SlideShare a Scribd company logo
1 of 37
Download to read offline
Mathematical Induction
Mathematical Induction
      
e.g . iii Prove n n  1 n  2 is divisible by 3
Mathematical Induction
      
e.g . iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
Mathematical Induction
      
e.g . iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
          123
         6
Mathematical Induction
      
e.g . iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
          123
         6       which is divisible by 3
Mathematical Induction
      
e.g . iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
          123
         6      which is divisible by 3
                 Hence the result is true for n = 1
Mathematical Induction
      
e.g . iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
          123
         6      which is divisible by 3
                 Hence the result is true for n = 1
 Step 2: Assume the result is true for n = k, where k is a positive
         integer
Mathematical Induction
      
e.g . iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
          123
         6      which is divisible by 3
                 Hence the result is true for n = 1
 Step 2: Assume the result is true for n = k, where k is a positive
         integer
         i.e. k k  1k  2   3P, where P is an integer
Mathematical Induction
      
e.g . iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
          123
         6      which is divisible by 3
                 Hence the result is true for n = 1
 Step 2: Assume the result is true for n = k, where k is a positive
         integer
         i.e. k k  1k  2   3P, where P is an integer

 Step 3: Prove the result is true for n = k + 1
Mathematical Induction
      
e.g . iii Prove n n  1 n  2 is divisible by 3
 Step 1: Prove the result is true for n = 1
          123
         6      which is divisible by 3
                 Hence the result is true for n = 1
 Step 2: Assume the result is true for n = k, where k is a positive
         integer
         i.e. k k  1k  2   3P, where P is an integer

 Step 3: Prove the result is true for n = k + 1
        i.e. Prove : k  1k  2 k  3  3Q, where Q is an integer
Proof:
Proof:
         k  1k  2k  3
Proof:
           k  1k  2k  3
          k k  1k  2   3k  1k  2 
Proof:
           k  1k  2k  3
          k k  1k  2   3k  1k  2 
          3P  3k  1k  2 
Proof:
           k  1k  2k  3
          k k  1k  2   3k  1k  2 
          3P  3k  1k  2 
          3P  k  1k  2 
Proof:
           k  1k  2k  3
          k k  1k  2   3k  1k  2 
          3P  3k  1k  2 
          3P  k  1k  2 
          3Q, where Q  P  k  1k  2  which is an integer
Proof:
           k  1k  2k  3
          k k  1k  2   3k  1k  2 
          3P  3k  1k  2 
          3P  k  1k  2 
          3Q, where Q  P  k  1k  2  which is an integer
  Hence the result is true for n = k + 1 if it is also true for n = k
Proof:
           k  1k  2k  3
          k k  1k  2   3k  1k  2 
          3P  3k  1k  2 
          3P  k  1k  2 
          3Q, where Q  P  k  1k  2  which is an integer
  Hence the result is true for n = k + 1 if it is also true for n = k


