SlideShare a Scribd company logo
1 of 77
Volumes of Solids
Volumes By Discs & Washers
         ( slice ⊥ rotation )
Volumes of Solids
Volumes By Discs & Washers
                   ( slice ⊥ rotation )
About the x axis
Volumes of Solids
Volumes By Discs & Washers
                   ( slice ⊥ rotation )
About the x axis
       y           y = f ( x)



                   x
Volumes of Solids
Volumes By Discs & Washers
                       ( slice ⊥ rotation )
About the x axis
       y               y = f ( x)



           a       b   x
Volumes of Solids
Volumes By Discs & Washers
                       ( slice ⊥ rotation )
About the x axis
       y               y = f ( x)



           a ∆x    b   x
Volumes of Solids
Volumes By Discs & Washers
                       ( slice ⊥ rotation )
About the x axis
       y               y = f ( x)
                                          y


           a ∆x    b   x
                                          ∆x
Volumes of Solids
Volumes By Discs & Washers
                       ( slice ⊥ rotation )
About the x axis
       y               y = f ( x)
                                          y = f ( x)


           a ∆x    b   x
                                          ∆x
Volumes of Solids
Volumes By Discs & Washers
                       ( slice ⊥ rotation )
About the x axis
       y               y = f ( x)
                                          y = f ( x)

                                                       A( x ) = π [ f ( x ) ]
                                                                                2


           a ∆x    b   x
                                          ∆x
Volumes of Solids
Volumes By Discs & Washers
                       ( slice ⊥ rotation )
About the x axis
       y               y = f ( x)
                                          y = f ( x)

                                                       A( x ) = π [ f ( x ) ]
                                                                                2


           a ∆x    b   x                           ∆V = π [ f ( x ) ] ⋅ ∆x
                                                                         2


                                          ∆x
Volumes of Solids
Volumes By Discs & Washers
                       ( slice ⊥ rotation )
About the x axis
       y               y = f ( x)
                                          y = f ( x)

                                                       A( x ) = π [ f ( x ) ]
                                                                                2


           a ∆x    b   x                           ∆V = π [ f ( x ) ] ⋅ ∆x
                                                                         2


                                          ∆x
                                   b
                   V = lim ∑ π [ f ( x ) ] ⋅ ∆x
                                          2
                           ∆x →0
                                   x=a
Volumes of Solids
Volumes By Discs & Washers
                       ( slice ⊥ rotation )
About the x axis
       y               y = f ( x)
                                              y = f ( x)

                                                           A( x ) = π [ f ( x ) ]
                                                                                    2


           a ∆x    b   x                               ∆V = π [ f ( x ) ] ⋅ ∆x
                                                                             2


                                              ∆x
                                   b
                   V = lim ∑ π [ f ( x ) ] ⋅ ∆x
                                              2
                           ∆x →0
                                   x=a
                             b
                       = π ∫ [ f ( x ) ] dx
                                         2

                             a
About the y axis
       y           y = f ( x)




                   x
About the y axis
       y           y = f ( x)
       d

       c

                   x
About the y axis
       y           y = f ( x)
       d
      ∆y
       c

                   x
About the y axis
       y           y = f ( x)
       d
                                     x
      ∆y                        ∆y
       c

                   x
About the y axis
       y           y = f ( x)
       d
                                     x = g( y)
      ∆y                        ∆y
       c

                   x
About the y axis
       y           y = f ( x)
       d
                                                      x = g( y)
      ∆y                        ∆y
       c

                                     A( y ) = π [ g ( y ) ]
                   x                                          2
About the y axis
       y           y = f ( x)
       d
                                                      x = g( y)
      ∆y                        ∆y
       c

                                     A( y ) = π [ g ( y ) ]
                   x                                          2



                                             [ g ( y ) ] 2 ⋅ ∆y
                                      ∆V = π
About the y axis
       y               y = f ( x)
       d
                                                               x = g( y)
      ∆y                                 ∆y
       c

                                              A( y ) = π [ g ( y ) ]
                      x                                                2



                                                      [ g ( y ) ] 2 ⋅ ∆y
                                               ∆V = π


                                   d
                   V = lim ∑ π [ g ( y ) ] ⋅ ∆y
                                                 2
                          ∆y →0
                                  y =c
About the y axis
       y               y = f ( x)
       d
                                                               x = g( y)
      ∆y                                 ∆y
       c

                                              A( y ) = π [ g ( y ) ]
                      x                                                2



                                                      [ g ( y ) ] 2 ⋅ ∆y
                                               ∆V = π


                                   d
                   V = lim ∑ π [ g ( y ) ] ⋅ ∆y
                                                 2
                          ∆y →0
                                  y =c
                            d
                     = π ∫ [ g ( y ) ] dy
                                         2

                            c
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
       the x axis is rotated about the x axis
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
         the x axis is rotated about the x axis
            y
            4
                   y = 4 − x2

    -2             2       x
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
         the x axis is rotated about the x axis
            y
            4
                   y = 4 − x2

             ∆x 2
    -2                     x
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y = 4 − x2

              ∆x 2
     -2                     x




y = 4 − x2




             ∆x
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y = 4 − x2

              ∆x 2
     -2                     x




y = 4 − x2

                       A( x ) = π ( 4 − x   )
                                            22




             ∆x
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y = 4 − x2

              ∆x 2
     -2                     x




y = 4 − x2

                       A( x ) = π ( 4 − x   )
                                            22


                  ∆V = π (16 − 8 x 2 + x 4 ) ⋅ ∆x
             ∆x
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
          the x axis is rotated about the x axis
             y
                                              V = lim ∑ π (16 − 8 x 2 + x 4 ) ⋅ ∆x
                                                           2

             4                                    ∆x →0
                                                        x = −2
                    y = 4− x  2




