SlideShare a Scribd company logo
1 of 18
Download to read offline
Design of Concrete Structure-I 2017
Mr. P. P. Prabhu Page 1
Analysis of Singly Reinforced Beam
Step No. Calculation / Procedure Reference
Given: 𝑓 , 𝑓 , 𝑏, 𝑑, 𝐴
Find: 𝑀
1.
Determine π‘₯ =
.
. ,
2. Find π‘₯
𝑓 250 415 500
π‘₯ 0.53 d 0.48 d 0.46 d
Clause no 38.1,
IS 456: 2000,
page no 70
3. Compare π‘₯ π‘€π‘–π‘‘β„Ž π‘₯
οƒ˜ 𝐼𝐹 π‘₯ < π‘₯ π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘’π‘›π‘‘π‘’π‘Ÿ π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›.
οƒ˜ 𝐼𝐹 π‘₯ = π‘₯ π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘π‘Žπ‘™π‘Žπ‘›π‘π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›.
οƒ˜ 𝐼𝐹 π‘₯ > π‘₯ π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘œπ‘£π‘’π‘Ÿ π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›.
4. Find 𝑀
𝑀 = 0.87 𝑓 𝑦 𝐴 𝑠𝑑 (𝑑 βˆ’ 0.42 π‘₯ 𝑒)
π‘œπ‘Ÿ
𝑀 = 0.36 𝑓 π‘π‘˜ 𝑏 π‘₯ 𝑒 (𝑑 βˆ’ 0.42 π‘₯ 𝑒)
5 If Load is required for given span and end condition,
Use 𝑀 = … . . π‘“π‘œπ‘Ÿ 𝑒𝑑𝑙
𝑀 =
𝑀𝑙
4
… . . π‘“π‘œπ‘Ÿ π‘π‘œπ‘–π‘›π‘‘ π‘™π‘œπ‘Žπ‘‘
And find w
Design of Concrete Structure-I 2017
Mr. P. P. Prabhu Page 2
Design of Singly Reinforced Beam
Step No. Calculation / Procedure Reference
Given: 𝑓 , 𝑓 , 𝑏, 𝐷, 𝑀
Find: 𝐴
1. Assume effective cover d’
Find d = D-d’
Clause no 26.4.2, IS
456: 2000, page no
47, Table no.16
2. Find 𝑀 π‘’π‘Ÿ
𝑓 250 415 500
𝑀 0.149𝑓 𝑏𝑑 0.138𝑓 𝑏𝑑 0.133𝑓 𝑏𝑑
3. Compare 𝑀 π‘€π‘–π‘‘β„Ž 𝑀
οƒ˜ 𝐼𝑓 𝑀 𝑒 < 𝑀 π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘’π‘›π‘‘π‘’π‘Ÿ π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›.
οƒ˜ 𝐼𝑓 𝑀 > 𝑀 π‘’π‘Ÿπ‘šπ‘Žπ‘₯ π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘œπ‘£π‘’π‘Ÿ π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›.
4. 𝐹𝑖𝑛𝑑 𝐴
𝐴 =
0.5 𝑓
𝑓
Γ— 1 βˆ’ 1 βˆ’
4.6 𝑀
𝑓 𝑏 𝑑
Γ— 𝑏 𝑑
Design of Concrete Structure-I 2017
Mr. P. P. Prabhu Page 3
Analysis of Doubly Reinforced Beam
Step No. Calculation / Procedure Reference
Given: 𝑓 , 𝑏, 𝑑 , 𝑑 , 𝐴 , 𝐴 , 𝒇 π’š = πŸπŸ“πŸŽ*
Find: 𝑀
1. π΄π‘ π‘ π‘’π‘šπ‘’ 𝑓 = 0.87𝑓
Determine π‘₯ =
. .
. ,
2. Find π‘₯
𝑓 250 415 500
π‘₯ 0.53 d 0.48 d 0.46 d
Clause no 38.1,
IS 456: 2000,
page no 70
3. Compare π‘₯ π‘€π‘–π‘‘β„Ž π‘₯
οƒ˜ 𝐼𝐹 π‘₯ < π‘₯ π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘’π‘›π‘‘π‘’π‘Ÿ π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›.
οƒ˜ 𝐼𝐹 π‘₯ = π‘₯ π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘π‘Žπ‘™π‘Žπ‘›π‘π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›.
οƒ˜ 𝐼𝐹 π‘₯ > π‘₯ π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘œπ‘£π‘’π‘Ÿ π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›.
𝐼𝑓 π‘₯ > π‘₯ use π‘₯ =π‘₯
4. Find 𝑓 = 700 (1 βˆ’
𝑑 𝑐
)
𝐼𝑓 𝑓 β‰₯ 0.87 𝑓 assumption is correct.
𝐼𝑓 𝑓 < 0.87 𝑓 assumption is wrong
Find π‘₯ π‘“π‘Ÿπ‘œπ‘š π‘‘β„Žπ‘–π‘  π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘‘π‘–π‘ π‘’π‘žπ‘Žπ‘‘π‘–π‘œπ‘›
0.36 𝑓 , 𝑏. π‘₯ + 700 1 βˆ’
𝑑 𝑐
. 𝐴 = 0.87 𝑓 . 𝐴
5 Compare π‘₯ π‘€π‘–π‘‘β„Ž π‘₯
οƒ˜ 𝐼𝐹 π‘₯ < π‘₯ π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘’π‘›π‘‘π‘’π‘Ÿ π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›.
οƒ˜ 𝐼𝐹 π‘₯ = π‘₯ π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘π‘Žπ‘™π‘Žπ‘›π‘π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›.
οƒ˜ 𝐼𝐹 π‘₯ > π‘₯ π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘œπ‘£π‘’π‘Ÿ π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›.
6 Calculate 𝑓 π‘π‘œπ‘Ÿπ‘œπ‘ π‘π‘œπ‘›π‘‘π‘–π‘›π‘” π‘‘π‘œ π‘₯
And find 𝑀 = 0.36 𝑓 π‘π‘˜ 𝑏 π‘₯ 𝑒 (𝑑 βˆ’ 0.42 π‘₯ 𝑒) + 𝑓 𝑠𝑐 𝐴 𝑠𝑐 𝑑 βˆ’ 𝑑 𝑐
Design of Concrete Structure-I 2017
Mr. P. P. Prabhu Page 4
Design of Shear Reinforcement
Step
No.
Calculation / Procedure Reference
1. Calculate Maximum Ultimate Shear 𝑉 =
.
2. Calculate Design Shear 𝑉 = 𝑉 βˆ’ 𝑀 ( + 𝑑)
𝑏 = π‘€π‘–π‘‘π‘‘β„Ž π‘œπ‘“ π‘ π‘’π‘π‘π‘œπ‘Ÿπ‘‘
d = effective depth of support
3. Obtain allowable ultimate shear 𝑉
𝑉 = 𝜏 . 𝑏. 𝑑
𝜏 π‘“π‘Ÿπ‘œπ‘š π‘‘π‘Žπ‘π‘™π‘’ 20
Cl. No. 40.2.3
4. Check 𝑉 ≀ 𝑉
𝐼𝑓 𝑉 > 𝑉 π‘–π‘›π‘π‘Ÿπ‘’π‘Žπ‘ π‘’ π‘‘β„Žπ‘’ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›
5. Calculate Shear resisted by Concrete ,
𝑉 = 𝜏 . 𝑏. 𝑑
𝜏 π‘“π‘Ÿπ‘œπ‘š π‘‘π‘Žπ‘π‘™π‘’ 19
Cl.No. 40.2.1
6. Find Ultimate Shear Resisted by Minimum Stirrups
𝑉 = 0.4 . 𝑏. 𝑑
7. Ultimate Shear Resisted by R.C.member
𝑉 = 𝑉 + 𝑉
8. If𝑉 < 𝑉 ,
Minimum Stirrups are sufficient
Spacing between stirrups 𝑆 =
. .
.
b width of beam
For Spacing Cl.No.
40.4.a
9. 𝑉 > 𝑉 ,
Design Shear Reinforcement
1. Shear Resisted by Shear reinforcement
𝑉 = 𝑉 βˆ’ 𝑉
2. If bent up bars are used , Calculate shear resisted by bent up bars,
𝑉 = 0.87 𝑓 . 𝐴 . 𝑠𝑖𝑛 ∝ ≀ 0.5𝑉
3. Ultimate Shear Resisted by Vertical stirrups
𝑉 = 𝑉 βˆ’ 𝑉
Design of Concrete Structure-I 2017
Mr. P. P. Prabhu Page 5
𝐼𝑓 𝑏𝑒𝑛𝑑 𝑒𝑝 π‘π‘Žπ‘Ÿπ‘  π‘Žπ‘Ÿπ‘’ π‘›π‘œπ‘‘ π‘π‘Ÿπ‘œπ‘£π‘–π‘‘π‘’π‘‘
𝑉 = 𝑉
𝐹𝑖𝑛𝑑 π‘†π‘π‘Žπ‘π‘–π‘›π‘” 𝑆 =
. .
𝑆 ≀ 0.75𝑑 π‘œπ‘Ÿ 300π‘šπ‘š π‘€β„Žπ‘–π‘β„Žπ‘’π‘£π‘’π‘Ÿ 𝑖𝑠 𝑙𝑒𝑠𝑠.
10. Reinforcement Details.
dD
Mainsteel
t
Clearspan
ShearReinforcementDetails
BentupBar
Shearreinforcement
Design of One Way Slab
Step No. Calculation / Procedure Reference
Slab Having > 2. Provide One Way slab.
1. Span: Depending upon condition determine effective span of slab. Cl. No. 22.2
Design of Concrete Structure-I 2017
Mr. P. P. Prabhu Page 6
2. Trial Depth :
Calculate required depth 𝑑 =