Step 4: Since the result is true for n = 1, then the result is true for
        all positive integral values of n by induction.
iv  Prove 33n  2 n2 is divisible by 5
iv  Prove 33n  2 n2 is divisible by 5
Step 1: Prove the result is true for n = 1
iv  Prove 33n  2 n2 is divisible by 5
Step 1: Prove the result is true for n = 1
        33  23
        27  8
        35
iv  Prove 33n  2 n2 is divisible by 5
Step 1: Prove the result is true for n = 1
        33  23
        27  8
        35     which is divisible by 5
iv  Prove 33n  2 n2 is divisible by 5
Step 1: Prove the result is true for n = 1
        33  23
        27  8
        35     which is divisible by 5
                Hence the result is true for n = 1
iv  Prove 33n  2 n2 is divisible by 5
Step 1: Prove the result is true for n = 1
        33  23
        27  8
        35     which is divisible by 5
                Hence the result is true for n = 1
Step 2: Assume the result is true for n = k, where k is a positive
        integer
        i.e. 33k  2 k 2  5 P, where P is an integer
iv  Prove 33n  2 n2 is divisible by 5
Step 1: Prove the result is true for n = 1
        33  23
        27  8
        35     which is divisible by 5
                Hence the result is true for n = 1
Step 2: Assume the result is true for n = k, where k is a positive
        integer
        i.e. 33k  2 k 2  5 P, where P is an integer
Step 3: Prove the result is true for n = k + 1
        i.e. Prove : 33k 3  2 k 3  5Q, where Q is an integer
Proof:
Proof: 33k 3  2 k 3
Proof: 33k 3  2 k 3
       27  33k  2 k 3
Proof: 33k 3  2 k 3
       27  33k  2 k 3
       275 P  2 k 2   2 k 3
Proof: 33k 3  2 k 3
       27  33k  2 k 3
       275 P  2 k 2   2 k 3
       135 P  27  2 k 2  2 k 3
Proof: 33k 3  2 k 3
       27  33k  2 k 3
       275 P  2 k 2   2 k 3
       135 P  27  2 k 2  2 k 3
       135 P  27  2 k 2  2  2 k 2
Proof: 33k 3  2 k 3
       27  33k  2 k 3
       275 P  2 k 2   2 k 3
       135 P  27  2 k 2  2 k 3
       135 P  27  2 k 2  2  2 k 2
       135 P  25  2 k 2
Proof: 33k 3  2 k 3
       27  33k  2 k 3
       275 P  2 k 2   2 k 3
       135 P  27  2 k 2  2 k 3
       135 P  27  2 k 2  2  2 k 2
       135 P  25  2 k 2
       527 P  5  2 k 2 
Proof: 33k 3  2 k 3
       27  33k  2 k 3
       275 P  2 k 2   2 k 3
       135 P  27  2 k 2  2 k 3
       135 P  27  2 k 2  2  2 k 2
       135 P  25  2 k 2
       527 P  5  2 k 2 
        5Q, where Q  27 P  5  2 k 2 which is an integer
Proof: 33k 3  2 k 3
       27  33k  2 k 3
       275 P  2 k 2   2 k 3
       135 P  27  2 k 2  2 k 3
       135 P  27  2 k 2  2  2 k 2
       135 P  25  2 k 2
       527 P  5  2 k 2 
        5Q, where Q  27 P  5  2 k 2 which is an integer
  Hence the result is true for n = k + 1 if it is also true for n = k
Proof: 33k 3  2 k 3
       27  33k  2 k 3
       275 P  2 k 2   2 k 3
       135 P  27  2 k 2  2 k 3
       135 P  27  2 k 2  2  2 k 2
       135 P  25  2 k 2
       527 P  5  2 k 2 
        5Q, where Q  27 P  5  2 k 2 which is an integer
  Hence the result is true for n = k + 1 if it is also true for n = k

Step 4: Since the result is true for n = 1, then the result is true for
        all positive integral values of n by induction.
Proof: 33k 3  2 k 3
       27  33k  2 k 3
       275 P  2 k 2   2 k 3
       135 P  27  2 k 2  2 k 3             Exercise 6N;
                                                3bdf, 4 ab(i), 9
       135 P  27  2 k 2  2  2 k 2
       135 P  25  2 k 2
       527 P  5  2 k 2 
        5Q, where Q  27 P  5  2 k 2 which is an integer
  Hence the result is true for n = k + 1 if it is also true for n = k

Step 4: Since the result is true for n = 1, then the result is true for
        all positive integral values of n by induction.

More Related Content

Viewers also liked

12 X1 T04 05 Further Growth and Decay (2010)
12 X1 T04 05 Further Growth and Decay (2010)12 X1 T04 05 Further Growth and Decay (2010)
12 X1 T04 05 Further Growth and Decay (2010)Nigel Simmons
 
X2 T07 07 miscellaneous dynamics questions
X2 T07 07 miscellaneous dynamics questionsX2 T07 07 miscellaneous dynamics questions
X2 T07 07 miscellaneous dynamics questionsNigel Simmons
 
12 X1 T07 02 Simple Harmonic Motion
12 X1 T07 02 Simple Harmonic Motion12 X1 T07 02 Simple Harmonic Motion
12 X1 T07 02 Simple Harmonic MotionNigel Simmons
 
11 X1 T01 03 factorising (2010)
11 X1 T01 03 factorising (2010)11 X1 T01 03 factorising (2010)
11 X1 T01 03 factorising (2010)Nigel Simmons
 
11 X1 T05 01 Division Of An Interval
11 X1 T05 01 Division Of An Interval11 X1 T05 01 Division Of An Interval
11 X1 T05 01 Division Of An IntervalNigel Simmons
 
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)Nigel Simmons
 
12 x1 t04 03 further growth & decay (2013)
12 x1 t04 03 further growth & decay (2013)12 x1 t04 03 further growth & decay (2013)
12 x1 t04 03 further growth & decay (2013)Nigel Simmons
 
