SlideShare a Scribd company logo
1 of 116
Download to read offline
Miscellaneous Dynamics
         Questions
e.g. (i) (1992) – variable angular velocity
                            The diagram shows a model train T that is
                            moving around a circular track, centre O
                            and radius a metres.
                            The train is travelling at a constant speed of
                            u m/s. The point N is in the same plane as
                            the track and is x metres from the nearest
                            point on the track. The line NO produced
                            meets the track at S.
Let TNS   and TOS   as in the diagram
dθ
a) Express      in terms of a and u
             dt
dθ
a) Express      in terms of a and u   l  a
             dt
dθ
a) Express      in terms of a and u    l  a
             dt                       dl     d
                                         a
                                      dt     dt
dθ
a) Express      in terms of a and u     l  a
             dt                        dl     d
                                          a
                                       dt     dt
                                              d
                                        ua
                                               dt
                                      d u
                                          
                                      dt a
dθ
a) Express      in terms of a and u              l  a
             dt                                 dl     d
                                                   a
                                                dt     dt
                                                       d
                                                 ua
                                                        dt
                                               d u
                                                   
                                               dt a
b) Show that a sin    - x  a sin  0 and deduce that;
            d              u cos   
                 
             dt  x  a  cos   a cos   
dθ
a) Express      in terms of a and u              l  a
             dt                                 dl     d
                                                   a
                                                dt     dt
                                                       d
                                                 ua
                                                        dt
                                               d u
                                                   
                                               dt a
b) Show that a sin    - x  a sin  0 and deduce that;
            d              u cos   
                 
             dt  x  a  cos   a cos   
NTO  TNO  TOS                      (exterior , OTN )
dθ
a) Express      in terms of a and u              l  a
             dt                                 dl     d
                                                   a
                                                dt     dt
                                                       d
                                                 ua
                                                        dt
                                               d u
                                                   
                                               dt a
b) Show that a sin    - x  a sin  0 and deduce that;
            d              u cos   
                 
             dt  x  a  cos   a cos   
NTO  TNO  TOS                      (exterior , OTN )
   NTO    
       NTO    
dθ
a) Express      in terms of a and u              l  a
             dt                                 dl     d
                                                   a
                                                dt     dt
                                                       d
                                                 ua
                                                        dt
                                               d u
                                                   
                                               dt a
b) Show that a sin    - x  a sin  0 and deduce that;
            d              u cos   
                 
             dt  x  a  cos   a cos   
NTO  TNO  TOS                      (exterior , OTN )
   NTO                                      a      ax
                                      In NTO;      
       NTO                                sin  sin    
dθ
a) Express      in terms of a and u              l  a
             dt                                 dl     d
                                                   a
                                                dt     dt
                                                       d
                                                 ua
                                                        dt
                                               d u
                                                   
                                               dt a
b) Show that a sin    - x  a sin  0 and deduce that;
            d              u cos   
                 
             dt  x  a  cos   a cos   
NTO  TNO  TOS                        (exterior , OTN )
   NTO                                      a      ax
                                      In NTO;      
       NTO                                sin  sin    
                                           a sin      a  x  sin 
                          a sin      a  x  sin   0
differentiate with respect to t
              d  d   a  x  cos  d  0
a cos                           
              dt dt                     dt
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                        
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                        
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
a cos     a  x  cos   d  a cos     u
                                   dt                    a
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                        
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
a cos     a  x  cos   d  a cos     u
                                   dt                    a
                                   d            u cos   
                                      
                                   dt a cos     a  x  cos 
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that        0 when NT is tangential to the track.
                dt
   when NT is a tangent;
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that        0 when NT is tangential to the track.
                dt                                                      T

                                                  N                     O
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that        0 when NT is tangential to the track.
                dt                                                      T
   when NT is a tangent;

