γ— βˆ†π‘₯ = 0 𝜏 = βˆ’ 𝑑𝑝 𝑑π‘₯ π‘Ÿ 2 (1) 9 ෍ β†’+ 𝑓 π‘₯ = 0
  • 10. β€’ Shear stress distribution is function of radius of pipe 𝜏 ∝ π‘Ÿ β€’ Shear stress varies linearly from zero at center of pipe to maximum at the boundary (r = R) β€’ The negative sign for pressure gradient indicates a decrease in the pressure in the direction of fluid flow. β€’ As potential and kinetic energies remain constant, the pressure force is the only means to compensate for the resistance to flow. Note: Pressure gradient remains constant πœπ‘šπ‘Žπ‘₯ = βˆ’ 𝑑𝑝 𝑑π‘₯ 𝑅 2 𝜏 = βˆ’ 𝑑𝑝 𝑑π‘₯ π‘Ÿ 2 10 Meaning of Mathematical Expression πœπ‘šπ‘Žπ‘₯ R Figure: Shear stress distribution profile A A r x
  • 11. 2.2 Velocity Distribution To get the velocity distribution, substitute for shear stress in equation (1) From Newton’s law of viscosity, In the above mathematical expression, y is measured from the pipe wall, Substituting in the expression of Newton’s law of viscosity, βΈ« the expression for y can be written as 𝜏 = πœ‡ 𝑑𝑒 𝑑𝑦 At pipe wall, 𝑦 = 0, At pipe center, 𝑦 = 𝑅 𝑦 = 𝑅 βˆ’ π‘Ÿ 𝜏 = βˆ’πœ‡ 𝑑𝑒 π‘‘π‘Ÿ 11 dy = -dr π‘Ÿ = 𝑅 π‘Ÿ = 0 & (2)
  • 12. Integrating the equation we get, Where, C is the integration constant and its value can be determined from the boundary conditions. u = 0 at r = R (velocity is zero at pipe wall). Substituting the boundary condition in equation (3) βˆ’πœ‡ 𝑑𝑒 π‘‘π‘Ÿ = βˆ’ 𝑑𝑝 𝑑π‘₯ π‘Ÿ 2 1 2 𝑑𝑒 π‘‘π‘Ÿ = 1 2πœ‡ 𝑑𝑝 𝑑π‘₯ Γ— π‘Ÿ ΰΆ± 𝑑𝑒 = ΰΆ± 1 2πœ‡ 𝑑𝑝 𝑑π‘₯ π‘Ÿ. π‘‘π‘Ÿ 𝑒 = 1 2πœ‡ Γ— 𝑑𝑝 𝑑π‘₯ Γ— π‘Ÿ2 2 + 𝐢 ∴ 𝑒 = 1 4πœ‡ Γ— 𝑑𝑝 𝑑π‘₯ Γ— π‘Ÿ2 + 𝐢 Equating expressions (1) and (2) 20 (3)
  • 13. β€’ The velocity distribution of a fully developed laminar flow in a circular pipe must be parabolic. β€’ At the center of the pipe, the velocity is maximum. i.e. at r = 0, u = Umax Note: In equation (4), Β΅, 𝑑𝑝 𝑑π‘₯ and R are constants. 13 0 = 1 4πœ‡ Γ— 𝑑𝑝 𝑑π‘₯ Γ— 𝑅2 + 𝐢 𝐢 = βˆ’ 1 4πœ‡ Γ— 𝑑𝑝 𝑑π‘₯ Γ— 𝑅2 Back substitution of C in (3) gives, 𝑒 = 1 4πœ‡ Γ— 𝑑𝑝 𝑑π‘₯ Γ— π‘Ÿ2 βˆ’ 1 4πœ‡ Γ— 𝑑𝑝 𝑑π‘₯ Γ— 𝑅2 𝑒 = βˆ’ 1 4πœ‡ Γ— 𝑑𝑝 𝑑π‘₯ Γ— 𝑅2 βˆ’ π‘Ÿ2 R r (4)