X2 t07 07 other graphs (2012)
X2 t07 07 other graphs (2012)X2 t07 07 other graphs (2012)
X2 t07 07 other graphs (2012)Nigel Simmons
 
11X1 T11 08 geometrical theorems (2010)
11X1 T11 08 geometrical theorems (2010)11X1 T11 08 geometrical theorems (2010)
11X1 T11 08 geometrical theorems (2010)Nigel Simmons
 
12X1 T05 06 general solutions (2010)
12X1 T05 06 general solutions (2010)12X1 T05 06 general solutions (2010)
12X1 T05 06 general solutions (2010)Nigel Simmons
 
11X1 T06 03 combinations (2010)
11X1 T06 03 combinations (2010)11X1 T06 03 combinations (2010)
11X1 T06 03 combinations (2010)Nigel Simmons
 
12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)Nigel Simmons
 
11 x1 t10 04 maximum & minimum problems (2012)
11 x1 t10 04 maximum & minimum problems (2012)11 x1 t10 04 maximum & minimum problems (2012)
11 x1 t10 04 maximum & minimum problems (2012)Nigel Simmons
 
11 x1 t16 02 definite integral (2012)
11 x1 t16 02 definite integral (2012)11 x1 t16 02 definite integral (2012)
11 x1 t16 02 definite integral (2012)Nigel Simmons
 
X2 t04 07 quadratic denominators (2013)
X2 t04 07 quadratic denominators (2013)X2 t04 07 quadratic denominators (2013)
X2 t04 07 quadratic denominators (2013)Nigel Simmons
 
X2 t04 02 trig integrals (2013)
X2 t04 02 trig integrals (2013)X2 t04 02 trig integrals (2013)
X2 t04 02 trig integrals (2013)Nigel Simmons
 
X2 T07 02 resisted motion (2010)
X2 T07 02 resisted motion (2010)X2 T07 02 resisted motion (2010)
X2 T07 02 resisted motion (2010)Nigel Simmons
 
11 x1 t01 06 equations & inequations (2013)
11 x1 t01 06 equations & inequations (2013)11 x1 t01 06 equations & inequations (2013)
11 x1 t01 06 equations & inequations (2013)Nigel Simmons
 
11 x1 t01 04 algebraic fractions (2012)
11 x1 t01 04 algebraic fractions (2012)11 x1 t01 04 algebraic fractions (2012)
11 x1 t01 04 algebraic fractions (2012)Nigel Simmons
 
11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)Nigel Simmons
 

Viewers also liked (20)

12 X1 T04 05 Further Growth and Decay (2010)
12 X1 T04 05 Further Growth and Decay (2010)12 X1 T04 05 Further Growth and Decay (2010)
12 X1 T04 05 Further Growth and Decay (2010)
 
X2 T07 07 miscellaneous dynamics questions
X2 T07 07 miscellaneous dynamics questionsX2 T07 07 miscellaneous dynamics questions
X2 T07 07 miscellaneous dynamics questions
 
12 X1 T07 02 Simple Harmonic Motion
12 X1 T07 02 Simple Harmonic Motion12 X1 T07 02 Simple Harmonic Motion
12 X1 T07 02 Simple Harmonic Motion
 
11 X1 T01 03 factorising (2010)
11 X1 T01 03 factorising (2010)11 X1 T01 03 factorising (2010)
11 X1 T01 03 factorising (2010)
 
11 X1 T05 01 Division Of An Interval
11 X1 T05 01 Division Of An Interval11 X1 T05 01 Division Of An Interval
11 X1 T05 01 Division Of An Interval
 
11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)11X1 T05 04 point slope formula (2010)
11X1 T05 04 point slope formula (2010)
 
12 x1 t04 03 further growth & decay (2013)
12 x1 t04 03 further growth & decay (2013)12 x1 t04 03 further growth & decay (2013)
12 x1 t04 03 further growth & decay (2013)
 
X2 t07 07 other graphs (2012)
X2 t07 07 other graphs (2012)X2 t07 07 other graphs (2012)
X2 t07 07 other graphs (2012)
 
11X1 T11 08 geometrical theorems (2010)
11X1 T11 08 geometrical theorems (2010)11X1 T11 08 geometrical theorems (2010)
11X1 T11 08 geometrical theorems (2010)
 
12X1 T05 06 general solutions (2010)
12X1 T05 06 general solutions (2010)12X1 T05 06 general solutions (2010)
12X1 T05 06 general solutions (2010)
 