                                                  N                     O
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that        0 when NT is tangential to the track.
                dt                                                      T
   when NT is a tangent;
  NTO  90           (tangent  radius)
                                                   N                    O
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that        0 when NT is tangential to the track.
                dt                                                      T
   when NT is a tangent;
  NTO  90           (tangent  radius)
                                                   N                    O
     90
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that         0 when NT is tangential to the track.
                dt                                                      T
   when NT is a tangent;
  NTO  90            (tangent  radius)
                                                   N                    O
     90
 d             u cos 90
     
  dt a cos 90  a  x  cos 
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos       0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that         0 when NT is tangential to the track.
                dt                                                      T
   when NT is a tangent;
  NTO  90            (tangent  radius)
                                                   N                    O
     90
 d             u cos 90                                  d
                                                            0
  dt a cos 90  a  x  cos                             dt
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
             
  when  
             2
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
               
    when  
               2
                   T



      
N                  O
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
               
    when  
               2
                   T

                   a
      
N                  O
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
               
    when  
               2
                   T

                   a
      
N                  O
          2a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                2
                    T

          5a        a
      
N                   O
           2a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                2
                    T           2
                        cos  
          5a                     5
                    a
      
N                   O
           2a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                2
                    T           2
                        cos  
          5a                     5
                    a
                           
                     cos    
                         
                                1
N
           2a
                    O    2       5
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                                                         
                2
                    T                             u cos    
                                2       d             2    
                        cos              
                                 5      dt             
          5a        a                        a cos     2a cos 
                                                  2     
                           
                     cos    
                         
                                1
N
           2a
                    O    2       5
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                                                         
                2
                    T                             u cos    
                                2       d             2    
                        cos              
                                 5      dt             
          5a        a                        a cos     2a cos 
                                                  2     
                           
                      cos    
                                   1
                                                   1 
N
           2a
                    O    2        5              u 
                                                     5
                                                1   2a  2 
                                             a    
                                                5         5
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                                                         
                2
                    T                             u cos    
                                2       d             2    
                        cos              
                                 5      dt             
          5a        a                        a cos     2a cos 
                                                  2     
                           
                      cos    
                                   1
                                                   1 
N
           2a
                    O    2        5              u 
                                                     5
                                                1   2a  2 
                                              a    
                                                5         5
                                               u
                                            
                                              5a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                 
     when  
                                                          
                 2
                     T                             u cos    
                                 2       d             2    
                         cos              
                                  5      dt             
           5a        a                        a cos     2a cos 
                                                   2     
                            
                       cos    
                                    1
                                                    1 
N
            2a
                     O    2        5              u 
                                                      5
    when   0                                   1   2a  2 
                                               a    
                                                 5         5
                                                u
                                             
                                               5a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                 
     when  
                                                          
                 2
                     T                             u cos    
                                 2       d             2    
                         cos              
                                  5      dt             
           5a        a                        a cos     2a cos 
                                                   2     
                            
                       cos    
                                    1
                                                    1 
N
            2a
                     O    2        5              u 
                                                      5
    when   0                                   1   2a  2 
                                               a    
    d         u cos 0                           5         5
       
     dt a cos 0  2a cos 0                      u
                                             
                                               5a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                 
     when  
                                                          
                 2
                     T                             u cos    
                                 2       d             2    
                         cos              
                                  5      dt             
           5a        a                        a cos     2a cos 
                                                   2     
                            
                       cos    
                                    1
                                                    1 
N
            2a
                     O    2        5              u 
                                                      5
    when   0                                   1   2a  2 
                                               a    
    d         u cos 0                           5         5
       
     dt a cos 0  2a cos 0                      u
          u                                  
                                              5a
          3a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                 
     when  
                                                          
                 2
                     T                             u cos    
                                 2       d             2    
                         cos              
                                  5      dt             
           5a        a                        a cos     2a cos 
                                                   2     
                            
                       cos    
                                    1
                                                    1 
N
            2a
                     O    2        5              u 
                                                      5
    when   0                                   1   2a  2 
                                               a    
    d         u cos 0                           5         5
       
     dt a cos 0  2a cos 0                      u
          u                                  
                                              5a
          3a
          5 u
        