Γ— . .
Assume % Pt
Fe 250 0.5 to 0.90
Fe 415 0.30 to 0.45
Fe 500 0.2 to 0.35
D = d + d’+
βˆ…
Find effective span = span + d
Compare this with effective span from step no 1
Provide minimum of both.
M.F. - Cl. No. 23.4,
Fig no.4
- Cl. No. 23.2.1
3. Load Calculations: Consider 1 m width of slab.
Dead Load / m = Self wt of slab + Floor Finish
= 25. D + F.F.
Live Load
Total working Load ( π‘Š) = D.L. + L.L.
Total Ultimate Load π‘Š = 1.5 Γ— π‘Š
4. Design Moment ( 𝑀 )
𝑀 =
π‘Š . 𝑙 𝑒𝑓𝑓
8
5. Check for depth
𝑀 = 0.36 𝑓 π‘π‘˜ 𝑏 π‘₯ 𝑒 π‘šπ‘Žπ‘₯ (𝑑 βˆ’ 0.42 π‘₯ 𝑒 π‘šπ‘Žπ‘₯)
𝐼𝑓 𝑀 > 𝑀 Section is safe from bending moment consideration.
If condition not satisfied, increase depth of section.
6. Main Steel
A =
0.5 f
f
Γ— 1 βˆ’ 1 βˆ’
4.6 M
f b d
Γ— b d
For slab b = 1000mm
A > A
A = 0.15 % b. D … … … … … for mild steel
A = 0.12 % b. D … … … … … for HYSD
Spacing S =
.
πΉπ‘œπ‘Ÿ 𝐴
Cl. No.26.5.2.1
Design of Concrete Structure-I 2017
Mr. P. P. Prabhu Page 7
a = area of steel bar
A = area of steel required
S ≀ ( 3. d or 300 mm whichever is less)
Hence provide … βˆ… main steel @.... spacing c/c.
7. Check for Deflection:
Find %Pt =
.
Find f = 0.58 f
Find M.F. ………. From % Pt & f
Calculate required depth d
If d < d ………..Hence Safe.
8. Distribution Steel :
A = 0.15 % b. D … … … … … for mild steel
A = 0.12 % b. D … … … … … for HYSD
Spacing
S =
1000. a
A
S ≀ ( 5. d or 450 mm whichever is less)
Hence provide … βˆ… distribution steel @.... spacing c/c.
9. Check for Shear :
Calculate Design Shear: 𝑉 =
.
Shear resisted by Concrete = 𝑉 = (𝜏 π‘˜). 𝑏. 𝑑
𝑉 > 𝑉 … … … … … … . . 𝐻𝑒𝑛𝑐𝑒 π‘†π‘Žπ‘“π‘’.
If not increase thickness of slab.
𝜏 π‘“π‘Ÿπ‘œπ‘š π‘‡π‘Žπ‘π‘™π‘’ 19
π‘˜ From Cl. No.
40.2.2.1
10. Check for Development length : 𝐿
𝐿 =
.βˆ…
.
Check 𝐿 <
.
+ 𝐿 Assume 𝐿 = βˆ’ (𝑑 + βˆ… ), 𝑀 = 𝑀 , 𝑉 = 𝑉
Cl. 26.2.1
11. Reinforcement Details:
Design of Concrete Structure-I 2017
Mr. P. P. Prabhu Page 8
d D
D is t r i b u t i o n s t e e l
M a in s t e e l
t
C l e a r s p a n
R e i n f o r c e m e n t D e t a i l s i n o n e
w a y s l a b
1 . 8 4 7 7
Design of Two Way Slab
Step
No.
Calculation / Procedure Reference
Slab Having < 2. Provide Two Way slab.
Design of Concrete Structure-I 2017
Mr. P. P. Prabhu Page 9
1. Span: Depending upon condition determine effective span of slab. Cl. No. 22.2
2. Trial Depth :
Calculate required depth 𝑑 =
( )
Γ— . .
Assume % Pt
Overall depth D = d + d’+
βˆ…
Find effective span = span + d
Compare this with effective span from step no 1. Provide minimum of both.
Fe 250 0.5 to 0.90
Fe 415 0.30 to 0.45
Fe 500 0.2 to 0.35
M.F. - Cl. No.
23.4,
Fig no.4
- Cl. No.
23.2.1
3. Load Calculations: Consider 1 m width of slab.
Dead Load / m = Self wt of slab + Floor Finish
= 25. D + F.F.
Live Load
Total working Load ( π‘Š) = D.L. + L.L.
Total Ultimate Load π‘Š = 1.5 Γ— π‘Š
4. Design Moment ( 𝑀 )
𝑀 = 𝛼 . 𝑀. 𝑙π‘₯
𝑀 = 𝛼 . 𝑀. 𝑙π‘₯
Annex D,
Pg. No. 90
for 𝛼 & 𝛼
5. Check for depth
𝑀 = 0.36 𝑓 π‘π‘˜ 𝑏 π‘₯ 𝑒 π‘šπ‘Žπ‘₯ (𝑑 βˆ’ 0.42 π‘₯ 𝑒 π‘šπ‘Žπ‘₯)
𝐼𝑓 𝑀 > 𝑀 (Greater of 𝑀 & 𝑀 )
Section is safe from bending moment consideration.
If condition not satisfied, increase depth of section.
6. Main Steel ( in π‘₯ direction )
𝐴 =
0.5 𝑓
𝑓
Γ— 1 βˆ’ 1 βˆ’
4.6 𝑀
𝑓 𝑏 𝑑
Γ— 𝑏 𝑑
For slab 𝑏 = 1000π‘šπ‘š
𝐴 > 𝐴
𝐴 = 0.15 % 𝑏. 𝐷 … … … … … π‘“π‘œπ‘Ÿ π‘šπ‘–π‘™π‘‘ 𝑠𝑑𝑒𝑒𝑙
𝐴 = 0.12 % 𝑏. 𝐷 … … … … … π‘“π‘œπ‘Ÿ π»π‘Œπ‘†π·
Spacing 𝑆 =
.
π‘Ž = π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 π‘π‘Žπ‘Ÿ
πΉπ‘œπ‘Ÿ 𝐴
Cl.
No.26.5.2.1
Design of Concrete Structure-I 2017
Mr. P. P. Prabhu Page 10
𝐴 = π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘
𝑆 ≀ ( 3. 𝑑 π‘œπ‘Ÿ 300 π‘šπ‘š π‘€β„Žπ‘–π‘β„Žπ‘’π‘£π‘’π‘Ÿ 𝑖𝑠 𝑙𝑒𝑠𝑠)
Hence provide … βˆ… main steel in π‘₯ direction @.... spacing c/c.
7. Main Steel ( in 𝑦 direction )
𝐴 =
0.5 𝑓
𝑓
Γ— 1 βˆ’ 1 βˆ’
4.6 𝑀
𝑓 𝑏 𝑑
Γ— 𝑏 𝑑
For slab 𝑏 = 1000π‘šπ‘š
𝐴 > 𝐴
𝐴 = 0.15 % 𝑏. 𝐷 … … … … … π‘“π‘œπ‘Ÿ π‘šπ‘–π‘™π‘‘ 𝑠𝑑𝑒𝑒𝑙
𝐴 = 0.12 % 𝑏. 𝐷 … … … … … π‘“π‘œπ‘Ÿ π»π‘Œπ‘†π·
Spacing 𝑆 =
.
π‘Ž = π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 π‘π‘Žπ‘Ÿ
𝐴 = π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘
𝑆 ≀ ( 3. 𝑑 π‘œπ‘Ÿ 300 π‘šπ‘š π‘€β„Žπ‘–π‘β„Žπ‘’π‘£π‘’π‘Ÿ 𝑖𝑠 𝑙𝑒𝑠𝑠)
Hence provide … βˆ… main steel in 𝑦 direction @.... spacing c/c.
πΉπ‘œπ‘Ÿ 𝐴
Cl.
No.26.5.2.1
8. Check for Shear :
Calculate Design Shear: 𝑉 =
.
Shear resisted by Concrete = 𝑉 = (𝜏 π‘˜). 𝑏. 𝑑
𝑉 > 𝑉 … … … … … … . . 𝐻𝑒𝑛𝑐𝑒 π‘†π‘Žπ‘“π‘’.
If not increase thickness of slab.
𝜏 π‘“π‘Ÿπ‘œπ‘š π‘‡π‘Žπ‘π‘™π‘’
π‘˜ From Cl.
No. 40.2.2.1
9. Check for Deflection:
Find %𝑃𝑑 =
𝐴 𝑠𝑑
.
Find 𝑓 = 0.58 𝑓
𝐴 𝑠𝑑 π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘
𝐴 𝑠𝑑 π‘π‘Ÿπ‘œπ‘£π‘–π‘‘π‘’
Find M.F. ………. From % Pt & 𝑓
Calculate required depth 𝑑
𝐼𝑓 𝑑 < 𝑑 ………..Hence Safe.
10. Check for Development length : 𝐿
𝐿 =
.βˆ…
.
Check 𝐿 <
.
+ 𝐿
Cl. 26.2.1
Design of Concrete Structure-I 2017
Mr. P. P. Prabhu Page 11
Assume 𝐿 = βˆ’ (𝑑 + βˆ… ) 𝑀 = 𝑀 , 𝑉 = 𝑉
11. Reinforcement Details:
d D
Main steel
(Astx)
Main steel(Asty)
t
Clear span (Ly)
Reinforcement Details in two way slab
Design of Staircase
Step No. Calculation / Procedure Reference
1. Span: Depending upon condition determine effective span of staircase. Cl. No. 33.1
2. Trial Depth: Same as per one way slab.
Design of Concrete Structure-I 2017