11X1 T06 03 combinations (2010)
11X1 T06 03 combinations (2010)11X1 T06 03 combinations (2010)
11X1 T06 03 combinations (2010)
 
12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)
 
11 x1 t10 04 maximum & minimum problems (2012)
11 x1 t10 04 maximum & minimum problems (2012)11 x1 t10 04 maximum & minimum problems (2012)
11 x1 t10 04 maximum & minimum problems (2012)
 
11 x1 t16 02 definite integral (2012)
11 x1 t16 02 definite integral (2012)11 x1 t16 02 definite integral (2012)
11 x1 t16 02 definite integral (2012)
 
X2 t04 07 quadratic denominators (2013)
X2 t04 07 quadratic denominators (2013)X2 t04 07 quadratic denominators (2013)
X2 t04 07 quadratic denominators (2013)
 
X2 t04 02 trig integrals (2013)
X2 t04 02 trig integrals (2013)X2 t04 02 trig integrals (2013)
X2 t04 02 trig integrals (2013)
 
X2 T07 02 resisted motion (2010)
X2 T07 02 resisted motion (2010)X2 T07 02 resisted motion (2010)
X2 T07 02 resisted motion (2010)
 
11 x1 t01 06 equations & inequations (2013)
11 x1 t01 06 equations & inequations (2013)11 x1 t01 06 equations & inequations (2013)
11 x1 t01 06 equations & inequations (2013)
 
11 x1 t01 04 algebraic fractions (2012)
11 x1 t01 04 algebraic fractions (2012)11 x1 t01 04 algebraic fractions (2012)
11 x1 t01 04 algebraic fractions (2012)
 
11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)11 x1 t08 05 t results (2012)
11 x1 t08 05 t results (2012)
 

Similar to 11X1 T10 09 mathematical induction 2

mathematical induction
mathematical inductionmathematical induction
mathematical inductionankush_kumar
 
11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)Nigel Simmons
 
mathematical induction
mathematical inductionmathematical induction
mathematical inductionankush_kumar
 
11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)Nigel Simmons
 
11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)Nigel Simmons
 
11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)Nigel Simmons
 
11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)Nigel Simmons
 
11X1 T10 10 mathematical induction 3
11X1 T10 10 mathematical induction 311X1 T10 10 mathematical induction 3
11X1 T10 10 mathematical induction 3Nigel Simmons
 
11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)Nigel Simmons
 
11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)Nigel Simmons
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)Nigel Simmons
 
Chapter 4 dis 2011
Chapter 4 dis 2011Chapter 4 dis 2011
Chapter 4 dis 2011noraidawati
 
Proofs by contraposition
Proofs by contrapositionProofs by contraposition
Proofs by contrapositionAbdur Rehman
 
Lect 18
Lect 18Lect 18
Lect 18IIUM
 
CMSC 56 | Lecture 5: Proofs Methods and Strategy
CMSC 56 | Lecture 5: Proofs Methods and StrategyCMSC 56 | Lecture 5: Proofs Methods and Strategy
CMSC 56 | Lecture 5: Proofs Methods and Strategyallyn joy calcaben
 

Similar to 11X1 T10 09 mathematical induction 2 (20)

mathematical induction
mathematical inductionmathematical induction
mathematical induction
 
11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
 
11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)
 
11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)
 
11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)11 x1 t14 10 mathematical induction 3 (2013)
11 x1 t14 10 mathematical induction 3 (2013)
 
11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)
 
11X1 T10 10 mathematical induction 3
11X1 T10 10 mathematical induction 311X1 T10 10 mathematical induction 3
11X1 T10 10 mathematical induction 3
 
11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)
 
11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)
 
Induction.pdf
Induction.pdfInduction.pdf
Induction.pdf
 
Chapter 4 dis 2011
Chapter 4 dis 2011Chapter 4 dis 2011
Chapter 4 dis 2011
 
Proofs by contraposition
Proofs by contrapositionProofs by contraposition
Proofs by contraposition
 
Lect 18
Lect 18Lect 18
Lect 18
 
2.4 edited1
2.4 edited12.4 edited1
2.4 edited1
 
CMSC 56 | Lecture 5: Proofs Methods and Strategy
CMSC 56 | Lecture 5: Proofs Methods and StrategyCMSC 56 | Lecture 5: Proofs Methods and Strategy
CMSC 56 | Lecture 5: Proofs Methods and Strategy
 
Proof By Contradictions
Proof By ContradictionsProof By Contradictions
Proof By Contradictions
 