  • 14. Substituting r = 0 in equation (4), Equation (4) can be written as Substituting (5) in (6), 14 π‘ˆπ‘šπ‘Žπ‘₯ = βˆ’ 1 4πœ‡ Γ— 𝑑𝑝 𝑑π‘₯ Γ— 𝑅2 𝑒 = βˆ’ 1 4πœ‡ Γ— 𝑑𝑝 𝑑π‘₯ Γ— 𝑅2 1 βˆ’ π‘Ÿ2 𝑅2 𝑒 = π‘ˆπ‘šπ‘Žπ‘₯ 1 βˆ’ π‘Ÿ2 𝑅2 πœπ‘šπ‘Žπ‘₯ R Figure: Shear stress distribution and Velocity profile r π‘ˆπ‘šπ‘Žπ‘₯ (5) (6) (7)
  • 15. 15 Figure: Changes in velocity profile and pressure changes along the flow in pipe [2]
  • 16. 16 we need to derive mathematical expressions for the following 1. The shear stress distribution 2. The velocity distribution 3. The ratio of maximum velocity to average velocity 4. The drop of pressure for a given length Remember the objectives,
  • 17. 3.3 Ratio of Maximum velocity to Average Velocity 17 The average velocity of the fluid flow can be determined by dividing the discharge Q by the area of the pipe (Ο€R2). dQ = (Area of the ring element) ο‚΄ (Velocity at radius r) = 𝑒 Γ— 2πœ‹π‘Ÿ Γ— π‘‘π‘Ÿ Substitute for β€˜u’ from equation (4), 𝑑𝑄 = βˆ’ 1 4πœ‡ Γ— 𝑑𝑝 𝑑π‘₯ Γ— 𝑅2 βˆ’ π‘Ÿ2 Γ— 2πœ‹π‘Ÿ Γ— π‘‘π‘Ÿ βΈ« The total discharge through the pipe is 𝑄 = ΰΆ± 0 𝑅 𝑑𝑄 = ΰΆ± 0 𝑅 βˆ’ 1 4πœ‡ Γ— 𝑑𝑝 𝑑π‘₯ Γ— 𝑅2 βˆ’ π‘Ÿ2 Γ— 2πœ‹π‘Ÿ Γ— π‘‘π‘Ÿ 23 r dr The discharge β€˜dQ’ through the circular ring element of radius β€˜r’ and thickness β€˜dr’ is,
  • 18. 18 𝑄 = πœ‹ 8πœ‡ βˆ’ 𝑑𝑝 𝑑π‘₯ 𝑅4 βΈ« Average Velocity (ΰ΄₯ π‘ˆ), ΰ΄₯ π‘ˆ = 𝑄 π΄π‘Ÿπ‘’π‘Ž = πœ‹ 8πœ‡ βˆ’ 𝑑𝑝 𝑑π‘₯ 𝑅4 πœ‹π‘…2 = 1 8πœ‡ βˆ’ 𝑑𝑝 𝑑π‘₯ 𝑅2 Dividing Equation (5) by (8) π‘ˆπ‘šπ‘Žπ‘₯ ΰ΄₯ π‘ˆ = βˆ’ 1 4πœ‡ Γ— 𝑑𝑝 𝑑π‘₯ Γ— 𝑅2 1 8πœ‡ βˆ’ 𝑑𝑝 𝑑π‘₯ 𝑅2 = 2.0 βΈ« Ratio of maximum velocity to average velocity is 2 π‘ˆπ‘šπ‘Žπ‘₯ ΰ΄₯ π‘ˆ = 2.0 𝑄 = βˆ’ 1 4πœ‡ Γ— 𝑑𝑝 𝑑π‘₯ Γ— 2πœ‹ ΰΆ± 0 𝑅 𝑅2 βˆ’ π‘Ÿ2 π‘Ÿ Γ— π‘‘π‘Ÿ (8) 𝑄 = βˆ’ 1 4πœ‡ Γ— 𝑑𝑝 𝑑π‘₯ Γ— 2πœ‹ 𝑅2 π‘Ÿ2 2 βˆ’ π‘Ÿ4 4 𝑅 0 =