Mr. P. P. Prabhu Page 12
3. Load Calculations: Consider 1 m width of slab.
Dead Load / m = = 25. D + F.F.
Live Load
Total working Load ( π‘Š) = D.L. + L.L.
Total Ultimate Load π‘Š = 1.5 Γ— π‘Š
4. Remaining steps are same as per One Way Slab.
5. Reinforcement Details in Staircase.
T
R
ClearSpan
SupportWidthofLanding
d
ReinforcementDetailsinStaircase
Design of Column
Step No. Calculation / Procedure Reference
1. Calculate Factored Load on Column
2. Find effective length depending upon end conditions. Table 28, pg.no.94
Design of Concrete Structure-I 2017
Mr. P. P. Prabhu Page 13
3. Find ratio = if this ratio is less than 12 column is short.
4. Find 𝐴 ( If size of column is not given ) using formula
𝑃 = ( 0.4 𝑓 Γ— 𝐴 + 0.67 𝑓 βˆ’ 0.4𝑓 Γ— 𝐴 )
Use 𝑝 =
𝐴 = 𝑝 Γ— 𝐴
Assume 𝑝 = 0.015
If size of column is given Find 𝐴 .
5. Provide suitable size of column.
6. Provide Lateral Ties. Cl.26.5.3
7. Reinforcement Details.
Design of Helically Reinforced Column
Step No. Calculation / Procedure Reference
1. Calculate Factored Load on Column
Design of Concrete Structure-I 2017
Mr. P. P. Prabhu Page 14
2. Provide circular section of column having dia. greater than 400.
3. Find 𝐴 using formula
𝑃 = 1.05( 0.4 𝑓 Γ— 𝐴 + 0.67 𝑓 βˆ’ 0.4𝑓 Γ— 𝐴 )
Cl 39.4
4. Helical Steel :
πœ‹. 𝐷 . 𝐴
𝐴 . 𝑆
> 0.36
𝐴
𝐴
βˆ’ 1 .
𝑓
𝑓
𝐴 = π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π»π‘’π‘™π‘–π‘π‘Žπ‘™ 𝑆𝑑𝑒𝑒𝑙
𝐷 = π·π‘–π‘Ž. π‘œπ‘“ πΆπ‘œπ‘Ÿπ‘’ = (𝐷 βˆ’ 2. πΆπ‘™π‘’π‘Žπ‘Ÿ π‘π‘œπ‘£π‘’π‘Ÿ)
𝐴 = π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ πΆπ‘œπ‘Ÿπ‘’ =
πœ‹.
4
𝐷 βˆ’ 𝐴
Provide suitable Spacing.
5. Allowable Spacing. Cl.26.5.3
6. Reinforcement Details.
Design of Eccentrically Loaded Column
Step No. Calculation / Procedure Reference
Design of Concrete Structure-I 2017
Mr. P. P. Prabhu Page 15
A For Bending about x axis.
1. Find
ex min β‰₯ greater of (l/500 + D/30) or 20 mm
ey min β‰₯ greater of (l/500 + b/30) or 20 mm
2. Find Mux min
Mux (Min. ecc.) = Pu .ex min < Mux
3. Assume Size of column b & D
4. Calculate
Pu/fck bD & Mu/fck bD2
5. Calculate
dο‚’ο€ / D
6. Select appropriate chart for dο‚’ο€ / D, depending upon grade of steel.
Obtain point of intersection of Pu/fck bD & Mu/fck bD2
7. Interpolate values of Pu/fck from Chart SP16 and Find P
8. Calculate total area of steel required
𝐴 =
𝑃. 𝑏. 𝐷
100
B For Bending about Y axis. Same steps as per bending about X axis.
Design of Isolated Rectangular Footing
Step No. Calculation / Procedure Reference
Design of Concrete Structure-I 2017
Mr. P. P. Prabhu Page 16
1. Base Size
Area of footing = 𝐴 = 1.1 = 𝐿 Γ— 𝐡
𝐿 = + ( ) + 𝐴
Cantilever projection of footing for bending about x axis
𝐢 =
𝐿 βˆ’ 𝐷
2
Breadth of Footing 𝐡 = 𝑏 + 2𝐢
Cantilever projection of footing for bending about y axis
𝐢 =
𝐡 βˆ’ 𝑏
2
Area of Footing provided 𝐴 = 𝐿 Γ— 𝐡
Upward factored soil reaction = 𝑀 =
. .
2. Depth of footing from Bending Moment Consideration
B.M. at column face parallel to x axis
𝑀 = 𝑀 . 𝐡 .
𝐢 2
2
B.M. at column face parallel to x axis
𝑀 = 𝑀 . 𝐿 .
𝐢 2
2
Required effective depth for bending about x axis
𝑑 =
𝑀
𝑅 . 𝑏
B.M. at column face parallel to y axis
𝑑 =
𝑀
𝑅 . 𝐷
Cl.33.2
3. Check Depth for two way shear:
Perimeter at critical section = 2 ( 𝑏 + 𝑑 + ( 𝐷 + 𝑑 ) )
Area resisted by two way shear A = Perimeter Γ— effective depth at sec.
Shear resisted by concrete = 𝑉 = 𝜏 Γ— 𝐴
Design of Concrete Structure-I 2017
Mr. P. P. Prabhu Page 17
Where 𝜏 = 𝐾 . 𝜏 β€²
𝐾 = 0.5 +
𝑏
𝐷
< 1
𝜏 = 0.25 𝑓
Design Shear to which column is subjected
𝑉 = 𝑀 𝐿 Γ— 𝐡 βˆ’ 𝑏 + 𝑑 + 𝐷 + 𝑑
𝑉 > 𝑉 Section is safe else revise the section.
4. Area of steel and Check for Development Length
𝐴 =
. .
1 βˆ’ 1 βˆ’
.
. .
. 𝑏1. 𝑑 > 𝐴
𝐴 = (0.85. 𝑏1. 𝑑 )/𝑓
𝑏1 = 𝑏 + 2𝑒 𝑒 = π‘œπ‘“π‘“π‘ π‘’π‘‘ π‘“π‘Ÿπ‘œπ‘š π‘“π‘Žπ‘π‘’ π‘œπ‘“ π‘π‘œπ‘™π‘’π‘šπ‘›.
𝐴 =
. .
1 βˆ’ 1 βˆ’
.
. .
. 𝐷1. 𝑑 > 𝐴
𝐴 = 0.85. 𝐷1. 𝑑 /𝑓
𝐷1 = 𝐷 + 2𝑒 𝑒 = π‘œπ‘“π‘“π‘ π‘’π‘‘ π‘“π‘Ÿπ‘œπ‘š π‘“π‘Žπ‘π‘’ π‘œπ‘“ π‘π‘œπ‘™π‘’π‘šπ‘›.
Required development length about x axis.
𝐿 = 𝐿 =
0.87 𝑓
4 𝜏
. βˆ…
𝐿 = 𝐢
Required development length about y axis.
𝐿 = 𝐿 =
0.87 𝑓
4 𝜏
. βˆ…
𝐿 = 𝐢
βˆ… & βˆ… βˆ’ π‘Žπ‘Ÿπ‘’ π‘‘β„Žπ‘’ π‘‘π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ π‘œπ‘“ π‘π‘Žπ‘Ÿ 𝑖𝑛 π‘₯ π‘Žπ‘›π‘‘ π‘Œ π‘‘π‘–π‘Ÿπ‘’π‘π‘‘π‘–π‘œπ‘›.
If 𝐿 > 𝐿 π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘ π‘Žπ‘“π‘’.
If development length is not satisfied, make it satisfy by
i) Decrease the bar diameter.
ii) Increase the width or length.
iii) Increase area of steel.
5. Check for One-Way shear for bending about Y-Axis. 𝜏 βˆ’ 𝐢𝑙 π‘›π‘œ. 40.2
Design of Concrete Structure-I 2017
Mr. P. P. Prabhu Page 18
% of steel = 𝑃 =
Shear resisted by concrete = 𝑉 = 𝜏 Γ— 𝐴
𝐴 = 𝐿 Γ— 𝑑𝑦
Shear to which column is subjected = 𝑉 = 𝑀 . 𝐿 . (𝐢 βˆ’ 𝑑 )
𝐼𝑓 𝑉 > 𝑉 π‘†π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘ π‘Žπ‘“π‘’.
If Unsafe increase steel or change section of Footing.
6. Check for One-Way shear for bending about x-Axis.
% of steel = 𝑃 =
Shear resisted by concrete = 𝑉 = 𝜏 Γ— 𝐴
𝐴 = 𝐡 Γ— 𝑑π‘₯
Shear to which column is subjected = 𝑉 = 𝑀 . 𝐡 . (𝐢 βˆ’ 𝑑 )
𝐼𝑓 𝑉 > 𝑉 π‘†π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘ π‘Žπ‘“π‘’.
If Unsafe increase steel or change section of Footing.
𝜏 βˆ’ 𝐢𝑙 π‘›π‘œ. 40.2
7. Reinforcement Details.
Diagram.

