SlideShare a Scribd company logo
1 of 59
Download to read offline
Relationships Between
Binomial Coefficients
Relationships Between
       Binomial Coefficients
Binomial Theorem
Relationships Between
        Binomial Coefficients
                               n
Binomial Theorem 1  x n 
                              n
                                 Ck x k
                              k 0
Relationships Between
        Binomial Coefficients
                               n
Binomial Theorem 1  x n 
                              n
                                 Ck x k
                              k 0

                             nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
Relationships Between
           Binomial Coefficients
                                  n
 Binomial Theorem 1  x n 
                               n
                                  Ck x k
                                 k 0

                                nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
e.g. (i) Find the values of;
    n
 a) nCk
   k 1
Relationships Between
              Binomial Coefficients
                                      n
 Binomial Theorem 1  x n 
                               n
                                  Ck x k
                                     k 0

                                    nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
e.g. (i) Find the values of;
    n                                  n
 a) Ck   n
                         1  x    nCk x k
                               n

   k 1                               k 0
Relationships Between
              Binomial Coefficients
                                        n
 Binomial Theorem 1  x n 
                               n
                                  Ck x k
                                       k 0

                                      nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
e.g. (i) Find the values of;
    n                                    n
 a) Ck   n
                           1  x    nCk x k
                                 n

   k 1                                 k 0
                                          n
              let x = 1;   1  1n   nCk 1k
                                        k 0
Relationships Between
              Binomial Coefficients
                                        n
 Binomial Theorem 1  x n 
                               n
                                  Ck x k
                                       k 0

                                      nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
e.g. (i) Find the values of;
    n                                    n
 a) Ck   n
                           1  x    nCk x k
                                 n

   k 1                                 k 0
                                          n
              let x = 1;   1  1n   nCk 1k
                                        k 0
                                        n
                               2 n   nCk
                                       k 0
Relationships Between
              Binomial Coefficients
                                        n
 Binomial Theorem 1  x n 
                               n
                                  Ck x k
                                       k 0

                                      nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
e.g. (i) Find the values of;
    n                                    n
 a) Ck   n
                           1  x    nCk x k
                                 n

   k 1                                 k 0
                                          n
              let x = 1;   1  1n   nCk 1k
                                        k 0
                                        n
                               2 n   nCk
                                       k 0
                                                n
                                2 n  n C0   n C k
                                               k 1
Relationships Between
              Binomial Coefficients
                                       n
 Binomial Theorem 1  x n 
                               n
                                  Ck x k
                                      k 0

                                     nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
e.g. (i) Find the values of;
    n                                   n
 a) Ck
                                                              n
          n
                           1  x    Ck x
                                n             n          k
                                                                   n
                                                                        C k  2 n  n C0
   k 1                                k 0                  k 1
                                         n
              let x = 1;   1  1n   nCk 1k
                                       k 0
                                       n
                               2 n   nCk
                                      k 0
                                                   n
                               2 n  n C0   n C k
                                                  k 1
Relationships Between
              Binomial Coefficients
                                       n
 Binomial Theorem 1  x n 
                               n
                                  Ck x k
                                      k 0

                                     nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
e.g. (i) Find the values of;
    n                                   n
 a) Ck
                                                              n
          n
                           1  x    Ck x
                                n             n          k
                                                                    n
                                                                         C k  2 n  n C0
   k 1                                k 0                  k 1
                                         n                      n
              let x = 1;   1  1n   nCk 1k                      n
                                                                         Ck  2 n  1
                                       k 0                   k 1
                                       n
                               2 n   nCk
                                      k 0
                                                   n
                               2 n  n C0   n C k
                                                  k 1
b) nC1  nC3  nC5  nC7  
b) nC1  nC3  nC5  nC7  
                            n
                 1  x    nCk x k
                       n

                           k 0
b) nC1  nC3  nC5  nC7  
                               n
                 1  x    nCk x k
                       n

                              k 0

                            nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5  
b) nC1  nC3  nC5  nC7  
                                n
                  1  x    nCk x k
                        n

                               k 0

                             nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5  

 let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                  n
b) nC1  nC3  nC5  nC7  
                                n
                  1  x    nCk x k
                        n

                               k 0

                             nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5  

 let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                  n



                 2 n  nC0  nC1  nC2  nC3  nC4  nC5            1
b) nC1  nC3  nC5  nC7  
                                n
                  1  x    nCk x k
                        n

                               k 0

                             nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5  

 let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                  n



                 2 n  nC0  nC1  nC2  nC3  nC4  nC5            1
 let x = -1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                   n
b) nC1  nC3  nC5  nC7  
                                n
                  1  x    nCk x k
                        n