  • 19. 3.4 Drop of Pressure Over a Given Length of Pipe: 19 As the fluid flows through the circular pipe, its pressure reduces along the direction of flow. This is due to the resistance at the pipe wall that has to be compensated by the pressure energy. r x p1 p2 x1 x2 L 1 2 Figure: Pressure drop in pipe flow Direction of Flow We have expression for average velocity, ΰ΄₯ π‘ˆ = 𝑄 π΄π‘Ÿπ‘’π‘Ž = 1 8πœ‡ βˆ’ 𝑑𝑝 𝑑π‘₯ 𝑅2 βˆ’ 𝑑𝑝 𝑑π‘₯ = 8πœ‡ ΰ΄₯ π‘ˆ 𝑅2 25
  • 20. Integrating over the length of pipe between points 1 and 2, shown in figure. βˆ’ ΰΆ± 𝑝1 𝑝2 𝑑𝑝 = ΰΆ± 1 2 8πœ‡ ΰ΄₯ π‘ˆ 𝑅2 𝑑π‘₯ βˆ’ 𝑝2 βˆ’ 𝑝1 = 8πœ‡ ΰ΄₯ π‘ˆ 𝑅2 π‘₯2 βˆ’ π‘₯1 𝑝1 βˆ’ 𝑝2 = 32πœ‡ ΰ΄₯ π‘ˆπΏ 𝐷2 Where, 𝐿 = π‘₯2 βˆ’ π‘₯1, 𝑅 = 𝐷 2 The β€˜pressure head lost/drop’, which is also known as the β€˜frictional head loss’ can be expressed in the following form (p1 – p2) = loss or drop in pressure β„Žπ‘“ = 𝑝1 βˆ’ 𝑝2 πœŒπ‘” = 32πœ‡ ΰ΄₯ π‘ˆπΏ πœŒπ‘”π·2 By Substituting for ΰ΄₯ π‘ˆ = Ξ€ 𝑄 πœ‹π·2/4 β„Žπ‘“ = 128πœ‡π‘„πΏ πœŒπ‘”πœ‹π·4 β€œHagen-Poiseuille Formula” 26
  • 21. 21 1) The Power required to maintain the laminar flow in a pipe can be determined by the equation, π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 𝐹 Γ— ΰ΄€ 𝑒 Where, F= Pressure Force across the length of the pipe Q= πœ‹π‘…2 Γ— ΰ΄€ 𝑒 π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 𝑃1 βˆ’ 𝑃2 Γ— πœ‹π‘…2 Γ— ΰ΄€ 𝑒 ∴ π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 𝑃1 βˆ’ 𝑃2 Γ— 𝑄 2) Evaluate the total drag force on pipe of length L due to the laminar flow through it. The drag force is appearing because of wall shear stress acting over the peripheral area of pipe. π·π‘Ÿπ‘Žπ‘” πΉπ‘œπ‘Ÿπ‘π‘’ = πœπ‘šπ‘Žπ‘₯ Γ— 2πœ‹π‘…πΏ πœπ‘šπ‘Žπ‘₯ R Figure: Shear stress distribution profile
  • 22. 22 Numerical -1 Calculate the loss of head in a pipe having a diameter of 15cm and length of 2 km. It carries oil of specific gravity 0.85 and kinematic viscosity 6 stokes at the rate of 30.48 lps (Assume Laminar Flow). Given Information D= 15 cm = 0.15 m L= 2 km = 2000 m S = 0.85 𝜈 = 6 stokes = 6 x 10-4 m2/s Q = 30.48 lps = 30.48 x 103 cm3/s = 30.48 x 10-3 m3/s ρ = 850 kg/m3 Β΅= 𝜈 x ρ = 0.51 N-s/m2 ΰ΄₯ π‘ˆ = 𝑄 𝐴 = 1.7246 π‘š/𝑠 Other required Information β„Žπ‘“ = 𝑝1 βˆ’ 𝑝2 πœŒπ‘” = 32πœ‡ ΰ΄₯ π‘ˆπΏ πœŒπ‘”π·2 β„Žπ‘“ = 32 Γ— 0.51 Γ— 1.7246 Γ— 2000 850 Γ— 9.81 Γ— 0.152 β„Žπ‘“ =300.03 m Objective Evaluate hf Solution:
  • 23. 23 Calculate the power required to maintain a laminar flow of an oil of viscosity 10 poise through a pipe of 100 mm diameter at the rate of 10 lps, if the length of pipe is 1 km (Assume Laminar Flow). Numerical -2 Given Information D= 100 mm = 0.1 m L= 1 km = 1000 m πœ‡ = 10 poise = 10 x 0.1= 1 N-s/m2 Q = 10 lps = 10 x 103 cm3/s = 10 x 10-3 m3/s Objective Evaluate Power Required π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 𝑃1 βˆ’ 𝑃2 Γ— 𝑄 β„Žπ‘“ = 𝑝1 βˆ’ 𝑝2 πœŒπ‘” = 32πœ‡ ΰ΄₯ π‘ˆπΏ πœŒπ‘”π·2 𝑝1 βˆ’ 𝑝2 = 32πœ‡ ΰ΄₯ π‘ˆπΏ 𝐷2 Required information A= 7.855x 10-3 m2 ΰ΄₯ π‘ˆ = 𝑄 𝐴 = 1.2731 π‘š/𝑠 𝑝1 βˆ’ 𝑝2 = 407.38 π‘€π‘ƒπ‘Ž Solution: ∴ π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 407.38 Γ— 10 x 10βˆ’3 π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 40.74 π‘˜π‘Š
  • 24. 24 Oil of viscosity 8 poise and specific gravity 1.2 flows through a horizontal pipe 80 mm in dimeter. If the pressure drop in 100 m length of the pipe is 1500 kN/m2, determine rate of flow of oil in lpm, maximum velocity, total frictional drag over 100 m length of pipe, power required to maintain flow, the velocity gradient at the pipe wall, the velocity and shear stress at 10 mm from the wall. Numerical -3 Given Information πœ‡ = 8 poise = 8 x 0.1= 0.8 N-s/m2 S= 1.2 D= 80 mm = 0.08 m β–³P(100m)= 1500 kN/m2 Objectives Q (lpm), Umax, FD ( for 100 m), Power, du/dr, u and Ο„ (at 10 mm) β„Žπ‘“ = 𝑝1 βˆ’ 𝑝2 πœŒπ‘” = 32πœ‡ ΰ΄₯ π‘ˆπΏ πœŒπ‘”π·2 Solution: Flow Rate 𝑝1 βˆ’ 𝑝2 = 32πœ‡ ΰ΄₯ π‘ˆπΏ 𝐷2 ΰ΄₯ π‘ˆ = 1500 Γ— 1000 Γ— 0.082 32 Γ— 0.8 Γ— 100 = 3.75 π‘š/𝑠 𝑄 = 𝐴ΰ΄₯ π‘ˆ = 5.0272 Γ— 10βˆ’3 Γ— 3.75 = 0.018852 π‘š3/𝑠 𝑄 = 18.852 𝑙𝑝𝑠