More Related Content

What's hot

proctor test and compaction
 proctor test and compaction proctor test and compaction
proctor test and compactionJyoti Khatiwada
Β 
A PowerPoint Presentation On Superstructure
A PowerPoint Presentation On SuperstructureA PowerPoint Presentation On Superstructure
A PowerPoint Presentation On Superstructurekuntansourav
Β 
To determine dry density of soil by core cutter method
To determine dry density of soil by core cutter methodTo determine dry density of soil by core cutter method
To determine dry density of soil by core cutter methodJyoti Khatiwada
Β 
Retaining wall
Retaining wallRetaining wall
Retaining wall51412
Β 
Design of simple beam using staad pro
Design of simple beam using staad proDesign of simple beam using staad pro
Design of simple beam using staad proSHAMJITH KM
Β 
Soil exploration methods and soil investigation report
Soil exploration  methods and soil investigation reportSoil exploration  methods and soil investigation report
Soil exploration methods and soil investigation reportAnjana R Menon
Β 
Soil Mechanics- All Theorical Leactuers.pdf
Soil Mechanics- All Theorical Leactuers.pdfSoil Mechanics- All Theorical Leactuers.pdf
Soil Mechanics- All Theorical Leactuers.pdfBahzad5
Β 
Best numerical problem group pile capacity (usefulsearch.org) (useful search)
Best numerical problem group pile capacity (usefulsearch.org) (useful search)Best numerical problem group pile capacity (usefulsearch.org) (useful search)
Best numerical problem group pile capacity (usefulsearch.org) (useful search)Make Mannan
Β 
Retaining walls
Retaining walls Retaining walls
Retaining walls Rohan Narvekar
Β 
SINGLY REINFORCED BEAM
SINGLY REINFORCED BEAM SINGLY REINFORCED BEAM
SINGLY REINFORCED BEAM Pavan Kumar
Β 
Retaining wall
Retaining wallRetaining wall
Retaining wallENGINEERVIAN
Β 
Lecture 1 introduction & types of foundation
Lecture 1  introduction & types of foundationLecture 1  introduction & types of foundation
Lecture 1 introduction & types of foundationDr.Abdulmannan Orabi
Β 
Superstructure construction
Superstructure constructionSuperstructure construction
Superstructure constructionmohdasrimohdhasim
Β 
Chapter 3 caisson
Chapter 3 caissonChapter 3 caisson
Chapter 3 caissonKHUSHBU SHAH
Β 
Problems on bearing capacity of soil
Problems on bearing capacity of soilProblems on bearing capacity of soil
Problems on bearing capacity of soilLatif Hyder Wadho
Β 

What's hot (20)

proctor test and compaction
 proctor test and compaction proctor test and compaction
proctor test and compaction
Β 
A PowerPoint Presentation On Superstructure
A PowerPoint Presentation On SuperstructureA PowerPoint Presentation On Superstructure
A PowerPoint Presentation On Superstructure
Β 
To determine dry density of soil by core cutter method
To determine dry density of soil by core cutter methodTo determine dry density of soil by core cutter method
To determine dry density of soil by core cutter method
Β 
Retaining wall
Retaining wallRetaining wall
Retaining wall
Β 
Engineering properties of soil
Engineering properties of soilEngineering properties of soil
Engineering properties of soil
Β 
Design of simple beam using staad pro
Design of simple beam using staad proDesign of simple beam using staad pro
Design of simple beam using staad pro
Β 
Soil exploration methods and soil investigation report
Soil exploration  methods and soil investigation reportSoil exploration  methods and soil investigation report
Soil exploration methods and soil investigation report
Β 
Soil stabilization
Soil stabilizationSoil stabilization
Soil stabilization
Β 
Soil Mechanics- All Theorical Leactuers.pdf
Soil Mechanics- All Theorical Leactuers.pdfSoil Mechanics- All Theorical Leactuers.pdf
Soil Mechanics- All Theorical Leactuers.pdf
Β 
Best numerical problem group pile capacity (usefulsearch.org) (useful search)
Best numerical problem group pile capacity (usefulsearch.org) (useful search)Best numerical problem group pile capacity (usefulsearch.org) (useful search)
Best numerical problem group pile capacity (usefulsearch.org) (useful search)
Β 
Retaining walls
Retaining walls Retaining walls
Retaining walls
Β 
SINGLY REINFORCED BEAM
SINGLY REINFORCED BEAM SINGLY REINFORCED BEAM
SINGLY REINFORCED BEAM
Β 
Retaining wall
Retaining wallRetaining wall
Retaining wall
Β 
Presentation geotechnical investigation
Presentation  geotechnical investigationPresentation  geotechnical investigation
Presentation geotechnical investigation
Β 
7. building components
7. building components7. building components
7. building components
Β 
Lecture 1 introduction & types of foundation
Lecture 1  introduction & types of foundationLecture 1  introduction & types of foundation
Lecture 1 introduction & types of foundation
Β 
Lecture 1 design loads
Lecture 1   design loadsLecture 1   design loads
Lecture 1 design loads
Β 
Superstructure construction
Superstructure constructionSuperstructure construction
Superstructure construction
Β 
Chapter 3 caisson
Chapter 3 caissonChapter 3 caisson
Chapter 3 caisson
Β 
Problems on bearing capacity of soil
Problems on bearing capacity of soilProblems on bearing capacity of soil
Problems on bearing capacity of soil
Β 

Similar to Design of concrete structures-I- Design Steps

Unit 4 numericals on power screws 2
Unit  4 numericals on power screws 2Unit  4 numericals on power screws 2
Unit 4 numericals on power screws 2pradnyakosbe
Β 
Math 8 Lesson 3 - 1st Quarter
Math 8 Lesson 3 - 1st QuarterMath 8 Lesson 3 - 1st Quarter
Math 8 Lesson 3 - 1st Quarteralicelagajino
Β 
General Math Lesson 2
General Math Lesson 2General Math Lesson 2
General Math Lesson 2alicelagajino
Β 
Least Squares Fitting
Least Squares Fitting Least Squares Fitting
Least Squares Fitting MANREET SOHAL
Β 
Jawapan modul ulangkaji berfokus online
Jawapan modul ulangkaji berfokus onlineJawapan modul ulangkaji berfokus online
Jawapan modul ulangkaji berfokus onlineNasrul Zairi
Β 
Som formulas pdf
Som formulas pdfSom formulas pdf
Som formulas pdfAnujSingh543
Β 
EES Procedures and Functions for Heat exchanger calculations
EES Procedures and Functions for Heat exchanger calculationsEES Procedures and Functions for Heat exchanger calculations
EES Procedures and Functions for Heat exchanger calculationstmuliya
Β 

Similar to Design of concrete structures-I- Design Steps (9)