                               k 0

                             nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5  

 let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                  n



                 2 n  nC0  nC1  nC2  nC3  nC4  nC5            1
 let x = -1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                   n



                  0 nC0  nC1  nC2  nC3  nC4  nC5               2 
b) nC1  nC3  nC5  nC7  
                                 n
                  1  x    nCk x k
                         n

                                k 0

                              nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5  

 let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                  n



                 2 n  nC0  nC1  nC2  nC3  nC4  nC5             1
 let x = -1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                   n



                  0 nC0  nC1  nC2  nC3  nC4  nC5                2 
 subtract (2) from (1)
b) nC1  nC3  nC5  nC7  
                                   n
                  1  x    nCk x k
                           n

                                  k 0

                                nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5  

 let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                  n



                 2 n  nC0  nC1  nC2  nC3  nC4  nC5               1
 let x = -1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                   n



                  0 nC0  nC1  nC2  nC3  nC4  nC5                  2 
 subtract (2) from (1)
                       2 n  2 n C1  2 n C3  2 n C5  
b) nC1  nC3  nC5  nC7  
                                   n
                  1  x    nCk x k
                           n

                                  k 0

                                nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5  

 let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                  n



                 2 n  nC0  nC1  nC2  nC3  nC4  nC5               1
 let x = -1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5  
                   n



                  0 nC0  nC1  nC2  nC3  nC4  nC5                  2 
 subtract (2) from (1)
                       2 n  2 n C1  2 n C3  2 n C5  

                      2 n 1  nC1  nC3  nC5  
n
c)  k nCk
  k 1
n
c)  k nCk
  k 1                  n
             1  x    nCk x k
                   n

                       k 0
n
c)  k nCk
  k 1                       n
                1  x    nCk x k
                      n

                            k 0

 Differentiate both sides
n
c)  k nCk
  k 1                            n
                1  x    nCk x k
                      n

                                 k 0

 Differentiate both sides
                                        n
               n1  x            k nCk x k 1
                          n 1

                                      k 0
n
c)  k nCk
  k 1                            n
                1  x    nCk x k
                      n

                                 k 0

 Differentiate both sides
                                        n
               n1  x            k nCk x k 1
                          n 1

                                      k 0
                                       n
               n1  1            k nCk
                       n 1
let x = 1;
                                      k 0
n
c)  k nCk
  k 1                             n
                1  x    nCk x k
                       n

                                  k 0

 Differentiate both sides
                                         n
               n1  x             k nCk x k 1
                           n 1

                                       k 0
                                        n
               n1  1             k nCk
                       n 1
let x = 1;
                                       k 0
                                                  n
                  n 2           0  C0   k nCk
                          n 1               n

                                                 k 1
n
c)  k nCk
  k 1                              n
                1  x    nCk x k
                        n

                                   k 0

 Differentiate both sides
                                          n
               n1  x              k nCk x k 1
                            n 1

                                        k 0
                                         n
               n1  1              k nCk
                            n 1
let x = 1;
                                        k 0
                                                          n
                  n 2            0  C0   k nCk
                            n 1              n

                                                         k 1
                  n

                 k C               n 2 
                        n                         n 1
                              k
                 k 1
n
          1k nCk
d) 
  k 0     k 1
n
          1k nCk
d) 
           k 1                  n
                      1  x    nCk x k
  k 0                      n

                                k 0
n
          1k nCk
d) 
           k 1                  n
                      1  x    nCk x k
  k 0                      n

                                k 0
Integrate both sides
n
          1k nCk
d) 
           k 1                  n
                      1  x    nCk x k
  k 0                      n

                                k 0
Integrate both sides
             1  x n1         n
                                      x k 1
                          K   Ck n

                n 1           k 0   k 1
n
          1k nCk
d) 
           k 1                  n
                      1  x    nCk x k
  k 0                      n

                                k 0
 Integrate both sides
              1  x n1         n
                                             x k 1
                           K   nCk
                 n 1           k 0         k 1
              1  0n 1         n
                                             0 k 1
let x = 0;                 K   nCk
                 n 1           k 0         k 1
n
          1k nCk
d) 
           k 1                  n
                      1  x    nCk x k
  k 0                      n

                                k 0
 Integrate both sides
              1  x n1         n
                                             x k 1
                           K   nCk
                 n 1           k 0         k 1
              1  0n 1         n
                                             0 k 1
let x = 0;                 K   nCk
                 n 1           k 0         k 1
                                  1
                            K
                                n 1
n
          1k nCk
d) 
           k 1                  n
                      1  x    nCk x k
  k 0                      n