               ∆x 2
     -2                      x




y = 4 − x2

                        A( x ) = π ( 4 − x   )
                                             22


                   ∆V = π (16 − 8 x 2 + x 4 ) ⋅ ∆x
             ∆x
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
          the x axis is rotated about the x axis
             y
                                              V = lim ∑ π (16 − 8 x 2 + x 4 ) ⋅ ∆x
                                                            2

             4                                     ∆x →0
                                                         x = −2
                    y = 4− x  2
                                                       2
                                                 = 2π ∫ (16 − 8 x 2 + x 4 ) dx
                                                       0
               ∆x 2
     -2                      x




y = 4 − x2

                        A( x ) = π ( 4 − x   )
                                             22


                   ∆V = π (16 − 8 x 2 + x 4 ) ⋅ ∆x
             ∆x
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
          the x axis is rotated about the x axis
             y
                                              V = lim ∑ π (16 − 8 x 2 + x 4 ) ⋅ ∆x
                                                            2

             4                                     ∆x →0
                                                         x = −2
                    y = 4− x  2
                                                       2
                                                 = 2π ∫ (16 − 8 x 2 + x 4 ) dx
                                                          0
               ∆x 2
     -2                      x                                                  2
                                                          16 x − 8 x 3 + 1 x 5 
                                                     = 2π 
                                                                          5 0
                                                                               
                                                                  3


y = 4 − x2

                        A( x ) = π ( 4 − x   )
                                             22


                   ∆V = π (16 − 8 x 2 + x 4 ) ⋅ ∆x
             ∆x
e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and
          the x axis is rotated about the x axis
             y
                                              V = lim ∑ π (16 − 8 x 2 + x 4 ) ⋅ ∆x
                                                            2

             4                                     ∆x →0
                                                         x = −2
                    y = 4− x  2
                                                       2
                                                 = 2π ∫ (16 − 8 x 2 + x 4 ) dx
                                                          0
               ∆x 2
     -2                      x                                                  2
                                                          16 x − 8 x 3 + 1 x 5 
                                                     = 2π 
                                                                          5 0
                                                                               
                                                                  3
                                                          32 − 64 + 32 − 0
                                                     = 2π                 
                                                                          
                                                                 35
y = 4 − x2
                                                       512π
                                                     =       units 3
                        A( x ) = π ( 4 − x   )
                                             22         15
                   ∆V = π (16 − 8 x 2 + x 4 ) ⋅ ∆x
             ∆x
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
          y
          4
                       y=3

                         x
                    y = 4 − x2
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
           y
           4
                        y=3
                (1,3)
  (-1,3)

                        x
                   y = 4 − x2
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
            y
            4
                          y=3
   (-1,3)         (1,3)
                ∆x
                           x
                      y = 4 − x2
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
            y
            4
                          y=3
   (-1,3)         (1,3)
                ∆x
                           x
                      y = 4 − x2




                                   ∆x
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
            y
            4
                           y=3
   (-1,3)         (1,3)
                ∆x
                            x
                       y = 4 − x2

                y − 3 = 4 − x2 − 3
                     = 1− x2



                                     ∆x
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
            y
            4
                            y=3
   (-1,3)         (1,3)
                ∆x
                             x
                        y = 4 − x2

                y − 3 = 4 − x2 − 3
                     = 1− x2

   A( x ) = π (1 − x   )
                       22


                                     ∆x
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
            y
            4
                             y=3
   (-1,3)         (1,3)
                ∆x
                              x
                         y = 4 − x2

                y − 3 = 4 − x2 − 3
                     = 1− x2

    A( x ) = π (1 − x   )
                        22


∆V = π (1 − 2 x 2 + x 4 ) ⋅ ∆x        ∆x
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
            y
                                                         π (1 − 2 x 2 + x 4 ) ⋅ ∆x
                                                         1

                                                       ∑
                                            V = lim
            4                                  ∆x →0
                                                       x = −1
                             y=3
   (-1,3)         (1,3)
                ∆x
                              x
                         y = 4 − x2

                y − 3 = 4 − x2 − 3
                     = 1− x2

    A( x ) = π (1 − x   )
                        22


∆V = π (1 − 2 x 2 + x 4 ) ⋅ ∆x        ∆x
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
            y
                                                          π (1 − 2 x 2 + x 4 ) ⋅ ∆x
                                                          1

                                                        ∑
                                            V = lim
            4                                  ∆x →0
                                                        x = −1
                             y=3
   (-1,3)         (1,3)                             1
                                              = 2π ∫ (1 − 2 x 2 + x 4 ) dx
                ∆x
                                                    0
                              x
                         y = 4 − x2

                y − 3 = 4 − x2 − 3
                     = 1− x2

    A( x ) = π (1 − x   )
                        22


∆V = π (1 − 2 x 2 + x 4 ) ⋅ ∆x        ∆x
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
            y
                                                          π (1 − 2 x 2 + x 4 ) ⋅ ∆x
                                                          1

                                                        ∑
                                            V = lim
            4                                  ∆x →0
                                                        x = −1
                             y=3
   (-1,3)         (1,3)                             1
                                              = 2π ∫ (1 − 2 x 2 + x 4 ) dx
                ∆x
                                                    0
                              x                                           1
                                                    x − 2 x3 + 1 x5 
                                              = 2π 
                         y = 4 − x2
                                                                5 0
                                                   3                

                y − 3 = 4 − x2 − 3
                     = 1− x2

    A( x ) = π (1 − x   )
                        22


∆V = π (1 − 2 x 2 + x 4 ) ⋅ ∆x        ∆x
( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and
    y = 3 is rotated about the line y = 3
            y
                                                          π (1 − 2 x 2 + x 4 ) ⋅ ∆x
                                                          1