Unit 4 numericals on power screws 2
Unit  4 numericals on power screws 2Unit  4 numericals on power screws 2
Unit 4 numericals on power screws 2
Β 
Math 8 Lesson 3 - 1st Quarter
Math 8 Lesson 3 - 1st QuarterMath 8 Lesson 3 - 1st Quarter
Math 8 Lesson 3 - 1st Quarter
Β 
General Math Lesson 2
General Math Lesson 2General Math Lesson 2
General Math Lesson 2
Β 
Least Squares Fitting
Least Squares Fitting Least Squares Fitting
Least Squares Fitting
Β 
Jawapan modul ulangkaji berfokus online
Jawapan modul ulangkaji berfokus onlineJawapan modul ulangkaji berfokus online
Jawapan modul ulangkaji berfokus online
Β 
Keys
Keys Keys
Keys
Β 
Som formulas pdf
Som formulas pdfSom formulas pdf
Som formulas pdf
Β 
EES Procedures and Functions for Heat exchanger calculations
EES Procedures and Functions for Heat exchanger calculationsEES Procedures and Functions for Heat exchanger calculations
EES Procedures and Functions for Heat exchanger calculations
Β 
Second Order Delta Sigma ADC
Second Order Delta Sigma ADCSecond Order Delta Sigma ADC
Second Order Delta Sigma ADC
Β 

More from DYPCET

Chapter 6 earth pressure
Chapter 6 earth pressureChapter 6 earth pressure
Chapter 6 earth pressureDYPCET
Β 
Chapter 3 compaction and consolidation
Chapter 3 compaction and consolidationChapter 3 compaction and consolidation
Chapter 3 compaction and consolidationDYPCET
Β 
Modern trends in optimization techniques
Modern trends in optimization techniquesModern trends in optimization techniques
Modern trends in optimization techniquesDYPCET
Β 
Productivity tools for students
Productivity tools for studentsProductivity tools for students
Productivity tools for studentsDYPCET
Β 
Emotional intelligence at glance
Emotional intelligence at glanceEmotional intelligence at glance
Emotional intelligence at glanceDYPCET
Β 
Unit 2 building planning-final
Unit 2 building planning-finalUnit 2 building planning-final
Unit 2 building planning-finalDYPCET
Β 
Unit 1-introduction to civil engg final
Unit 1-introduction to civil engg finalUnit 1-introduction to civil engg final
Unit 1-introduction to civil engg finalDYPCET
Β 
BCE assignments
BCE assignmentsBCE assignments
BCE assignmentsDYPCET
Β 
Rcc member design steps
Rcc member design stepsRcc member design steps
Rcc member design stepsDYPCET
Β 
Assignments 1 to 8
Assignments 1 to 8Assignments 1 to 8
Assignments 1 to 8DYPCET
Β 
Chapter 3 -consolidation notes
Chapter 3 -consolidation notesChapter 3 -consolidation notes
Chapter 3 -consolidation notesDYPCET
Β 
Chapter 6.0 modern foundation tech. &amp; ground improvement
Chapter 6.0   modern foundation tech. &amp; ground improvement Chapter 6.0   modern foundation tech. &amp; ground improvement
Chapter 6.0 modern foundation tech. &amp; ground improvement DYPCET
Β 
Chapter 4.3 well foundation-final-ppt
Chapter 4.3   well foundation-final-pptChapter 4.3   well foundation-final-ppt
Chapter 4.3 well foundation-final-pptDYPCET
Β 
Chapter 4.2 coffer dam, well foundation-final1
Chapter 4.2   coffer dam, well foundation-final1Chapter 4.2   coffer dam, well foundation-final1
Chapter 4.2 coffer dam, well foundation-final1DYPCET
Β 
Chapter 1.0 soil exploration
Chapter 1.0   soil explorationChapter 1.0   soil exploration
Chapter 1.0 soil explorationDYPCET
Β 
Section 2-gte-i
Section  2-gte-iSection  2-gte-i
Section 2-gte-iDYPCET
Β 
Chapter 3 -consolidation notes
Chapter 3 -consolidation notesChapter 3 -consolidation notes
Chapter 3 -consolidation notesDYPCET
Β 

More from DYPCET (17)

Chapter 6 earth pressure
Chapter 6 earth pressureChapter 6 earth pressure
Chapter 6 earth pressure
Β 
Chapter 3 compaction and consolidation
Chapter 3 compaction and consolidationChapter 3 compaction and consolidation
Chapter 3 compaction and consolidation
Β 
Modern trends in optimization techniques
Modern trends in optimization techniquesModern trends in optimization techniques
Modern trends in optimization techniques
Β 
Productivity tools for students
Productivity tools for studentsProductivity tools for students
Productivity tools for students
Β 
Emotional intelligence at glance
Emotional intelligence at glanceEmotional intelligence at glance
Emotional intelligence at glance
Β 
Unit 2 building planning-final
Unit 2 building planning-finalUnit 2 building planning-final
Unit 2 building planning-final
Β 
Unit 1-introduction to civil engg final
Unit 1-introduction to civil engg finalUnit 1-introduction to civil engg final
Unit 1-introduction to civil engg final
Β 
BCE assignments
BCE assignmentsBCE assignments
BCE assignments
Β 
Rcc member design steps
Rcc member design stepsRcc member design steps
Rcc member design steps
Β 
Assignments 1 to 8
Assignments 1 to 8Assignments 1 to 8
Assignments 1 to 8
Β 
Chapter 3 -consolidation notes
Chapter 3 -consolidation notesChapter 3 -consolidation notes
Chapter 3 -consolidation notes
Β 
Chapter 6.0 modern foundation tech. &amp; ground improvement
Chapter 6.0   modern foundation tech. &amp; ground improvement Chapter 6.0   modern foundation tech. &amp; ground improvement
Chapter 6.0 modern foundation tech. &amp; ground improvement
Β 
Chapter 4.3 well foundation-final-ppt
Chapter 4.3   well foundation-final-pptChapter 4.3   well foundation-final-ppt
Chapter 4.3 well foundation-final-ppt
Β 
Chapter 4.2 coffer dam, well foundation-final1
Chapter 4.2   coffer dam, well foundation-final1Chapter 4.2   coffer dam, well foundation-final1
Chapter 4.2 coffer dam, well foundation-final1
Β 
Chapter 1.0 soil exploration
Chapter 1.0   soil explorationChapter 1.0   soil exploration
Chapter 1.0 soil exploration
Β 
Section 2-gte-i
Section  2-gte-iSection  2-gte-i
Section 2-gte-i
Β 
Chapter 3 -consolidation notes
Chapter 3 -consolidation notesChapter 3 -consolidation notes
Chapter 3 -consolidation notes
Β 

Recently uploaded

OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
Β 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
Β 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
Β 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxhumanexperienceaaa
Β 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...ranjana rawat
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
Β 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
Β 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
Β 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoΓ£o Esperancinha
Β 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
Β 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
Β 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
Β 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
Β 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Β 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
Β 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
Β 

Recently uploaded (20)

OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
Β 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
Β 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
Β 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
Β 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
Β 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
Β 
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCRβ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
Β 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Β 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Β 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
Β 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
Β 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
Β 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Β 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Β 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
Β 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
Β 