                                k 0
 Integrate both sides
              1  x n1  K  n nC x k 1
                 n 1
                                   k k 1
                                  k 0

              1  0n 1  K  n nC 0 k 1
let x = 0;
                 n 1
                                   k k 1
                                  k 0

                                    1
                             K
                                  n 1
                 1  1n 1  1  n nC  1k 1
                                    k k 1
let x = -1;
                      n 1         k 0
n
          1k nCk
d) 
           k 1                  n
                      1  x    nCk x k
  k 0                      n

                                k 0
 Integrate both sides
              1  x n1  K  n nC x k 1
                  n 1
                                    k k 1
                                   k 0

               1  0n 1  K  n nC 0 k 1
let x = 0;
                  n 1
                                    k k 1
                                   k 0

                                     1
                              K
                                   n 1
                  1  1n 1  1  n nC  1k 1
                                     k k 1
let x = -1;
                      n 1          k 0
               n
                        1k 1   1
              Ck k  1 n  1
             k 0
                  n
n
          1k nCk
d) 
           k 1                       n
                          1  x    nCk x k
  k 0                          n

                                    k 0
 Integrate both sides
              1  x n1  K  n nC x k 1
                  n 1
                                    k k 1
                                   k 0

               1  0n 1  K  n nC 0 k 1
let x = 0;
                  n 1
                                    k k 1
                                   k 0

                                     1
                              K
                                   n 1
                  1  1n 1  1  n nC  1k 1
                                     k k 1
let x = -1;
                      n 1          k 0
               n
                        1k 1   1
              Ck k  1 n  1
             k 0
                  n



                      n
                        1k  1
                   Ck
                   n

                  k 0         k 1        n 1
ii  By equating the coefficients of x n on both sides of the identity;
                       1  x  1  x   1  x 
                               n        n          2n
   show that;
                     n  2n !
                n     2

                 k   n!2
               k 0 
                        
ii  By equating the coefficients of x n on both sides of the identity;
                       1  x n 1  x n  1  x 2 n
    show that;
                        n  2n !
                       n   2

                    k   n!2
                           
                n k 0 
  1  x n     nCk x k
                k 0
ii  By equating the coefficients of x n on both sides of the identity;
                       1  x n 1  x n  1  x 2 n
    show that;
                        n  2n !
                        n   2

                    k   n!2
                           
                n k 0 
  1  x n     nCk x k
                 k 0

               C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n
                n
                    0
ii  By equating the coefficients of x n on both sides of the identity;
                       1  x n 1  x n  1  x 2 n
    show that;
                        n  2n !
                       n   2

                    k   n!2
                           
                n k 0 
  1  x n     nCk x k
                k 0

           C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n
               n
                   0
  coefficient of x n in 1  x  1  x 
                                n        n
ii  By equating the coefficients of x n on both sides of the identity;
                       1  x n 1  x n  1  x 2 n
    show that;
                        n  2n !
                       n   2

                    k   n!2
                           
                n k 0 
  1  x n     nCk x k
                k 0

           C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n
               n
                   0
  coefficient of x n in 1  x  1  x 
                                n        n


       nC0  nC1 x nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n 

                    nC0  nC1 x  nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n 
ii  By equating the coefficients of x n on both sides of the identity;
                       1  x n 1  x n  1  x 2 n
    show that;
                        n  2n !
                       n      2

                    k   n!2
                           
                n k 0 
  1  x n     nCk x k
                k 0

           C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n
               n
                   0
  coefficient of x n in 1  x  1  x 
                                n        n


       nC0  nC1 x nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n 

                     nC0  nC1 x  nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n 
     n  n  n
      x
     0  n 
                                n  n2  n  2  n  n1  n   n  n  n 
                                  x  x         x  x   x  
                                n  2  2      n  1  1   n   0 
ii  By equating the coefficients of x n on both sides of the identity;
                       1  x n 1  x n  1  x 2 n
    show that;
                        n  2n !
                       n   2

                    k   n!2
                           
                n k 0 
  1  x n     nCk x k
                k 0

           C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n
               n
                   0
  coefficient of x n in 1  x  1  x 
                                n        n


       nC0  nC1 x nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n 

                  nC0  nC1 x  nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n 
     n  n  n  n   n  n1
      x    x          x
     0  n  1   n  1
ii  By equating the coefficients of x n on both sides of the identity;
                       1  x n 1  x n  1  x 2 n
    show that;
                        n  2n !
                       n   2

                    k   n!2
                           
                n k 0 
  1  x n     nCk x k
                k 0

           C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n
               n
                   0
  coefficient of x n in 1  x  1  x 
                                n        n