                                                        ∑
                                            V = lim
            4                                  ∆x →0
                                                        x = −1
                             y=3
   (-1,3)         (1,3)                             1
                                              = 2π ∫ (1 − 2 x 2 + x 4 ) dx
                ∆x
                                                    0
                              x                                           1
                                                    x − 2 x3 + 1 x5 
                                              = 2π 
                         y = 4 − x2
                                                                5 0
                                                   3                
                                                   1 − 2 + 1 − 0
                y − 3 = 4 − x2 − 3            = 2π              
                                                       35 
                     = 1− x2
                                                16π
                                              =      units 3
                                                 15
    A( x ) = π (1 − x   )
                        22


∆V = π (1 − 2 x 2 + x 4 ) ⋅ ∆x        ∆x
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
    about the line y axis. Find the volume generated.
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
    about the line y axis. Find the volume generated.
                    y = x2
         y

                             x = y2



                         x
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
    about the line y axis. Find the volume generated.
                    y = x2
         y

                             x = y2
           (1,1)

                         x
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
    about the line y axis. Find the volume generated.
                    y = x2
         y

                             x = y2
           (1,1)
               ∆y
                         x
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
    about the line y axis. Find the volume generated.
                    y = x2
         y

                             x = y2
           (1,1)
               ∆y
                         x
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
    about the line y axis. Find the volume generated.
                    y = x2
         y

                                x = y2
           (1,1)
               ∆y
                            x

                        1
                 x= y   2
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
    about the line y axis. Find the volume generated.
                    y = x2
         y

                                x = y2
           (1,1)
               ∆y
                            x

                        1
x= y   2
                 x= y   2
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
    about the line y axis. Find the volume generated.
                    y = x2
         y

                                x = y2
           (1,1)
               ∆y
                            x

                        1
x= y   2
                 x= y   2




            1  2       
A( y ) = π  y  − ( y ) 
                       22
               2
            
                       
                         
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
     about the line y axis. Find the volume generated.
                     y = x2
          y

                                 x = y2
            (1,1)
                ∆y
                             x

                         1
x= y   2
                  x= y   2




            1  2         
A( y ) = π  y  − ( y ) 
                         22
               2
            
                         
                           
 ∆V = π ( y − y 4 ) ⋅ ∆y
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
     about the line y axis. Find the volume generated.
                     y = x2
          y
                                            V = lim ∑ π ( y − y 4 ) ⋅ ∆y
                                                           1

                                 x= y   2
                                                 ∆y → 0
                                                          y =0
            (1,1)
                ∆y
                             x

                         1
x= y   2
                  x= y   2




            1  2         
A( y ) = π  y  − ( y ) 
                         22
               2
            
                         
                           
 ∆V = π ( y − y 4 ) ⋅ ∆y
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
     about the line y axis. Find the volume generated.
                     y = x2
          y
                                            V = lim ∑ π ( y − y 4 ) ⋅ ∆y
                                                           1

                                 x= y   2
                                                 ∆y → 0
                                                          y =0
            (1,1)                                  1
                                              = π ∫ ( y − y 4 ) dy
                ∆y
                             x                     0



                         1
x= y   2
                  x= y   2




            1  2         
A( y ) = π  y  − ( y ) 
                         22
               2
            
                         
                           
 ∆V = π ( y − y 4 ) ⋅ ∆y
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
     about the line y axis. Find the volume generated.
                     y = x2
          y
                                            V = lim ∑ π ( y − y 4 ) ⋅ ∆y
                                                           1

                                 x= y   2
                                                 ∆y → 0
                                                          y =0
            (1,1)                                  1
                                              = π ∫ ( y − y 4 ) dy
                ∆y
                             x                     0
                                                                     1
                                                1 y 2 − 1 y5 
                                              =π
                                                         5 0
                                                2            
                         1
x= y   2
                  x= y   2




            1  2         
A( y ) = π  y  − ( y ) 
                         22
               2
            
                         
                           
 ∆V = π ( y − y 4 ) ⋅ ∆y
( iii ) The area between the curves y = x 2 and x = y 2 is rotated
     about the line y axis. Find the volume generated.
                     y = x2
          y
                                            V = lim ∑ π ( y − y 4 ) ⋅ ∆y
                                                           1

                                 x= y   2
                                                 ∆y → 0
                                                          y =0
            (1,1)                                  1
                                              = π ∫ ( y − y 4 ) dy
                ∆y
                             x                     0
                                                                     1
                                                1 y 2 − 1 y5 
                                              =π
                                                         5 0
                                                2            
                         1
x= y   2
                  x= y   2

                                                  1 − 1 − 0
                                              =π           
                                                  25 
                                                3π
                                              =    units 3
            1  2         
A( y ) = π  y  − ( y )                      10
                         22
               2
            
                         
                           
 ∆V = π ( y − y 4 ) ⋅ ∆y
y
(iv) (1996)
                    1
      x + y2 = 0            S

                            1                  4     x


                   -1
The shaded region is bounded by the lines x = 1, y = 1 and y = -1 and
the curve x + y = 0. The region is rotated through 360about the line x
                2


= 4 to form a solid.