Lecture_4.pptx
Lecture_4.pptxLecture_4.pptx
Lecture_4.pptx
 
Chapter5.pptx
Chapter5.pptxChapter5.pptx
Chapter5.pptx
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxmarlenawright1
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxJisc
 
dusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningdusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningMarc Dusseiller Dusjagr
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...Amil baba
 
Play hard learn harder: The Serious Business of Play
Play hard learn harder:  The Serious Business of PlayPlay hard learn harder:  The Serious Business of Play
Play hard learn harder: The Serious Business of PlayPooky Knightsmith
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptNishitharanjan Rout
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSAnaAcapella
 
Model Attribute _rec_name in the Odoo 17
Model Attribute _rec_name in the Odoo 17Model Attribute _rec_name in the Odoo 17
Model Attribute _rec_name in the Odoo 17Celine George
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...EADTU
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jisc
 
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdfUGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdfNirmal Dwivedi
 
PANDITA RAMABAI- Indian political thought GENDER.pptx
PANDITA RAMABAI- Indian political thought GENDER.pptxPANDITA RAMABAI- Indian political thought GENDER.pptx
PANDITA RAMABAI- Indian political thought GENDER.pptxakanksha16arora
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxannathomasp01
 
21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptxJoelynRubio1
 

Recently uploaded (20)

TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
dusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningdusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learning
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
Play hard learn harder: The Serious Business of Play
Play hard learn harder:  The Serious Business of PlayPlay hard learn harder:  The Serious Business of Play
Play hard learn harder: The Serious Business of Play
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.ppt
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
 
Model Attribute _rec_name in the Odoo 17
Model Attribute _rec_name in the Odoo 17Model Attribute _rec_name in the Odoo 17
Model Attribute _rec_name in the Odoo 17
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdfUGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
UGC NET Paper 1 Unit 7 DATA INTERPRETATION.pdf
 
PANDITA RAMABAI- Indian political thought GENDER.pptx
PANDITA RAMABAI- Indian political thought GENDER.pptxPANDITA RAMABAI- Indian political thought GENDER.pptx
PANDITA RAMABAI- Indian political thought GENDER.pptx
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx
 