Design of concrete structures-I- Design Steps

  • 1. Design of Concrete Structure-I 2017 Mr. P. P. Prabhu Page 1 Analysis of Singly Reinforced Beam Step No. Calculation / Procedure Reference Given: 𝑓 , 𝑓 , 𝑏, 𝑑, 𝐴 Find: 𝑀 1. Determine π‘₯ = . . , 2. Find π‘₯ 𝑓 250 415 500 π‘₯ 0.53 d 0.48 d 0.46 d Clause no 38.1, IS 456: 2000, page no 70 3. Compare π‘₯ π‘€π‘–π‘‘β„Ž π‘₯ οƒ˜ 𝐼𝐹 π‘₯ < π‘₯ π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘’π‘›π‘‘π‘’π‘Ÿ π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›. οƒ˜ 𝐼𝐹 π‘₯ = π‘₯ π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘π‘Žπ‘™π‘Žπ‘›π‘π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›. οƒ˜ 𝐼𝐹 π‘₯ > π‘₯ π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘œπ‘£π‘’π‘Ÿ π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›. 4. Find 𝑀 𝑀 = 0.87 𝑓 𝑦 𝐴 𝑠𝑑 (𝑑 βˆ’ 0.42 π‘₯ 𝑒) π‘œπ‘Ÿ 𝑀 = 0.36 𝑓 π‘π‘˜ 𝑏 π‘₯ 𝑒 (𝑑 βˆ’ 0.42 π‘₯ 𝑒) 5 If Load is required for given span and end condition, Use 𝑀 = … . . π‘“π‘œπ‘Ÿ 𝑒𝑑𝑙 𝑀 = 𝑀𝑙 4 … . . π‘“π‘œπ‘Ÿ π‘π‘œπ‘–π‘›π‘‘ π‘™π‘œπ‘Žπ‘‘ And find w
  • 2. Design of Concrete Structure-I 2017 Mr. P. P. Prabhu Page 2 Design of Singly Reinforced Beam Step No. Calculation / Procedure Reference Given: 𝑓 , 𝑓 , 𝑏, 𝐷, 𝑀 Find: 𝐴 1. Assume effective cover d’ Find d = D-d’ Clause no 26.4.2, IS 456: 2000, page no 47, Table no.16 2. Find 𝑀 π‘’π‘Ÿ 𝑓 250 415 500 𝑀 0.149𝑓 𝑏𝑑 0.138𝑓 𝑏𝑑 0.133𝑓 𝑏𝑑 3. Compare 𝑀 π‘€π‘–π‘‘β„Ž 𝑀 οƒ˜ 𝐼𝑓 𝑀 𝑒 < 𝑀 π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘’π‘›π‘‘π‘’π‘Ÿ π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›. οƒ˜ 𝐼𝑓 𝑀 > 𝑀 π‘’π‘Ÿπ‘šπ‘Žπ‘₯ π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘œπ‘£π‘’π‘Ÿ π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›. 4. 𝐹𝑖𝑛𝑑 𝐴 𝐴 = 0.5 𝑓 𝑓 Γ— 1 βˆ’ 1 βˆ’ 4.6 𝑀 𝑓 𝑏 𝑑 Γ— 𝑏 𝑑
  • 3. Design of Concrete Structure-I 2017 Mr. P. P. Prabhu Page 3 Analysis of Doubly Reinforced Beam Step No. Calculation / Procedure Reference Given: 𝑓 , 𝑏, 𝑑 , 𝑑 , 𝐴 , 𝐴 , 𝒇 π’š = πŸπŸ“πŸŽ* Find: 𝑀 1. π΄π‘ π‘ π‘’π‘šπ‘’ 𝑓 = 0.87𝑓 Determine π‘₯ = . . . , 2. Find π‘₯ 𝑓 250 415 500 π‘₯ 0.53 d 0.48 d 0.46 d Clause no 38.1, IS 456: 2000, page no 70 3. Compare π‘₯ π‘€π‘–π‘‘β„Ž π‘₯ οƒ˜ 𝐼𝐹 π‘₯ < π‘₯ π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘’π‘›π‘‘π‘’π‘Ÿ π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›. οƒ˜ 𝐼𝐹 π‘₯ = π‘₯ π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘π‘Žπ‘™π‘Žπ‘›π‘π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›. οƒ˜ 𝐼𝐹 π‘₯ > π‘₯ π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘œπ‘£π‘’π‘Ÿ π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›. 𝐼𝑓 π‘₯ > π‘₯ use π‘₯ =π‘₯ 4. Find 𝑓 = 700 (1 βˆ’ 𝑑 𝑐 ) 𝐼𝑓 𝑓 β‰₯ 0.87 𝑓 assumption is correct. 𝐼𝑓 𝑓 < 0.87 𝑓 assumption is wrong Find π‘₯ π‘“π‘Ÿπ‘œπ‘š π‘‘β„Žπ‘–π‘  π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘‘π‘–π‘ π‘’π‘žπ‘Žπ‘‘π‘–π‘œπ‘› 0.36 𝑓 , 𝑏. π‘₯ + 700 1 βˆ’ 𝑑 𝑐 . 𝐴 = 0.87 𝑓 . 𝐴 5 Compare π‘₯ π‘€π‘–π‘‘β„Ž π‘₯ οƒ˜ 𝐼𝐹 π‘₯ < π‘₯ π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘’π‘›π‘‘π‘’π‘Ÿ π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›. οƒ˜ 𝐼𝐹 π‘₯ = π‘₯ π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘π‘Žπ‘™π‘Žπ‘›π‘π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›. οƒ˜ 𝐼𝐹 π‘₯ > π‘₯ π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘œπ‘£π‘’π‘Ÿ π‘Ÿπ‘’π‘–π‘›π‘“π‘œπ‘Ÿπ‘π‘’π‘‘ π‘ π‘’π‘π‘‘π‘–π‘œπ‘›. 6 Calculate 𝑓 π‘π‘œπ‘Ÿπ‘œπ‘ π‘π‘œπ‘›π‘‘π‘–π‘›π‘” π‘‘π‘œ π‘₯ And find 𝑀 = 0.36 𝑓 π‘π‘˜ 𝑏 π‘₯ 𝑒 (𝑑 βˆ’ 0.42 π‘₯ 𝑒) + 𝑓 𝑠𝑐 𝐴 𝑠𝑐 𝑑 βˆ’ 𝑑 𝑐
  • 4. Design of Concrete Structure-I 2017 Mr. P. P. Prabhu Page 4 Design of Shear Reinforcement Step No. Calculation / Procedure Reference 1. Calculate Maximum Ultimate Shear 𝑉 = . 2. Calculate Design Shear 𝑉 = 𝑉 βˆ’ 𝑀 ( + 𝑑) 𝑏 = π‘€π‘–π‘‘π‘‘β„Ž π‘œπ‘“ π‘ π‘’π‘π‘π‘œπ‘Ÿπ‘‘ d = effective depth of support 3. Obtain allowable ultimate shear 𝑉 𝑉 = 𝜏 . 𝑏. 𝑑 𝜏 π‘“π‘Ÿπ‘œπ‘š π‘‘π‘Žπ‘π‘™π‘’ 20 Cl. No. 40.2.3 4. Check 𝑉 ≀ 𝑉 𝐼𝑓 𝑉 > 𝑉 π‘–π‘›π‘π‘Ÿπ‘’π‘Žπ‘ π‘’ π‘‘β„Žπ‘’ π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 5. Calculate Shear resisted by Concrete , 𝑉 = 𝜏 . 𝑏. 𝑑 𝜏 π‘“π‘Ÿπ‘œπ‘š π‘‘π‘Žπ‘π‘™π‘’ 19 Cl.No. 40.2.1 6. Find Ultimate Shear Resisted by Minimum Stirrups 𝑉 = 0.4 . 𝑏. 𝑑 7. Ultimate Shear Resisted by R.C.member 𝑉 = 𝑉 + 𝑉 8. If𝑉 < 𝑉 , Minimum Stirrups are sufficient Spacing between stirrups 𝑆 = . . . b width of beam For Spacing Cl.No. 40.4.a 9. 𝑉 > 𝑉 , Design Shear Reinforcement 1. Shear Resisted by Shear reinforcement 𝑉 = 𝑉 βˆ’ 𝑉 2. If bent up bars are used , Calculate shear resisted by bent up bars, 𝑉 = 0.87 𝑓 . 𝐴 . 𝑠𝑖𝑛 ∝ ≀ 0.5𝑉 3. Ultimate Shear Resisted by Vertical stirrups 𝑉 = 𝑉 βˆ’ 𝑉
  • 5. Design of Concrete Structure-I 2017 Mr. P. P. Prabhu Page 5 𝐼𝑓 𝑏𝑒𝑛𝑑 𝑒𝑝 π‘π‘Žπ‘Ÿπ‘  π‘Žπ‘Ÿπ‘’ π‘›π‘œπ‘‘ π‘π‘Ÿπ‘œπ‘£π‘–π‘‘π‘’π‘‘ 𝑉 = 𝑉 𝐹𝑖𝑛𝑑 π‘†π‘π‘Žπ‘π‘–π‘›π‘” 𝑆 = . . 𝑆 ≀ 0.75𝑑 π‘œπ‘Ÿ 300π‘šπ‘š π‘€β„Žπ‘–π‘β„Žπ‘’π‘£π‘’π‘Ÿ 𝑖𝑠 𝑙𝑒𝑠𝑠. 10. Reinforcement Details. dD Mainsteel t Clearspan ShearReinforcementDetails BentupBar Shearreinforcement Design of One Way Slab Step No. Calculation / Procedure Reference Slab Having > 2. Provide One Way slab. 1. Span: Depending upon condition determine effective span of slab. Cl. No. 22.2