When the region is rotated, the line segment S at height y sweeps out an
annulus.
a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 )
a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 )




  ∆y
a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 )




                   r
  ∆y
a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 )


                     R
  ∆y
1
x + y2 = 0        S

                  1   4   x


             -1
1
x + y2 = 0        Sr

                  1    4   x


             -1
1
x + y2 = 0         S r = 4 −1
                       =3
                  1             4   x


             -1
1
x + y2 = 0         S r = 4 −1
                       =3
                  1             4   x

                     R
             -1
1
x + y2 = 0         S r = 4 −1
                       =3
                  1               4   x

                     R = 4− x
                       = 4 + y2
             -1
a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 )




  ∆y
a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 )

                              R = 4− x
                                  = 4 + y2
  ∆y
a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 )

                              R = 4− x
                                 = 4 + y2
  ∆y


              r = 4 −1
                =3
a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 )

                              R = 4− x
                                 = 4 + y2
  ∆y



                                                   {                         }
              r = 4 −1
                                         A( y ) = π ( 4 + y   ) − ( 3)
                                                              22         2

                =3
a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 )

                              R = 4− x
                                 = 4 + y2
  ∆y



                                                   {                         }
              r = 4 −1
                                         A( y ) = π ( 4 + y   ) − ( 3)
                                                              22         2

                =3
                                               = π (16 + 8 y 2 + y 4 − 9 )
                                               = π ( y 4 + 8 y 2 + 7)
b) Hence find the volume of the solid.
b) Hence find the volume of the solid.

  ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y
b) Hence find the volume of the solid.

  ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y

                   π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y
                   1

                 ∑
    V = lim
         ∆y →0
                 y = −1
b) Hence find the volume of the solid.

  ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y

                   π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y
                   1

                 ∑
    V = lim
         ∆y →0
                 y = −1
             1
       = 2π ∫ ( y 4 + 8 y 2 + 7 ) dy
             0
b) Hence find the volume of the solid.

  ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y

                   π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y
                   1

                 ∑
    V = lim
         ∆y →0
                 y = −1
             1
       = 2π ∫ ( y 4 + 8 y 2 + 7 ) dy
             0
                                       1

       = 2π  y 5 + y 3 + 7 y 
              1    8
            5                0
                             
                   3
b) Hence find the volume of the solid.

  ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y

                   π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y
                   1

                 ∑
    V = lim
         ∆y →0
                 y = −1
             1
       = 2π ∫ ( y 4 + 8 y 2 + 7 ) dy
             0
                                       1

       = 2π  y 5 + y 3 + 7 y 
              1     8
            5                0
                             
                    3
            1 + 8 + 7 − 0 
       = 2π               
                          
               53
         296π
       =        units 3
           15
b) Hence find the volume of the solid.

  ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y

                   π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y
                   1

                 ∑
    V = lim
         ∆y →0
                 y = −1
             1
       = 2π ∫ ( y 4 + 8 y 2 + 7 ) dy                Exercise 3A;
             0
                                                 2, 5, 7, 9, 13, 14, 15
                                       1

       = 2π  y 5 + y 3 + 7 y 
              1     8
            5                0
                             
                    3                                Exercise 3B;
            1 + 8 + 7 − 0                     1, 2, 5, 7, 9, 10, 11, 12
       = 2π               
                          
               53
         296π
       =        units 3
           15

More Related Content

What's hot

X2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsX2 T05 06 Partial Fractions
X2 T05 06 Partial Fractions
Nigel Simmons
 
Calculus Cheat Sheet All
Calculus Cheat Sheet AllCalculus Cheat Sheet All
Calculus Cheat Sheet All
Moe Han
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
UrbanX4
 
Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!
A Jorge Garcia
 

What's hot (19)

Lesson 24: The Definite Integral (Section 10 version)
Lesson 24: The Definite Integral (Section 10 version)Lesson 24: The Definite Integral (Section 10 version)
Lesson 24: The Definite Integral (Section 10 version)
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)
 
Derivadas
DerivadasDerivadas
Derivadas
 
X2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsX2 T05 06 Partial Fractions
X2 T05 06 Partial Fractions
 
Image denoising
Image denoisingImage denoising
Image denoising
 
Proga 0622
Proga 0622Proga 0622
Proga 0622
 
IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb)
IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb) IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb)
IVR - Chapter 2 - Basics of filtering I: Spatial filters (25Mb)
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
 
Calculus Cheat Sheet All
Calculus Cheat Sheet AllCalculus Cheat Sheet All
Calculus Cheat Sheet All
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
 
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
 
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
 
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
 
Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!
 
Ism et chapter_12
Ism et chapter_12Ism et chapter_12
Ism et chapter_12
 
Regras diferenciacao
Regras diferenciacaoRegras diferenciacao
Regras diferenciacao
 
Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)
 

Viewers also liked

Sums.of.equivalent.sequences.of.positive.operators.Taft.Beamer.Presentation
Sums.of.equivalent.sequences.of.positive.operators.Taft.Beamer.PresentationSums.of.equivalent.sequences.of.positive.operators.Taft.Beamer.Presentation
Sums.of.equivalent.sequences.of.positive.operators.Taft.Beamer.Presentation
Dragan (dragancn)
 
Math Investigation
Math InvestigationMath Investigation
Math Investigation
grade5a
 
11X1 T14 04 sums of a sequence (2011)
11X1 T14 04 sums of a sequence (2011)11X1 T14 04 sums of a sequence (2011)
11X1 T14 04 sums of a sequence (2011)
Nigel Simmons
 
Representations of S_n
Representations of S_nRepresentations of S_n
Representations of S_n
jchodoriwsky
 
Add 2 to 3- digit numbers mentally with sums up to 300 with out regrouping
Add 2  to 3- digit numbers mentally with sums up to 300 with out regroupingAdd 2  to 3- digit numbers mentally with sums up to 300 with out regrouping
Add 2 to 3- digit numbers mentally with sums up to 300 with out regrouping
Maylord Bonifaco
 
Partial sums-addition-algorithm
Partial sums-addition-algorithmPartial sums-addition-algorithm
Partial sums-addition-algorithm
kadair26
 
11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)
Nigel Simmons
 
Stars investigation
Stars investigationStars investigation
Stars investigation
DanielPearcy
 
Math Investigation "Be There or Be Square"
Math Investigation "Be There or Be Square"Math Investigation "Be There or Be Square"
Math Investigation "Be There or Be Square"
Michael Chan
 