       nC0  nC1 x nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n 

                  nC0  nC1 x  nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n 
     n  n  n  n   n  n1  n  2  n  n2
      x    x          x   x             x
     0  n  1   n  1              2  n  2
ii  By equating the coefficients of x n on both sides of the identity;
                       1  x n 1  x n  1  x 2 n
    show that;
                        n  2n !
                       n   2

                    k   n!2
                           
                n k 0 
  1  x n     nCk x k
                k 0

           C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n
               n
                   0
  coefficient of x n in 1  x  1  x 
                                n        n


       nC0  nC1 x nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n 

                  nC0  nC1 x  nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n 
     n  n  n  n   n  n1  n  2  n  n2
      x    x          x   x             x
     0  n  1   n  1              2  n  2
                             n  n2  n  2  n  n1  n   n  n  n 
                                x  x              x  x   x  
                             n  2       2      n  1      1   n   0 
 n  n   n  n   n  n               n  n 
coefficient of x       
                 n
                                                         
                    0  n  1  n  1  2  n  2         n  0 
 n  n   n  n   n  n               n  n 
 coefficient of x       
                  n
                                                          
                     0  n  1  n  1  2  n  2         n  0 
    n  n 
But          
    k  n  k 
 n  n   n  n   n  n               n  n 
 coefficient of x       
                   n
                                                           
                      0  n  1  n  1  2  n  2         n  0 
    n  n 
But          
    k  n  k          2       2       2             2
                      n n n                   n
                              
                      0  1   2               n
 n  n   n  n   n  n               n  n 
 coefficient of x       
                   n
                                                           
                      0  n  1  n  1  2  n  2         n  0 
    n  n 
But          
    k  n  k          2       2       2             2
                      n n n                   n
                              
                      0  1   2               n
                                      2
                           n
                              n
                         
                         k 0  k 
 n  n   n  n   n  n               n  n 
 coefficient of x       
                   n
                                                           
                      0  n  1  n  1  2  n  2         n  0 
    n  n 
But          
    k  n  k          2       2       2             2
                      n n n                   n
                              
                      0  1   2               n
                                      2
                           n
                              n
                         
                         k 0  k 


coefficient of x n in 1  x 
                                2n
 n  n   n  n   n  n               n  n 
 coefficient of x       
                   n
                                                           
                      0  n  1  n  1  2  n  2         n  0 
    n  n 
But          
    k  n  k          2       2       2             2
                      n n n                   n
                              
                      0  1   2               n
                                      2
                           n
                              n
                         
                         k 0  k 


coefficient of x n in 1  x 
                                2n



               2n   2n   2n  2   2n  n    2n  2 n
1  x 
       2n
                 x   x     x     x
              0   1   2         n         2n 
 n  n   n  n   n  n               n  n 
 coefficient of x       
                   n
                                                           
                      0  n  1  n  1  2  n  2         n  0 
    n  n 
But          
    k  n  k          2       2       2             2
                      n n n                   n
                              
                      0  1   2               n
                                      2
                           n
                              n
                         
                         k 0  k 


coefficient of x n in 1  x 
                                2n



               2n   2n   2n  2   2n  n    2n  2 n
1  x 
       2n
                 x   x     x     x
              0   1   2         n         2n 
 n  n   n  n   n  n               n  n 
 coefficient of x       
                   n
                                                           
                      0  n  1  n  1  2  n  2         n  0 
    n  n 
But          
    k  n  k          2       2       2             2
                      n n n                   n
                              
                      0  1   2               n
                                       2
                            n
                               n
                          
                          k 0  k 


coefficient of x n in 1  x 
                                 2n



               2n   2n   2n  2   2n  n    2n  2 n
1  x 
       2n
                 x   x     x     x
              0   1   2         n         2n 

                      2n 
  coefficient of x   
                    n

                     n
Now
      1  x n 1  x n  1  x 2 n
Now
      1  x n 1  x n  1  x 2 n
                       2
               n
                  n   2n 
                
            k 0  k  n
Now
      1  x n 1  x n  1  x 2 n
                       2
               n
                  n   2n 
                
            k 0  k  n
                               2n !
                           
                               n!n!
Now
      1  x n 1  x n  1  x 2 n
                       2
               n
                  n   2n 
                
            k 0  k  n
                               2n !
                           
                               n!n!
                             2n !
                           
                             n!2
Now
      1  x n 1  x n  1  x 2 n
                       2
               n
                  n   2n 
                
            k 0  k  n

                           
                               2n !      Exercise 5F;
                               n!n!       4, 5, 6, 8, 10,15
                             2n !
                           