  • 6. Design of Concrete Structure-I 2017 Mr. P. P. Prabhu Page 6 2. Trial Depth : Calculate required depth 𝑑 = Γ— . . Assume % Pt Fe 250 0.5 to 0.90 Fe 415 0.30 to 0.45 Fe 500 0.2 to 0.35 D = d + d’+ βˆ… Find effective span = span + d Compare this with effective span from step no 1 Provide minimum of both. M.F. - Cl. No. 23.4, Fig no.4 - Cl. No. 23.2.1 3. Load Calculations: Consider 1 m width of slab. Dead Load / m = Self wt of slab + Floor Finish = 25. D + F.F. Live Load Total working Load ( π‘Š) = D.L. + L.L. Total Ultimate Load π‘Š = 1.5 Γ— π‘Š 4. Design Moment ( 𝑀 ) 𝑀 = π‘Š . 𝑙 𝑒𝑓𝑓 8 5. Check for depth 𝑀 = 0.36 𝑓 π‘π‘˜ 𝑏 π‘₯ 𝑒 π‘šπ‘Žπ‘₯ (𝑑 βˆ’ 0.42 π‘₯ 𝑒 π‘šπ‘Žπ‘₯) 𝐼𝑓 𝑀 > 𝑀 Section is safe from bending moment consideration. If condition not satisfied, increase depth of section. 6. Main Steel A = 0.5 f f Γ— 1 βˆ’ 1 βˆ’ 4.6 M f b d Γ— b d For slab b = 1000mm A > A A = 0.15 % b. D … … … … … for mild steel A = 0.12 % b. D … … … … … for HYSD Spacing S = . πΉπ‘œπ‘Ÿ 𝐴 Cl. No.26.5.2.1
  • 7. Design of Concrete Structure-I 2017 Mr. P. P. Prabhu Page 7 a = area of steel bar A = area of steel required S ≀ ( 3. d or 300 mm whichever is less) Hence provide … βˆ… main steel @.... spacing c/c. 7. Check for Deflection: Find %Pt = . Find f = 0.58 f Find M.F. ………. From % Pt & f Calculate required depth d If d < d ………..Hence Safe. 8. Distribution Steel : A = 0.15 % b. D … … … … … for mild steel A = 0.12 % b. D … … … … … for HYSD Spacing S = 1000. a A S ≀ ( 5. d or 450 mm whichever is less) Hence provide … βˆ… distribution steel @.... spacing c/c. 9. Check for Shear : Calculate Design Shear: 𝑉 = . Shear resisted by Concrete = 𝑉 = (𝜏 π‘˜). 𝑏. 𝑑 𝑉 > 𝑉 … … … … … … . . 𝐻𝑒𝑛𝑐𝑒 π‘†π‘Žπ‘“π‘’. If not increase thickness of slab. 𝜏 π‘“π‘Ÿπ‘œπ‘š π‘‡π‘Žπ‘π‘™π‘’ 19 π‘˜ From Cl. No. 40.2.2.1 10. Check for Development length : 𝐿 𝐿 = .βˆ… . Check 𝐿 < . + 𝐿 Assume 𝐿 = βˆ’ (𝑑 + βˆ… ), 𝑀 = 𝑀 , 𝑉 = 𝑉 Cl. 26.2.1 11. Reinforcement Details:
  • 8. Design of Concrete Structure-I 2017 Mr. P. P. Prabhu Page 8 d D D is t r i b u t i o n s t e e l M a in s t e e l t C l e a r s p a n R e i n f o r c e m e n t D e t a i l s i n o n e w a y s l a b 1 . 8 4 7 7 Design of Two Way Slab Step No. Calculation / Procedure Reference Slab Having < 2. Provide Two Way slab.
  • 9. Design of Concrete Structure-I 2017 Mr. P. P. Prabhu Page 9 1. Span: Depending upon condition determine effective span of slab. Cl. No. 22.2 2. Trial Depth : Calculate required depth 𝑑 = ( ) Γ— . . Assume % Pt Overall depth D = d + d’+ βˆ… Find effective span = span + d Compare this with effective span from step no 1. Provide minimum of both. Fe 250 0.5 to 0.90 Fe 415 0.30 to 0.45 Fe 500 0.2 to 0.35 M.F. - Cl. No. 23.4, Fig no.4 - Cl. No. 23.2.1 3. Load Calculations: Consider 1 m width of slab. Dead Load / m = Self wt of slab + Floor Finish = 25. D + F.F. Live Load Total working Load ( π‘Š) = D.L. + L.L. Total Ultimate Load π‘Š = 1.5 Γ— π‘Š 4. Design Moment ( 𝑀 ) 𝑀 = 𝛼 . 𝑀. 𝑙π‘₯ 𝑀 = 𝛼 . 𝑀. 𝑙π‘₯ Annex D, Pg. No. 90 for 𝛼 & 𝛼 5. Check for depth 𝑀 = 0.36 𝑓 π‘π‘˜ 𝑏 π‘₯ 𝑒 π‘šπ‘Žπ‘₯ (𝑑 βˆ’ 0.42 π‘₯ 𝑒 π‘šπ‘Žπ‘₯) 𝐼𝑓 𝑀 > 𝑀 (Greater of 𝑀 & 𝑀 ) Section is safe from bending moment consideration. If condition not satisfied, increase depth of section. 6. Main Steel ( in π‘₯ direction ) 𝐴 = 0.5 𝑓 𝑓 Γ— 1 βˆ’ 1 βˆ’ 4.6 𝑀 𝑓 𝑏 𝑑 Γ— 𝑏 𝑑 For slab 𝑏 = 1000π‘šπ‘š 𝐴 > 𝐴 𝐴 = 0.15 % 𝑏. 𝐷 … … … … … π‘“π‘œπ‘Ÿ π‘šπ‘–π‘™π‘‘ 𝑠𝑑𝑒𝑒𝑙 𝐴 = 0.12 % 𝑏. 𝐷 … … … … … π‘“π‘œπ‘Ÿ π»π‘Œπ‘†π· Spacing 𝑆 = . π‘Ž = π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 π‘π‘Žπ‘Ÿ πΉπ‘œπ‘Ÿ 𝐴 Cl. No.26.5.2.1
  • 10. Design of Concrete Structure-I 2017 Mr. P. P. Prabhu Page 10 𝐴 = π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ 𝑆 ≀ ( 3. 𝑑 π‘œπ‘Ÿ 300 π‘šπ‘š π‘€β„Žπ‘–π‘β„Žπ‘’π‘£π‘’π‘Ÿ 𝑖𝑠 𝑙𝑒𝑠𝑠) Hence provide … βˆ… main steel in π‘₯ direction @.... spacing c/c. 7. Main Steel ( in 𝑦 direction ) 𝐴 = 0.5 𝑓 𝑓 Γ— 1 βˆ’ 1 βˆ’ 4.6 𝑀 𝑓 𝑏 𝑑 Γ— 𝑏 𝑑 For slab 𝑏 = 1000π‘šπ‘š 𝐴 > 𝐴 𝐴 = 0.15 % 𝑏. 𝐷 … … … … … π‘“π‘œπ‘Ÿ π‘šπ‘–π‘™π‘‘ 𝑠𝑑𝑒𝑒𝑙 𝐴 = 0.12 % 𝑏. 𝐷 … … … … … π‘“π‘œπ‘Ÿ π»π‘Œπ‘†π· Spacing 𝑆 = . π‘Ž = π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 π‘π‘Žπ‘Ÿ 𝐴 = π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑠𝑑𝑒𝑒𝑙 π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ 𝑆 ≀ ( 3. 𝑑 π‘œπ‘Ÿ 300 π‘šπ‘š π‘€β„Žπ‘–π‘β„Žπ‘’π‘£π‘’π‘Ÿ 𝑖𝑠 𝑙𝑒𝑠𝑠) Hence provide … βˆ… main steel in 𝑦 direction @.... spacing c/c. πΉπ‘œπ‘Ÿ 𝐴 Cl. No.26.5.2.1 8. Check for Shear : Calculate Design Shear: 𝑉 = . Shear resisted by Concrete = 𝑉 = (𝜏 π‘˜). 𝑏. 𝑑 𝑉 > 𝑉 … … … … … … . . 𝐻𝑒𝑛𝑐𝑒 π‘†π‘Žπ‘“π‘’. If not increase thickness of slab. 𝜏 π‘“π‘Ÿπ‘œπ‘š π‘‡π‘Žπ‘π‘™π‘’ π‘˜ From Cl. No. 40.2.2.1 9. Check for Deflection: Find %𝑃𝑑 = 𝐴 𝑠𝑑 . Find 𝑓 = 0.58 𝑓 𝐴 𝑠𝑑 π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ 𝐴 𝑠𝑑 π‘π‘Ÿπ‘œπ‘£π‘–π‘‘π‘’ Find M.F. ………. From % Pt & 𝑓 Calculate required depth 𝑑 𝐼𝑓 𝑑 < 𝑑 ………..Hence Safe. 10. Check for Development length : 𝐿 𝐿 = .βˆ… . Check 𝐿 < . + 𝐿 Cl. 26.2.1
  • 11. Design of Concrete Structure-I 2017 Mr. P. P. Prabhu Page 11 Assume 𝐿 = βˆ’ (𝑑 + βˆ… ) 𝑀 = 𝑀 , 𝑉 = 𝑉 11. Reinforcement Details: d D Main steel (Astx) Main steel(Asty) t Clear span (Ly) Reinforcement Details in two way slab Design of Staircase Step No. Calculation / Procedure Reference 1. Span: Depending upon condition determine effective span of staircase. Cl. No. 33.1 2. Trial Depth: Same as per one way slab.