  • 25. 25 π‘ˆπ‘šπ‘Žπ‘₯ ΰ΄₯ π‘ˆ = 2.0 Maximum Velocity, π‘ˆπ‘šπ‘Žπ‘₯ = 2 Γ— 3.75 = 7 π‘š 𝑠 (π‘Žπ‘‘ π‘‘β„Žπ‘’ π‘π‘’π‘›π‘‘π‘’π‘Ÿ π‘œπ‘“ 𝑝𝑖𝑝𝑒) Total Frictional Drag, π·π‘Ÿπ‘Žπ‘” πΉπ‘œπ‘Ÿπ‘π‘’ = πœπ‘šπ‘Žπ‘₯ Γ— 2πœ‹π‘…πΏ = βˆ’ 𝑃2 βˆ’ 𝑃1 𝐿 Γ— 0.04 2 = 1500 Γ— 1000 100 Γ— 0.02 πœπ‘šπ‘Žπ‘₯ = βˆ’ πœ•π‘ πœ•π‘₯ 𝑅 2 = 300 N/m2 π·π‘Ÿπ‘Žπ‘” πΉπ‘œπ‘Ÿπ‘π‘’ = 300 Γ— 2πœ‹ Γ— 0.04 Γ— 100 = 7.54 kN π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 𝑃1 βˆ’ 𝑃2 Γ— 𝑄 Power Required to Maintain Flow, = 1500 Γ— 1000 Γ— 0.018852 =28.278 kW Velocity Gradient at Pipe Wall 𝑒 = βˆ’ 1 4πœ‡ Γ— πœ•π‘ πœ•π‘₯ Γ— 𝑅2 βˆ’ π‘Ÿ2 𝑑𝑒 π‘‘π‘Ÿ = βˆ’ 1 4πœ‡ Γ— πœ•π‘ πœ•π‘₯ Γ— βˆ’2π‘Ÿ 𝑑𝑒 π‘‘π‘Ÿ = 1 4πœ‡ Γ— 𝑃1 βˆ’ 𝑃2 𝐿 Γ— βˆ’2𝑅 At pipe wall 𝑑𝑒 π‘‘π‘Ÿ = βˆ’375 /𝑠 𝑑𝑒 𝑑𝑦 = 375 /𝑠 Differentiate the equation to get the gradient
  • 26. 26 Velocity at 10 mm from the wall 𝑒 = βˆ’ 1 4πœ‡ Γ— πœ•π‘ πœ•π‘₯ Γ— 𝑅2 βˆ’ π‘Ÿ2 𝑒 = 1 4 Γ— 0.8 Γ— 𝑃1 βˆ’ 𝑃2 𝐿 𝑅2 βˆ’ π‘Ÿ2 y=10 mm, y = R-r r= 30 mm = 0.03 m 𝑒 = 1 4 Γ— 0.8 Γ— 1500 Γ— 1000 100 0.042 βˆ’ 0.032 u= 3.28125 m/s Shear Stress at 10 mm from the wall 𝜏 = βˆ’ πœ•π‘ πœ•π‘₯ π‘Ÿ 2 𝜏 = 𝑃1 βˆ’ 𝑃2 𝐿 π‘Ÿ 2 𝜏 = 1500 Γ— 1000 100 0.03 2 𝜏 = 225 𝑁/π‘š2
  • 27. 27 Numerical -4 Oil is transported from a tanker to the shore at the rate of 0.6 m3/s using a pipe of 32 cm diameter for a distance of 20 km. If the oil has viscosity of 0.1 N-s/m2 and density of 900 kg/m3, calculate the power necessary to maintain flow. Given Information Q = 0.6 m3/s D = 32 cm= 0.32 m L = 20 km πœ‡ = 0.1 N-s/m2 ρ = 900 kg/m3 Objectives Power required Solution: Power Required π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 𝑃1 βˆ’ 𝑃2 Γ— 𝑄 β„Žπ‘“ = 𝑝1 βˆ’ 𝑝2 πœŒπ‘” = 32πœ‡ ΰ΄₯ π‘ˆπΏ πœŒπ‘”π·2 𝑝1 βˆ’ 𝑝2 = 32πœ‡ ΰ΄₯ π‘ˆπΏ 𝐷2 ΰ΄₯ π‘ˆ = 𝑄 𝐴 = 7.46 π‘š/𝑠 𝑝1 βˆ’ 𝑝2 = 32πœ‡ ΰ΄₯ π‘ˆπΏ 𝐷2 = 32 Γ— 0.1 Γ— 7.46 Γ— 20000 0.322 𝑝1 βˆ’ 𝑝2 = 4.6625 π‘€π‘ƒπ‘Ž ∴ π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 𝑃1 βˆ’ 𝑃2 Γ— 𝑄 π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 4.6625 Γ— 106 Γ— 0.6 π‘ƒπ‘œπ‘€π‘’π‘Ÿ = 2.7975 𝑀𝑀
  • 28. 28 End of Session-1 Figure: Shear stress distribution and typical velocity profiles for fluid flow in a pipe [1].