Investigatory project. yani gustilo
Investigatory project. yani gustiloInvestigatory project. yani gustilo
Investigatory project. yani gustilo
yanireckless
 

Viewers also liked (20)

Sums.of.equivalent.sequences.of.positive.operators.Taft.Beamer.Presentation
Sums.of.equivalent.sequences.of.positive.operators.Taft.Beamer.PresentationSums.of.equivalent.sequences.of.positive.operators.Taft.Beamer.Presentation
Sums.of.equivalent.sequences.of.positive.operators.Taft.Beamer.Presentation
 
Math Investigation
Math InvestigationMath Investigation
Math Investigation
 
11X1 T14 04 sums of a sequence (2011)
11X1 T14 04 sums of a sequence (2011)11X1 T14 04 sums of a sequence (2011)
11X1 T14 04 sums of a sequence (2011)
 
Representations of S_n
Representations of S_nRepresentations of S_n
Representations of S_n
 
2015 spring hist_3001
2015 spring hist_30012015 spring hist_3001
2015 spring hist_3001
 
Add 2 to 3- digit numbers mentally with sums up to 300 with out regrouping
Add 2  to 3- digit numbers mentally with sums up to 300 with out regroupingAdd 2  to 3- digit numbers mentally with sums up to 300 with out regrouping
Add 2 to 3- digit numbers mentally with sums up to 300 with out regrouping
 
Partial sums-addition-algorithm
Partial sums-addition-algorithmPartial sums-addition-algorithm
Partial sums-addition-algorithm
 
11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)
 
Partitions of a number sb
Partitions of a number sbPartitions of a number sb
Partitions of a number sb
 
Some Sums - Making mistakes in mobile game development
Some Sums - Making mistakes in mobile game developmentSome Sums - Making mistakes in mobile game development
Some Sums - Making mistakes in mobile game development
 
Stars investigation
Stars investigationStars investigation
Stars investigation
 
Math Investigation "Be There or Be Square"
Math Investigation "Be There or Be Square"Math Investigation "Be There or Be Square"
Math Investigation "Be There or Be Square"
 
Math investigation (bounces)
Math investigation (bounces)Math investigation (bounces)
Math investigation (bounces)
 
Math investigation (STARS)
Math investigation (STARS)Math investigation (STARS)
Math investigation (STARS)
 
Semi-Detailed Lesson Plan in Math VI
Semi-Detailed Lesson Plan in Math VISemi-Detailed Lesson Plan in Math VI
Semi-Detailed Lesson Plan in Math VI
 
Investigatory project. yani gustilo
Investigatory project. yani gustiloInvestigatory project. yani gustilo
Investigatory project. yani gustilo
 
Investigatory project parts
Investigatory project partsInvestigatory project parts
Investigatory project parts
 
DETAILED LESSON PLAN (MATH 6)
DETAILED LESSON PLAN (MATH 6)DETAILED LESSON PLAN (MATH 6)
DETAILED LESSON PLAN (MATH 6)
 
Sample of Semi Detailed Lesson Plan
Sample of Semi Detailed Lesson PlanSample of Semi Detailed Lesson Plan
Sample of Semi Detailed Lesson Plan
 
Detailed Lesson Plan (ENGLISH, MATH, SCIENCE, FILIPINO)
Detailed Lesson Plan (ENGLISH, MATH, SCIENCE, FILIPINO)Detailed Lesson Plan (ENGLISH, MATH, SCIENCE, FILIPINO)
Detailed Lesson Plan (ENGLISH, MATH, SCIENCE, FILIPINO)
 

Similar to X2 T06 01 Discs & Washers

M. Dimitrijevic/ V. Radovanovic: D-deformed Wess-Zumino Model and its Renorma...
M. Dimitrijevic/ V. Radovanovic: D-deformed Wess-Zumino Model and its Renorma...M. Dimitrijevic/ V. Radovanovic: D-deformed Wess-Zumino Model and its Renorma...
M. Dimitrijevic/ V. Radovanovic: D-deformed Wess-Zumino Model and its Renorma...
SEENET-MTP
 
Lesson 19: Partial Derivatives
Lesson 19: Partial DerivativesLesson 19: Partial Derivatives
Lesson 19: Partial Derivatives
Matthew Leingang
 
บทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชันบทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชัน
Thipayarat Mocha
 
บทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชันบทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชัน
Thipayarat Mocha
 
Manage your expectation
Manage your expectationManage your expectation
Manage your expectation
Gregory Rho
 
Equations of Tangents and Normals
Equations of Tangents and NormalsEquations of Tangents and Normals
Equations of Tangents and Normals
coburgmaths
 
Operations With Functions May 25 2009
Operations With Functions May 25 2009Operations With Functions May 25 2009
Operations With Functions May 25 2009
ingroy
 
Formulario de calculo
Formulario de calculoFormulario de calculo
Formulario de calculo
Henry Romero
 

Similar to X2 T06 01 Discs & Washers (20)

Lesson18 Double Integrals Over Rectangles Slides
Lesson18   Double Integrals Over Rectangles SlidesLesson18   Double Integrals Over Rectangles Slides
Lesson18 Double Integrals Over Rectangles Slides
 
M. Dimitrijevic/ V. Radovanovic: D-deformed Wess-Zumino Model and its Renorma...
M. Dimitrijevic/ V. Radovanovic: D-deformed Wess-Zumino Model and its Renorma...M. Dimitrijevic/ V. Radovanovic: D-deformed Wess-Zumino Model and its Renorma...
M. Dimitrijevic/ V. Radovanovic: D-deformed Wess-Zumino Model and its Renorma...
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating Limits
 
Lesson 19: Partial Derivatives
Lesson 19: Partial DerivativesLesson 19: Partial Derivatives
Lesson 19: Partial Derivatives
 
V. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski topV. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski top
 
บทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชันบทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชัน
 
บทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชันบทที่ 4 ฟังก์ชัน
บทที่ 4 ฟังก์ชัน
 
Additional notes EC220
Additional notes EC220Additional notes EC220
Additional notes EC220
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers IILesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers II
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange  Multipliers IILesson 28: Lagrange  Multipliers II
Lesson 28: Lagrange Multipliers II
 
Manage your expectation
Manage your expectationManage your expectation
Manage your expectation
 
Lesson 21: Curve Sketching (Section 10 version)
Lesson 21: Curve Sketching (Section 10 version)Lesson 21: Curve Sketching (Section 10 version)
Lesson 21: Curve Sketching (Section 10 version)
 
Equations of Tangents and Normals
Equations of Tangents and NormalsEquations of Tangents and Normals
Equations of Tangents and Normals
 
Lesson 11: The Chain Rule
Lesson 11: The Chain RuleLesson 11: The Chain Rule
Lesson 11: The Chain Rule
 
Operations With Functions May 25 2009
Operations With Functions May 25 2009Operations With Functions May 25 2009
Operations With Functions May 25 2009
 
0207 ch 2 day 7
0207 ch 2 day 70207 ch 2 day 7
0207 ch 2 day 7
 
Formulario de calculo
Formulario de calculoFormulario de calculo
Formulario de calculo
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and Continuity
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Recently uploaded (20)

NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 

X2 T06 01 Discs & Washers

  • 1. Volumes of Solids Volumes By Discs & Washers ( slice ⊥ rotation )
  • 2. Volumes of Solids Volumes By Discs & Washers ( slice ⊥ rotation ) About the x axis
  • 3. Volumes of Solids Volumes By Discs & Washers ( slice ⊥ rotation ) About the x axis y y = f ( x) x
  • 4. Volumes of Solids Volumes By Discs & Washers ( slice ⊥ rotation ) About the x axis y y = f ( x) a b x
  • 5. Volumes of Solids Volumes By Discs & Washers ( slice ⊥ rotation ) About the x axis y y = f ( x) a ∆x b x
  • 6. Volumes of Solids Volumes By Discs & Washers ( slice ⊥ rotation ) About the x axis y y = f ( x) y a ∆x b x ∆x
  • 7. Volumes of Solids Volumes By Discs & Washers ( slice ⊥ rotation ) About the x axis y y = f ( x) y = f ( x) a ∆x b x ∆x
  • 8. Volumes of Solids Volumes By Discs & Washers ( slice ⊥ rotation ) About the x axis y y = f ( x) y = f ( x) A( x ) = π [ f ( x ) ] 2 a ∆x b x ∆x
  • 9. Volumes of Solids Volumes By Discs & Washers ( slice ⊥ rotation ) About the x axis y y = f ( x) y = f ( x) A( x ) = π [ f ( x ) ] 2 a ∆x b x ∆V = π [ f ( x ) ] ⋅ ∆x 2 ∆x
  • 10. Volumes of Solids Volumes By Discs & Washers ( slice ⊥ rotation ) About the x axis y y = f ( x) y = f ( x) A( x ) = π [ f ( x ) ] 2 a ∆x b x ∆V = π [ f ( x ) ] ⋅ ∆x 2 ∆x b V = lim ∑ π [ f ( x ) ] ⋅ ∆x 2 ∆x →0 x=a
  • 11. Volumes of Solids Volumes By Discs & Washers ( slice ⊥ rotation ) About the x axis y y = f ( x) y = f ( x) A( x ) = π [ f ( x ) ] 2 a ∆x b x ∆V = π [ f ( x ) ] ⋅ ∆x 2 ∆x b V = lim ∑ π [ f ( x ) ] ⋅ ∆x 2 ∆x →0 x=a b = π ∫ [ f ( x ) ] dx 2 a
  • 12. About the y axis y y = f ( x) x
  • 13. About the y axis y y = f ( x) d c x
  • 14. About the y axis y y = f ( x) d ∆y c x
  • 15. About the y axis y y = f ( x) d x ∆y ∆y c x
  • 16. About the y axis y y = f ( x) d x = g( y) ∆y ∆y c x
  • 17. About the y axis y y = f ( x) d x = g( y) ∆y ∆y c A( y ) = π [ g ( y ) ] x 2
  • 18. About the y axis y y = f ( x) d x = g( y) ∆y ∆y c A( y ) = π [ g ( y ) ] x 2 [ g ( y ) ] 2 ⋅ ∆y ∆V = π
  • 19. About the y axis y y = f ( x) d x = g( y) ∆y ∆y c A( y ) = π [ g ( y ) ] x 2 [ g ( y ) ] 2 ⋅ ∆y ∆V = π d V = lim ∑ π [ g ( y ) ] ⋅ ∆y 2 ∆y →0 y =c
  • 20. About the y axis y y = f ( x) d x = g( y) ∆y ∆y c A( y ) = π [ g ( y ) ] x 2 [ g ( y ) ] 2 ⋅ ∆y ∆V = π d V = lim ∑ π [ g ( y ) ] ⋅ ∆y 2 ∆y →0 y =c d = π ∫ [ g ( y ) ] dy 2 c
  • 21. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis
  • 22. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y 4 y = 4 − x2 -2 2 x
  • 23. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y 4 y = 4 − x2 ∆x 2 -2 x
  • 24. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y 4 y = 4 − x2 ∆x 2 -2 x y = 4 − x2 ∆x
  • 25. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y 4 y = 4 − x2 ∆x 2 -2 x y = 4 − x2 A( x ) = π ( 4 − x ) 22 ∆x
  • 26. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y 4 y = 4 − x2 ∆x 2 -2 x y = 4 − x2 A( x ) = π ( 4 − x ) 22 ∆V = π (16 − 8 x 2 + x 4 ) ⋅ ∆x ∆x
  • 27. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y V = lim ∑ π (16 − 8 x 2 + x 4 ) ⋅ ∆x 2 4 ∆x →0 x = −2 y = 4− x 2 ∆x 2 -2 x y = 4 − x2 A( x ) = π ( 4 − x ) 22 ∆V = π (16 − 8 x 2 + x 4 ) ⋅ ∆x ∆x
  • 28. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y V = lim ∑ π (16 − 8 x 2 + x 4 ) ⋅ ∆x 2 4 ∆x →0 x = −2 y = 4− x 2 2 = 2π ∫ (16 − 8 x 2 + x 4 ) dx 0 ∆x 2 -2 x y = 4 − x2 A( x ) = π ( 4 − x ) 22 ∆V = π (16 − 8 x 2 + x 4 ) ⋅ ∆x ∆x
  • 29. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y V = lim ∑ π (16 − 8 x 2 + x 4 ) ⋅ ∆x 2 4 ∆x →0 x = −2 y = 4− x 2 2 = 2π ∫ (16 − 8 x 2 + x 4 ) dx 0 ∆x 2 -2 x 2 16 x − 8 x 3 + 1 x 5  = 2π  5 0   3 y = 4 − x2 A( x ) = π ( 4 − x ) 22 ∆V = π (16 − 8 x 2 + x 4 ) ⋅ ∆x ∆x
  • 30. e.g. ( i ) Find the volume generated when the area between y = 4 − x 2 and the x axis is rotated about the x axis y V = lim ∑ π (16 − 8 x 2 + x 4 ) ⋅ ∆x 2 4 ∆x →0 x = −2 y = 4− x 2 2 = 2π ∫ (16 − 8 x 2 + x 4 ) dx 0 ∆x 2 -2 x 2 16 x − 8 x 3 + 1 x 5  = 2π  5 0   3 32 − 64 + 32 − 0 = 2π     35 y = 4 − x2 512π = units 3 A( x ) = π ( 4 − x ) 22 15 ∆V = π (16 − 8 x 2 + x 4 ) ⋅ ∆x ∆x
  • 31. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3
  • 32. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3 y 4 y=3 x y = 4 − x2
  • 33. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3 y 4 y=3 (1,3) (-1,3) x y = 4 − x2
  • 34. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3 y 4 y=3 (-1,3) (1,3) ∆x x y = 4 − x2
  • 35. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3 y 4 y=3 (-1,3) (1,3) ∆x x y = 4 − x2 ∆x
  • 36. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3 y 4 y=3 (-1,3) (1,3) ∆x x y = 4 − x2 y − 3 = 4 − x2 − 3 = 1− x2 ∆x
  • 37. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3 y 4 y=3 (-1,3) (1,3) ∆x x y = 4 − x2 y − 3 = 4 − x2 − 3 = 1− x2 A( x ) = π (1 − x ) 22 ∆x
  • 38. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3 y 4 y=3 (-1,3) (1,3) ∆x x y = 4 − x2 y − 3 = 4 − x2 − 3 = 1− x2 A( x ) = π (1 − x ) 22 ∆V = π (1 − 2 x 2 + x 4 ) ⋅ ∆x ∆x
  • 39. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3 y π (1 − 2 x 2 + x 4 ) ⋅ ∆x 1 ∑ V = lim 4 ∆x →0 x = −1 y=3 (-1,3) (1,3) ∆x x y = 4 − x2 y − 3 = 4 − x2 − 3 = 1− x2 A( x ) = π (1 − x ) 22 ∆V = π (1 − 2 x 2 + x 4 ) ⋅ ∆x ∆x