                             n!2        + worksheets

More Related Content

Similar to Relationships Between Binomial Coefficients and Odd Terms

Correlation of dts by er. sanyam s. saini me (reg) 2012-14
Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14
Correlation of dts by er. sanyam s. saini me (reg) 2012-14Sanyam Singh
 
fauvel_igarss.pdf
fauvel_igarss.pdffauvel_igarss.pdf
fauvel_igarss.pdfgrssieee
 
Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Septiko Aji
 
Proof of Kraft-McMillan theorem
Proof of Kraft-McMillan theoremProof of Kraft-McMillan theorem
Proof of Kraft-McMillan theoremVu Hung Nguyen
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
Schrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsSchrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsRakeshPatil2528
 
icml2004 tutorial on spectral clustering part II
icml2004 tutorial on spectral clustering part IIicml2004 tutorial on spectral clustering part II
icml2004 tutorial on spectral clustering part IIzukun
 
Lesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and DecayLesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and DecayMatthew Leingang
 
Xi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeXi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeNamit Kotiya
 
Nonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo methodNonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo methodSSA KPI
 
12 x1 t08 05 binomial coefficients (2013)
12 x1 t08 05 binomial coefficients (2013)12 x1 t08 05 binomial coefficients (2013)
12 x1 t08 05 binomial coefficients (2013)Nigel Simmons
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16derry92
 
Quantum Computation and Algorithms
Quantum Computation and Algorithms Quantum Computation and Algorithms
Quantum Computation and Algorithms Reza Rahimi
 
Summation Series
Summation SeriesSummation Series
Summation SeriesMenglinLiu1
 

Similar to Relationships Between Binomial Coefficients and Odd Terms (18)

Correlation of dts by er. sanyam s. saini me (reg) 2012-14
Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14Correlation of dts by  er. sanyam s. saini  me  (reg) 2012-14
Correlation of dts by er. sanyam s. saini me (reg) 2012-14
 
fauvel_igarss.pdf
fauvel_igarss.pdffauvel_igarss.pdf
fauvel_igarss.pdf
 
Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)
 
Proof of Kraft-McMillan theorem
Proof of Kraft-McMillan theoremProof of Kraft-McMillan theorem
Proof of Kraft-McMillan theorem
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Schrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsSchrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanics
 
icml2004 tutorial on spectral clustering part II
icml2004 tutorial on spectral clustering part IIicml2004 tutorial on spectral clustering part II
icml2004 tutorial on spectral clustering part II
 
Lesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and DecayLesson 16: Exponential Growth and Decay
Lesson 16: Exponential Growth and Decay
 
Cepstral coefficients
Cepstral coefficientsCepstral coefficients
Cepstral coefficients
 
Fisicaimpulsivaingles
FisicaimpulsivainglesFisicaimpulsivaingles
Fisicaimpulsivaingles
 
Xi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeXi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulae
 
Nonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo methodNonlinear Stochastic Programming by the Monte-Carlo method
Nonlinear Stochastic Programming by the Monte-Carlo method
 
12 x1 t08 05 binomial coefficients (2013)
12 x1 t08 05 binomial coefficients (2013)12 x1 t08 05 binomial coefficients (2013)
12 x1 t08 05 binomial coefficients (2013)
 
0004
00040004
0004
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16
 
Quantum Computation and Algorithms
Quantum Computation and Algorithms Quantum Computation and Algorithms
Quantum Computation and Algorithms
 
Summation Series
Summation SeriesSummation Series
Summation Series
 
09 trial melaka_s2
09 trial melaka_s209 trial melaka_s2
09 trial melaka_s2
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 

Recently uploaded (20)