11X1 T10 09 mathematical induction 2

  • 2. Mathematical Induction      e.g . iii Prove n n  1 n  2 is divisible by 3
  • 3. Mathematical Induction      e.g . iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1
  • 4. Mathematical Induction      e.g . iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1 123 6
  • 5. Mathematical Induction      e.g . iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1 123 6 which is divisible by 3
  • 6. Mathematical Induction      e.g . iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1 123 6 which is divisible by 3 Hence the result is true for n = 1
  • 7. Mathematical Induction      e.g . iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1 123 6 which is divisible by 3 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer
  • 8. Mathematical Induction      e.g . iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1 123 6 which is divisible by 3 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer i.e. k k  1k  2   3P, where P is an integer
  • 9. Mathematical Induction      e.g . iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1 123 6 which is divisible by 3 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer i.e. k k  1k  2   3P, where P is an integer Step 3: Prove the result is true for n = k + 1
  • 10. Mathematical Induction      e.g . iii Prove n n  1 n  2 is divisible by 3 Step 1: Prove the result is true for n = 1 123 6 which is divisible by 3 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer i.e. k k  1k  2   3P, where P is an integer Step 3: Prove the result is true for n = k + 1 i.e. Prove : k  1k  2 k  3  3Q, where Q is an integer
  • 12. Proof: k  1k  2k  3
  • 13. Proof: k  1k  2k  3  k k  1k  2   3k  1k  2 
  • 14. Proof: k  1k  2k  3  k k  1k  2   3k  1k  2   3P  3k  1k  2 
  • 15. Proof: k  1k  2k  3  k k  1k  2   3k  1k  2   3P  3k  1k  2   3P  k  1k  2 
  • 16. Proof: k  1k  2k  3  k k  1k  2   3k  1k  2   3P  3k  1k  2   3P  k  1k  2   3Q, where Q  P  k  1k  2  which is an integer
  • 17. Proof: k  1k  2k  3  k k  1k  2   3k  1k  2   3P  3k  1k  2   3P  k  1k  2   3Q, where Q  P  k  1k  2  which is an integer Hence the result is true for n = k + 1 if it is also true for n = k
  • 18. Proof: k  1k  2k  3  k k  1k  2   3k  1k  2   3P  3k  1k  2   3P  k  1k  2   3Q, where Q  P  k  1k  2  which is an integer Hence the result is true for n = k + 1 if it is also true for n = k Step 4: Since the result is true for n = 1, then the result is true for all positive integral values of n by induction.
  • 19. iv  Prove 33n  2 n2 is divisible by 5
  • 20. iv  Prove 33n  2 n2 is divisible by 5 Step 1: Prove the result is true for n = 1
  • 21. iv  Prove 33n  2 n2 is divisible by 5 Step 1: Prove the result is true for n = 1 33  23  27  8  35
  • 22. iv  Prove 33n  2 n2 is divisible by 5 Step 1: Prove the result is true for n = 1 33  23  27  8  35 which is divisible by 5
  • 23. iv  Prove 33n  2 n2 is divisible by 5 Step 1: Prove the result is true for n = 1 33  23  27  8  35 which is divisible by 5 Hence the result is true for n = 1
  • 24. iv  Prove 33n  2 n2 is divisible by 5 Step 1: Prove the result is true for n = 1 33  23  27  8  35 which is divisible by 5 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer i.e. 33k  2 k 2  5 P, where P is an integer
  • 25. iv  Prove 33n  2 n2 is divisible by 5 Step 1: Prove the result is true for n = 1 33  23  27  8  35 which is divisible by 5 Hence the result is true for n = 1 Step 2: Assume the result is true for n = k, where k is a positive integer i.e. 33k  2 k 2  5 P, where P is an integer Step 3: Prove the result is true for n = k + 1 i.e. Prove : 33k 3  2 k 3  5Q, where Q is an integer
  • 27. Proof: 33k 3  2 k 3
  • 28. Proof: 33k 3  2 k 3  27  33k  2 k 3
  • 29. Proof: 33k 3  2 k 3  27  33k  2 k 3  275 P  2 k 2   2 k 3
  • 30. Proof: 33k 3  2 k 3  27  33k  2 k 3  275 P  2 k 2   2 k 3  135 P  27  2 k 2  2 k 3
  • 31. Proof: 33k 3  2 k 3  27  33k  2 k 3  275 P  2 k 2   2 k 3  135 P  27  2 k 2  2 k 3  135 P  27  2 k 2  2  2 k 2
  • 32. Proof: 33k 3  2 k 3  27  33k  2 k 3  275 P  2 k 2   2 k 3  135 P  27  2 k 2  2 k 3  135 P  27  2 k 2  2  2 k 2  135 P  25  2 k 2
  • 33. Proof: 33k 3  2 k 3  27  33k  2 k 3  275 P  2 k 2   2 k 3  135 P  27  2 k 2  2 k 3  135 P  27  2 k 2  2  2 k 2  135 P  25  2 k 2  527 P  5  2 k 2 
  • 34. Proof: 33k 3  2 k 3  27  33k  2 k 3  275 P  2 k 2   2 k 3  135 P  27  2 k 2  2 k 3  135 P  27  2 k 2  2  2 k 2  135 P  25  2 k 2  527 P  5  2 k 2   5Q, where Q  27 P  5  2 k 2 which is an integer
  • 35. Proof: 33k 3  2 k 3  27  33k  2 k 3  275 P  2 k 2   2 k 3  135 P  27  2 k 2  2 k 3  135 P  27  2 k 2  2  2 k 2  135 P  25  2 k 2  527 P  5  2 k 2   5Q, where Q  27 P  5  2 k 2 which is an integer Hence the result is true for n = k + 1 if it is also true for n = k
  • 36. Proof: 33k 3  2 k 3  27  33k  2 k 3  275 P  2 k 2   2 k 3  135 P  27  2 k 2  2 k 3  135 P  27  2 k 2  2  2 k 2  135 P  25  2 k 2  527 P  5  2 k 2   5Q, where Q  27 P  5  2 k 2 which is an integer Hence the result is true for n = k + 1 if it is also true for n = k Step 4: Since the result is true for n = 1, then the result is true for all positive integral values of n by induction.
  • 37. Proof: 33k 3  2 k 3  27  33k  2 k 3  275 P  2 k 2   2 k 3  135 P  27  2 k 2  2 k 3 Exercise 6N; 3bdf, 4 ab(i), 9  135 P  27  2 k 2  2  2 k 2  135 P  25  2 k 2  527 P  5  2 k 2   5Q, where Q  27 P  5  2 k 2 which is an integer Hence the result is true for n = k + 1 if it is also true for n = k Step 4: Since the result is true for n = 1, then the result is true for all positive integral values of n by induction.