  • 40. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3 y π (1 − 2 x 2 + x 4 ) ⋅ ∆x 1 ∑ V = lim 4 ∆x →0 x = −1 y=3 (-1,3) (1,3) 1 = 2π ∫ (1 − 2 x 2 + x 4 ) dx ∆x 0 x y = 4 − x2 y − 3 = 4 − x2 − 3 = 1− x2 A( x ) = π (1 − x ) 22 ∆V = π (1 − 2 x 2 + x 4 ) ⋅ ∆x ∆x
  • 41. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3 y π (1 − 2 x 2 + x 4 ) ⋅ ∆x 1 ∑ V = lim 4 ∆x →0 x = −1 y=3 (-1,3) (1,3) 1 = 2π ∫ (1 − 2 x 2 + x 4 ) dx ∆x 0 x 1  x − 2 x3 + 1 x5  = 2π  y = 4 − x2 5 0 3  y − 3 = 4 − x2 − 3 = 1− x2 A( x ) = π (1 − x ) 22 ∆V = π (1 − 2 x 2 + x 4 ) ⋅ ∆x ∆x
  • 42. ( ii ) Find the volume generated when the area enclosed by y = 4 − x 2 and y = 3 is rotated about the line y = 3 y π (1 − 2 x 2 + x 4 ) ⋅ ∆x 1 ∑ V = lim 4 ∆x →0 x = −1 y=3 (-1,3) (1,3) 1 = 2π ∫ (1 − 2 x 2 + x 4 ) dx ∆x 0 x 1  x − 2 x3 + 1 x5  = 2π  y = 4 − x2 5 0 3  1 − 2 + 1 − 0 y − 3 = 4 − x2 − 3 = 2π    35  = 1− x2 16π = units 3 15 A( x ) = π (1 − x ) 22 ∆V = π (1 − 2 x 2 + x 4 ) ⋅ ∆x ∆x
  • 43. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated.
  • 44. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y x = y2 x
  • 45. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y x = y2 (1,1) x
  • 46. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y x = y2 (1,1) ∆y x
  • 47. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y x = y2 (1,1) ∆y x
  • 48. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y x = y2 (1,1) ∆y x 1 x= y 2
  • 49. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y x = y2 (1,1) ∆y x 1 x= y 2 x= y 2
  • 50. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y x = y2 (1,1) ∆y x 1 x= y 2 x= y 2  1  2  A( y ) = π  y  − ( y )  22 2      
  • 51. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y x = y2 (1,1) ∆y x 1 x= y 2 x= y 2  1  2  A( y ) = π  y  − ( y )  22 2       ∆V = π ( y − y 4 ) ⋅ ∆y
  • 52. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y V = lim ∑ π ( y − y 4 ) ⋅ ∆y 1 x= y 2 ∆y → 0 y =0 (1,1) ∆y x 1 x= y 2 x= y 2  1  2  A( y ) = π  y  − ( y )  22 2       ∆V = π ( y − y 4 ) ⋅ ∆y
  • 53. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y V = lim ∑ π ( y − y 4 ) ⋅ ∆y 1 x= y 2 ∆y → 0 y =0 (1,1) 1 = π ∫ ( y − y 4 ) dy ∆y x 0 1 x= y 2 x= y 2  1  2  A( y ) = π  y  − ( y )  22 2       ∆V = π ( y − y 4 ) ⋅ ∆y
  • 54. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y V = lim ∑ π ( y − y 4 ) ⋅ ∆y 1 x= y 2 ∆y → 0 y =0 (1,1) 1 = π ∫ ( y − y 4 ) dy ∆y x 0 1 1 y 2 − 1 y5  =π 5 0 2  1 x= y 2 x= y 2  1  2  A( y ) = π  y  − ( y )  22 2       ∆V = π ( y − y 4 ) ⋅ ∆y
  • 55. ( iii ) The area between the curves y = x 2 and x = y 2 is rotated about the line y axis. Find the volume generated. y = x2 y V = lim ∑ π ( y − y 4 ) ⋅ ∆y 1 x= y 2 ∆y → 0 y =0 (1,1) 1 = π ∫ ( y − y 4 ) dy ∆y x 0 1 1 y 2 − 1 y5  =π 5 0 2  1 x= y 2 x= y 2  1 − 1 − 0 =π   25  3π = units 3  1  2  A( y ) = π  y  − ( y )  10 22 2       ∆V = π ( y − y 4 ) ⋅ ∆y
  • 56. y (iv) (1996) 1 x + y2 = 0 S 1 4 x -1 The shaded region is bounded by the lines x = 1, y = 1 and y = -1 and the curve x + y = 0. The region is rotated through 360about the line x 2 = 4 to form a solid. When the region is rotated, the line segment S at height y sweeps out an annulus.
  • 57. a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 )
  • 58. a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 ) ∆y
  • 59. a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 ) r ∆y
  • 60. a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 ) R ∆y
  • 61. 1 x + y2 = 0 S 1 4 x -1
  • 62. 1 x + y2 = 0 Sr 1 4 x -1
  • 63. 1 x + y2 = 0 S r = 4 −1 =3 1 4 x -1
  • 64. 1 x + y2 = 0 S r = 4 −1 =3 1 4 x R -1
  • 65. 1 x + y2 = 0 S r = 4 −1 =3 1 4 x R = 4− x = 4 + y2 -1
  • 66. a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 ) ∆y
  • 67. a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 ) R = 4− x = 4 + y2 ∆y
  • 68. a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 ) R = 4− x = 4 + y2 ∆y r = 4 −1 =3
  • 69. a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 ) R = 4− x = 4 + y2 ∆y { } r = 4 −1 A( y ) = π ( 4 + y ) − ( 3) 22 2 =3
  • 70. a) Show that the area of the annulus at height y is equal to π ( y 4 + 8 y 2 + 7 ) R = 4− x = 4 + y2 ∆y { } r = 4 −1 A( y ) = π ( 4 + y ) − ( 3) 22 2 =3 = π (16 + 8 y 2 + y 4 − 9 ) = π ( y 4 + 8 y 2 + 7)
  • 71. b) Hence find the volume of the solid.
  • 72. b) Hence find the volume of the solid. ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y
  • 73. b) Hence find the volume of the solid. ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y 1 ∑ V = lim ∆y →0 y = −1
  • 74. b) Hence find the volume of the solid. ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y 1 ∑ V = lim ∆y →0 y = −1 1 = 2π ∫ ( y 4 + 8 y 2 + 7 ) dy 0
  • 75. b) Hence find the volume of the solid. ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y 1 ∑ V = lim ∆y →0 y = −1 1 = 2π ∫ ( y 4 + 8 y 2 + 7 ) dy 0 1 = 2π  y 5 + y 3 + 7 y  1 8 5 0   3
  • 76. b) Hence find the volume of the solid. ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y 1 ∑ V = lim ∆y →0 y = −1 1 = 2π ∫ ( y 4 + 8 y 2 + 7 ) dy 0 1 = 2π  y 5 + y 3 + 7 y  1 8 5 0   3 1 + 8 + 7 − 0  = 2π     53 296π = units 3 15
  • 77. b) Hence find the volume of the solid. ∆V = π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y π ( y 4 + 8 y 2 + 7 ) ⋅ ∆y 1 ∑ V = lim ∆y →0 y = −1 1 = 2π ∫ ( y 4 + 8 y 2 + 7 ) dy Exercise 3A; 0 2, 5, 7, 9, 13, 14, 15 1 = 2π  y 5 + y 3 + 7 y  1 8 5 0   3 Exercise 3B; 1 + 8 + 7 − 0  1, 2, 5, 7, 9, 10, 11, 12 = 2π     53 296π = units 3 15