The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 

Relationships Between Binomial Coefficients and Odd Terms

  • 2. Relationships Between Binomial Coefficients Binomial Theorem
  • 3. Relationships Between Binomial Coefficients n Binomial Theorem 1  x n   n Ck x k k 0
  • 4. Relationships Between Binomial Coefficients n Binomial Theorem 1  x n   n Ck x k k 0  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n
  • 5. Relationships Between Binomial Coefficients n Binomial Theorem 1  x n   n Ck x k k 0  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n e.g. (i) Find the values of; n a) nCk k 1
  • 6. Relationships Between Binomial Coefficients n Binomial Theorem 1  x n   n Ck x k k 0  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n e.g. (i) Find the values of; n n a) Ck n 1  x    nCk x k n k 1 k 0
  • 7. Relationships Between Binomial Coefficients n Binomial Theorem 1  x n   n Ck x k k 0  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n e.g. (i) Find the values of; n n a) Ck n 1  x    nCk x k n k 1 k 0 n let x = 1; 1  1n   nCk 1k k 0
  • 8. Relationships Between Binomial Coefficients n Binomial Theorem 1  x n   n Ck x k k 0  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n e.g. (i) Find the values of; n n a) Ck n 1  x    nCk x k n k 1 k 0 n let x = 1; 1  1n   nCk 1k k 0 n 2 n   nCk k 0
  • 9. Relationships Between Binomial Coefficients n Binomial Theorem 1  x n   n Ck x k k 0  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n e.g. (i) Find the values of; n n a) Ck n 1  x    nCk x k n k 1 k 0 n let x = 1; 1  1n   nCk 1k k 0 n 2 n   nCk k 0 n 2 n  n C0   n C k k 1
  • 10. Relationships Between Binomial Coefficients n Binomial Theorem 1  x n   n Ck x k k 0  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n e.g. (i) Find the values of; n n a) Ck n n 1  x    Ck x n n k  n C k  2 n  n C0 k 1 k 0 k 1 n let x = 1; 1  1n   nCk 1k k 0 n 2 n   nCk k 0 n 2 n  n C0   n C k k 1
  • 11. Relationships Between Binomial Coefficients n Binomial Theorem 1  x n   n Ck x k k 0  nC0  nC1 x  nC2 x 2   nCk x k   nCn x n e.g. (i) Find the values of; n n a) Ck n n 1  x    Ck x n n k  n C k  2 n  n C0 k 1 k 0 k 1 n n let x = 1; 1  1n   nCk 1k  n Ck  2 n  1 k 0 k 1 n 2 n   nCk k 0 n 2 n  n C0   n C k k 1
  • 12. b) nC1  nC3  nC5  nC7  
  • 13. b) nC1  nC3  nC5  nC7   n 1  x    nCk x k n k 0
  • 14. b) nC1  nC3  nC5  nC7   n 1  x    nCk x k n k 0  nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5  
  • 15. b) nC1  nC3  nC5  nC7   n 1  x    nCk x k n k 0  nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5   let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n
  • 16. b) nC1  nC3  nC5  nC7   n 1  x    nCk x k n k 0  nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5   let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n 2 n  nC0  nC1  nC2  nC3  nC4  nC5   1
  • 17. b) nC1  nC3  nC5  nC7   n 1  x    nCk x k n k 0  nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5   let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n 2 n  nC0  nC1  nC2  nC3  nC4  nC5   1 let x = -1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n
  • 18. b) nC1  nC3  nC5  nC7   n 1  x    nCk x k n k 0  nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5   let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n 2 n  nC0  nC1  nC2  nC3  nC4  nC5   1 let x = -1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n 0 nC0  nC1  nC2  nC3  nC4  nC5   2 
  • 19. b) nC1  nC3  nC5  nC7   n 1  x    nCk x k n k 0  nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5   let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n 2 n  nC0  nC1  nC2  nC3  nC4  nC5   1 let x = -1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n 0 nC0  nC1  nC2  nC3  nC4  nC5   2  subtract (2) from (1)
  • 20. b) nC1  nC3  nC5  nC7   n 1  x    nCk x k n k 0  nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5   let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n 2 n  nC0  nC1  nC2  nC3  nC4  nC5   1 let x = -1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n 0 nC0  nC1  nC2  nC3  nC4  nC5   2  subtract (2) from (1) 2 n  2 n C1  2 n C3  2 n C5  