  • 12. Design of Concrete Structure-I 2017 Mr. P. P. Prabhu Page 12 3. Load Calculations: Consider 1 m width of slab. Dead Load / m = = 25. D + F.F. Live Load Total working Load ( π‘Š) = D.L. + L.L. Total Ultimate Load π‘Š = 1.5 Γ— π‘Š 4. Remaining steps are same as per One Way Slab. 5. Reinforcement Details in Staircase. T R ClearSpan SupportWidthofLanding d ReinforcementDetailsinStaircase Design of Column Step No. Calculation / Procedure Reference 1. Calculate Factored Load on Column 2. Find effective length depending upon end conditions. Table 28, pg.no.94
  • 13. Design of Concrete Structure-I 2017 Mr. P. P. Prabhu Page 13 3. Find ratio = if this ratio is less than 12 column is short. 4. Find 𝐴 ( If size of column is not given ) using formula 𝑃 = ( 0.4 𝑓 Γ— 𝐴 + 0.67 𝑓 βˆ’ 0.4𝑓 Γ— 𝐴 ) Use 𝑝 = 𝐴 = 𝑝 Γ— 𝐴 Assume 𝑝 = 0.015 If size of column is given Find 𝐴 . 5. Provide suitable size of column. 6. Provide Lateral Ties. Cl.26.5.3 7. Reinforcement Details. Design of Helically Reinforced Column Step No. Calculation / Procedure Reference 1. Calculate Factored Load on Column
  • 14. Design of Concrete Structure-I 2017 Mr. P. P. Prabhu Page 14 2. Provide circular section of column having dia. greater than 400. 3. Find 𝐴 using formula 𝑃 = 1.05( 0.4 𝑓 Γ— 𝐴 + 0.67 𝑓 βˆ’ 0.4𝑓 Γ— 𝐴 ) Cl 39.4 4. Helical Steel : πœ‹. 𝐷 . 𝐴 𝐴 . 𝑆 > 0.36 𝐴 𝐴 βˆ’ 1 . 𝑓 𝑓 𝐴 = π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π»π‘’π‘™π‘–π‘π‘Žπ‘™ 𝑆𝑑𝑒𝑒𝑙 𝐷 = π·π‘–π‘Ž. π‘œπ‘“ πΆπ‘œπ‘Ÿπ‘’ = (𝐷 βˆ’ 2. πΆπ‘™π‘’π‘Žπ‘Ÿ π‘π‘œπ‘£π‘’π‘Ÿ) 𝐴 = π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ πΆπ‘œπ‘Ÿπ‘’ = πœ‹. 4 𝐷 βˆ’ 𝐴 Provide suitable Spacing. 5. Allowable Spacing. Cl.26.5.3 6. Reinforcement Details. Design of Eccentrically Loaded Column Step No. Calculation / Procedure Reference
  • 15. Design of Concrete Structure-I 2017 Mr. P. P. Prabhu Page 15 A For Bending about x axis. 1. Find ex min β‰₯ greater of (l/500 + D/30) or 20 mm ey min β‰₯ greater of (l/500 + b/30) or 20 mm 2. Find Mux min Mux (Min. ecc.) = Pu .ex min < Mux 3. Assume Size of column b & D 4. Calculate Pu/fck bD & Mu/fck bD2 5. Calculate dο‚’ο€ / D 6. Select appropriate chart for dο‚’ο€ / D, depending upon grade of steel. Obtain point of intersection of Pu/fck bD & Mu/fck bD2 7. Interpolate values of Pu/fck from Chart SP16 and Find P 8. Calculate total area of steel required 𝐴 = 𝑃. 𝑏. 𝐷 100 B For Bending about Y axis. Same steps as per bending about X axis. Design of Isolated Rectangular Footing Step No. Calculation / Procedure Reference
  • 16. Design of Concrete Structure-I 2017 Mr. P. P. Prabhu Page 16 1. Base Size Area of footing = 𝐴 = 1.1 = 𝐿 Γ— 𝐡 𝐿 = + ( ) + 𝐴 Cantilever projection of footing for bending about x axis 𝐢 = 𝐿 βˆ’ 𝐷 2 Breadth of Footing 𝐡 = 𝑏 + 2𝐢 Cantilever projection of footing for bending about y axis 𝐢 = 𝐡 βˆ’ 𝑏 2 Area of Footing provided 𝐴 = 𝐿 Γ— 𝐡 Upward factored soil reaction = 𝑀 = . . 2. Depth of footing from Bending Moment Consideration B.M. at column face parallel to x axis 𝑀 = 𝑀 . 𝐡 . 𝐢 2 2 B.M. at column face parallel to x axis 𝑀 = 𝑀 . 𝐿 . 𝐢 2 2 Required effective depth for bending about x axis 𝑑 = 𝑀 𝑅 . 𝑏 B.M. at column face parallel to y axis 𝑑 = 𝑀 𝑅 . 𝐷 Cl.33.2 3. Check Depth for two way shear: Perimeter at critical section = 2 ( 𝑏 + 𝑑 + ( 𝐷 + 𝑑 ) ) Area resisted by two way shear A = Perimeter Γ— effective depth at sec. Shear resisted by concrete = 𝑉 = 𝜏 Γ— 𝐴
  • 17. Design of Concrete Structure-I 2017 Mr. P. P. Prabhu Page 17 Where 𝜏 = 𝐾 . 𝜏 β€² 𝐾 = 0.5 + 𝑏 𝐷 < 1 𝜏 = 0.25 𝑓 Design Shear to which column is subjected 𝑉 = 𝑀 𝐿 Γ— 𝐡 βˆ’ 𝑏 + 𝑑 + 𝐷 + 𝑑 𝑉 > 𝑉 Section is safe else revise the section. 4. Area of steel and Check for Development Length 𝐴 = . . 1 βˆ’ 1 βˆ’ . . . . 𝑏1. 𝑑 > 𝐴 𝐴 = (0.85. 𝑏1. 𝑑 )/𝑓 𝑏1 = 𝑏 + 2𝑒 𝑒 = π‘œπ‘“π‘“π‘ π‘’π‘‘ π‘“π‘Ÿπ‘œπ‘š π‘“π‘Žπ‘π‘’ π‘œπ‘“ π‘π‘œπ‘™π‘’π‘šπ‘›. 𝐴 = . . 1 βˆ’ 1 βˆ’ . . . . 𝐷1. 𝑑 > 𝐴 𝐴 = 0.85. 𝐷1. 𝑑 /𝑓 𝐷1 = 𝐷 + 2𝑒 𝑒 = π‘œπ‘“π‘“π‘ π‘’π‘‘ π‘“π‘Ÿπ‘œπ‘š π‘“π‘Žπ‘π‘’ π‘œπ‘“ π‘π‘œπ‘™π‘’π‘šπ‘›. Required development length about x axis. 𝐿 = 𝐿 = 0.87 𝑓 4 𝜏 . βˆ… 𝐿 = 𝐢 Required development length about y axis. 𝐿 = 𝐿 = 0.87 𝑓 4 𝜏 . βˆ… 𝐿 = 𝐢 βˆ… & βˆ… βˆ’ π‘Žπ‘Ÿπ‘’ π‘‘β„Žπ‘’ π‘‘π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ π‘œπ‘“ π‘π‘Žπ‘Ÿ 𝑖𝑛 π‘₯ π‘Žπ‘›π‘‘ π‘Œ π‘‘π‘–π‘Ÿπ‘’π‘π‘‘π‘–π‘œπ‘›. If 𝐿 > 𝐿 π‘ π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘ π‘Žπ‘“π‘’. If development length is not satisfied, make it satisfy by i) Decrease the bar diameter. ii) Increase the width or length. iii) Increase area of steel. 5. Check for One-Way shear for bending about Y-Axis. 𝜏 βˆ’ 𝐢𝑙 π‘›π‘œ. 40.2
  • 18. Design of Concrete Structure-I 2017 Mr. P. P. Prabhu Page 18 % of steel = 𝑃 = Shear resisted by concrete = 𝑉 = 𝜏 Γ— 𝐴 𝐴 = 𝐿 Γ— 𝑑𝑦 Shear to which column is subjected = 𝑉 = 𝑀 . 𝐿 . (𝐢 βˆ’ 𝑑 ) 𝐼𝑓 𝑉 > 𝑉 π‘†π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘ π‘Žπ‘“π‘’. If Unsafe increase steel or change section of Footing. 6. Check for One-Way shear for bending about x-Axis. % of steel = 𝑃 = Shear resisted by concrete = 𝑉 = 𝜏 Γ— 𝐴 𝐴 = 𝐡 Γ— 𝑑π‘₯ Shear to which column is subjected = 𝑉 = 𝑀 . 𝐡 . (𝐢 βˆ’ 𝑑 ) 𝐼𝑓 𝑉 > 𝑉 π‘†π‘’π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘ π‘Žπ‘“π‘’. If Unsafe increase steel or change section of Footing. 𝜏 βˆ’ 𝐢𝑙 π‘›π‘œ. 40.2 7. Reinforcement Details. Diagram.