  • 21. b) nC1  nC3  nC5  nC7   n 1  x    nCk x k n k 0  nC0  nC1 x  nC2 x 2  nC3 x 3  nC4 x 4  nC5 x 5   let x = 1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n 2 n  nC0  nC1  nC2  nC3  nC4  nC5   1 let x = -1; 1  1  nC0  nC1  nC2  nC3  nC4  nC5   n 0 nC0  nC1  nC2  nC3  nC4  nC5   2  subtract (2) from (1) 2 n  2 n C1  2 n C3  2 n C5   2 n 1  nC1  nC3  nC5  
  • 22. n c)  k nCk k 1
  • 23. n c)  k nCk k 1 n 1  x    nCk x k n k 0
  • 24. n c)  k nCk k 1 n 1  x    nCk x k n k 0 Differentiate both sides
  • 25. n c)  k nCk k 1 n 1  x    nCk x k n k 0 Differentiate both sides n n1  x    k nCk x k 1 n 1 k 0
  • 26. n c)  k nCk k 1 n 1  x    nCk x k n k 0 Differentiate both sides n n1  x    k nCk x k 1 n 1 k 0 n n1  1   k nCk n 1 let x = 1; k 0
  • 27. n c)  k nCk k 1 n 1  x    nCk x k n k 0 Differentiate both sides n n1  x    k nCk x k 1 n 1 k 0 n n1  1   k nCk n 1 let x = 1; k 0 n n 2  0  C0   k nCk n 1 n k 1
  • 28. n c)  k nCk k 1 n 1  x    nCk x k n k 0 Differentiate both sides n n1  x    k nCk x k 1 n 1 k 0 n n1  1   k nCk n 1 let x = 1; k 0 n n 2  0  C0   k nCk n 1 n k 1 n k C  n 2  n n 1 k k 1
  • 29. n  1k nCk d)  k 0 k 1
  • 30. n  1k nCk d)  k 1 n 1  x    nCk x k k 0 n k 0
  • 31. n  1k nCk d)  k 1 n 1  x    nCk x k k 0 n k 0 Integrate both sides
  • 32. n  1k nCk d)  k 1 n 1  x    nCk x k k 0 n k 0 Integrate both sides 1  x n1 n x k 1  K   Ck n n 1 k 0 k 1
  • 33. n  1k nCk d)  k 1 n 1  x    nCk x k k 0 n k 0 Integrate both sides 1  x n1 n x k 1  K   nCk n 1 k 0 k 1 1  0n 1 n 0 k 1 let x = 0;  K   nCk n 1 k 0 k 1
  • 34. n  1k nCk d)  k 1 n 1  x    nCk x k k 0 n k 0 Integrate both sides 1  x n1 n x k 1  K   nCk n 1 k 0 k 1 1  0n 1 n 0 k 1 let x = 0;  K   nCk n 1 k 0 k 1 1 K n 1
  • 35. n  1k nCk d)  k 1 n 1  x    nCk x k k 0 n k 0 Integrate both sides 1  x n1  K  n nC x k 1 n 1  k k 1 k 0 1  0n 1  K  n nC 0 k 1 let x = 0; n 1  k k 1 k 0 1 K n 1 1  1n 1  1  n nC  1k 1  k k 1 let x = -1; n 1 k 0
  • 36. n  1k nCk d)  k 1 n 1  x    nCk x k k 0 n k 0 Integrate both sides 1  x n1  K  n nC x k 1 n 1  k k 1 k 0 1  0n 1  K  n nC 0 k 1 let x = 0; n 1  k k 1 k 0 1 K n 1 1  1n 1  1  n nC  1k 1  k k 1 let x = -1; n 1 k 0 n  1k 1   1  Ck k  1 n  1 k 0 n
  • 37. n  1k nCk d)  k 1 n 1  x    nCk x k k 0 n k 0 Integrate both sides 1  x n1  K  n nC x k 1 n 1  k k 1 k 0 1  0n 1  K  n nC 0 k 1 let x = 0; n 1  k k 1 k 0 1 K n 1 1  1n 1  1  n nC  1k 1  k k 1 let x = -1; n 1 k 0 n  1k 1   1  Ck k  1 n  1 k 0 n n  1k  1  Ck n k 0 k 1 n 1
  • 38. ii  By equating the coefficients of x n on both sides of the identity; 1  x  1  x   1  x  n n 2n show that;  n  2n ! n 2   k   n!2 k 0  
  • 39. ii  By equating the coefficients of x n on both sides of the identity; 1  x n 1  x n  1  x 2 n show that;  n  2n ! n 2   k   n!2  n k 0  1  x n   nCk x k k 0
  • 40. ii  By equating the coefficients of x n on both sides of the identity; 1  x n 1  x n  1  x 2 n show that;  n  2n ! n 2   k   n!2  n k 0  1  x n   nCk x k k 0  C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n n 0
  • 41. ii  By equating the coefficients of x n on both sides of the identity; 1  x n 1  x n  1  x 2 n show that;  n  2n ! n 2   k   n!2  n k 0  1  x n   nCk x k k 0  C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n n 0 coefficient of x n in 1  x  1  x  n n
  • 42. ii  By equating the coefficients of x n on both sides of the identity; 1  x n 1  x n  1  x 2 n show that;  n  2n ! n 2   k   n!2  n k 0  1  x n   nCk x k k 0  C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n n 0 coefficient of x n in 1  x  1  x  n n  nC0  nC1 x nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n    nC0  nC1 x  nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n 
  • 43. ii  By equating the coefficients of x n on both sides of the identity; 1  x n 1  x n  1  x 2 n show that;  n  2n ! n 2   k   n!2  n k 0  1  x n   nCk x k k 0  C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n n 0 coefficient of x n in 1  x  1  x  n n  nC0  nC1 x nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n    nC0  nC1 x  nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n   n  n  n     x  0  n   n  n2  n  2  n  n1  n   n  n  n    x  x   x  x   x    n  2 2  n  1 1   n   0 
  • 44. ii  By equating the coefficients of x n on both sides of the identity; 1  x n 1  x n  1  x 2 n show that;  n  2n ! n 2   k   n!2  n k 0  1  x n   nCk x k k 0  C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n n 0 coefficient of x n in 1  x  1  x  n n  nC0  nC1 x nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n    nC0  nC1 x  nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n   n  n  n  n   n  n1     x    x x  0  n  1   n  1
  • 45. ii  By equating the coefficients of x n on both sides of the identity; 1  x n 1  x n  1  x 2 n show that;  n  2n ! n 2   k   n!2  n k 0  1  x n   nCk x k k 0  C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n n 0 coefficient of x n in 1  x  1  x  n n  nC0  nC1 x nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n    nC0  nC1 x  nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n   n  n  n  n   n  n1  n  2  n  n2     x    x x   x  x  0  n  1   n  1  2  n  2
  • 46. ii  By equating the coefficients of x n on both sides of the identity; 1  x n 1  x n  1  x 2 n show that;  n  2n ! n 2   k   n!2  n k 0  1  x n   nCk x k k 0  C  nC1 x  nC2 x 2   nCn  2 x n  2  nCn 1 x n 1  nCn x n n 0 coefficient of x n in 1  x  1  x  n n  nC0  nC1 x nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n    nC0  nC1 x  nC2 x 2   nCn2 x n2  nCn1 x n1  nCn x n   n  n  n  n   n  n1  n  2  n  n2     x    x x   x  x  0  n  1   n  1  2  n  2  n  n2  n  2  n  n1  n   n  n  n    x  x   x  x   x    n  2 2  n  1 1   n   0 
  • 47.  n  n   n  n   n  n   n  n  coefficient of x        n             0  n  1  n  1  2  n  2   n  0 
  • 48.  n  n   n  n   n  n   n  n  coefficient of x        n             0  n  1  n  1  2  n  2   n  0  n  n  But      k  n  k 
  • 49.  n  n   n  n   n  n   n  n  coefficient of x        n             0  n  1  n  1  2  n  2   n  0  n  n  But      k  n  k  2 2 2 2  n n n  n              0  1   2  n
  • 50.  n  n   n  n   n  n   n  n  coefficient of x        n             0  n  1  n  1  2  n  2   n  0  n  n  But      k  n  k  2 2 2 2  n n n  n              0  1   2  n 2 n n    k 0  k 
  • 51.  n  n   n  n   n  n   n  n  coefficient of x        n             0  n  1  n  1  2  n  2   n  0  n  n  But      k  n  k  2 2 2 2  n n n  n              0  1   2  n 2 n n    k 0  k  coefficient of x n in 1  x  2n
  • 52.  n  n   n  n   n  n   n  n  coefficient of x        n             0  n  1  n  1  2  n  2   n  0  n  n  But      k  n  k  2 2 2 2  n n n  n              0  1   2  n 2 n n    k 0  k  coefficient of x n in 1  x  2n  2n   2n   2n  2  2n  n  2n  2 n 1  x  2n      x   x     x     x 0   1   2  n  2n 
  • 53.  n  n   n  n   n  n   n  n  coefficient of x        n             0  n  1  n  1  2  n  2   n  0  n  n  But      k  n  k  2 2 2 2  n n n  n              0  1   2  n 2 n n    k 0  k  coefficient of x n in 1  x  2n  2n   2n   2n  2  2n  n  2n  2 n 1  x  2n      x   x     x     x 0   1   2  n  2n 
  • 54.  n  n   n  n   n  n   n  n  coefficient of x        n             0  n  1  n  1  2  n  2   n  0  n  n  But      k  n  k  2 2 2 2  n n n  n              0  1   2  n 2 n n    k 0  k  coefficient of x n in 1  x  2n  2n   2n   2n  2  2n  n  2n  2 n 1  x  2n      x   x     x     x 0   1   2  n  2n   2n  coefficient of x    n n
  • 55. Now 1  x n 1  x n  1  x 2 n
  • 56. Now 1  x n 1  x n  1  x 2 n 2 n  n   2n        k 0  k  n
  • 57. Now 1  x n 1  x n  1  x 2 n 2 n  n   2n        k 0  k  n 2n !  n!n!
  • 58. Now 1  x n 1  x n  1  x 2 n 2 n  n   2n        k 0  k  n 2n !  n!n! 2n !  n!2
  • 59. Now 1  x n 1  x n  1  x 2 n 2 n  n   2n        k 0  k  n  2n ! Exercise 5F; n!n! 4, 5, 6, 8, 10,15 2n !  n!2 + worksheets