          3 5a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
              
   when  
                                                             
              2
                    T                                 u cos    
                               2           d              2    
                      cos                   
                                5          dt              
        5a          a                            a cos     2a cos 
                                                      2     
                            
                      cos    
                                     1
                                                       1 
N
         2a
                    O     2         5                u 
                                                         5
  when   0                                        1   2a  2 
                                                 a    
  d         u cos 0                                5         5
     
   dt a cos 0  2a cos 0                          u
         u                                     
                                                 5a
        3a                                                     3
                         Thus the angular velocity when   is times
        5 u                                                   2 5
       
        3 5a             the angular velocity when   0
(ii) (2000)          A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                          ds
                     position of P. Let s denote the arc length AP, v       ,
                                                                          dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l
    ds
 v
     dt
    d
 l
    dt
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2
                          
      ds            dt  2
                            dt
  v
      dt
     d
  l
      dt
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2
                          
      ds            dt  2
                            dt
  v                        dv d
      dt                      
     d                     d dt
  l
      dt
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2
                          
      ds            dt  2
                            dt
  v                        dv d
      dt                      
     d                     d dt
  l
      dt                    dv v
                              
                            d l
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2                       1 dv
                                             v
                        
      ds            dt 2 dt                   l d
  v                       dv d
      dt                     
     d                    d dt
  l
      dt                   dv v
                             
                           d l
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2                       1 dv
                                             v
                        
      ds            dt 2 dt                   l d
  v                                          1 dv d 1
      dt                   dv d               v2        
                                            l d dv  2 
     d                    d dt
  l
      dt                   dv v
                             
                           d l
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2                       1 dv
                                             v
                        
      ds            dt 2 dt                   l d
  v                                          1 dv d 1
      dt                   dv d               v2        
                                            l d dv  2 
     d                    d dt
  l                                          1 d 1 2 
      dt                   dv v                    v 
                                            l d  2 
                           d l
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T

            mg
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T
               
            mg
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T
               
            mg
                        mg sin 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T                      m
                               s
               
            mg
                        mg sin 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T                      m
                               s                  m   mg sin 
                                                   s
               
            mg
                        mg sin 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T                      m
                               s                  m   mg sin 
                                                    s
               
            mg                                        g sin 
                                                   s
                        mg sin 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T                      m
                               s                  m   mg sin 
                                                    s
               
            mg                                        g sin 
                                                   s
                        mg sin 
                                          1 d 1 2 
                                                v    g sin 
                                          l d  2 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                         m
                                   s                  m   mg sin 
                                                        s
                 
              mg                                          g sin 
                                                       s
                            mg sin 
                                              1 d 1 2 
                                                    v    g sin 
                                              l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                         m
                                   s                  m   mg sin 
                                                        s
                 
              mg                                          g sin 
                                                       s
                            mg sin 
                                              1 d 1 2 
                                                    v    g sin 
                                              l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
   1 d 1 2 
         v    g sin 
   l d  2 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                         m
                                   s                  m   mg sin 
                                                        s
                 
              mg                                          g sin 
                                                       s
                            mg sin 
                                              1 d 1 2 
                                                    v    g sin 
                                              l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
   1 d 1 2 
         v    g sin 
   l d  2 
     d 1 2 
        v    gl sin 
    d  2 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                          m
                                    s                 m   mg sin 
                                                        s
                 
              mg                                          g sin 
                                                       s
                              mg sin 
                                              1 d 1 2 
                                                    v    g sin 
                                              l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
   1 d 1 2 
           v    g sin 
   l d  2 
     d 1 2 
         v    gl sin 
    d  2 
     1 2
        v  gl cos  c
      2
        v 2  2 gl cos  c
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                          m
                                    s                 m   mg sin 
                                                        s
                 
              mg                                          g sin 
                                                       s
                              mg sin 
                                              1 d 1 2 
                                                    v    g sin 
                                              l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
                                                when   0, v  V
   1 d 1 2 
           v    g sin                      V 2  2 gl  c
   l d  2 
                                                c  V 2  2 gl
     d 1 2 
         v    gl sin 
    d  2 
     1 2
        v  gl cos  c
      2
        v 2  2 gl cos  c
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                          m
                                    s                     m   mg sin 
                                                            s
                 
              mg                                              g sin 
                                                           s
                              mg sin 
                                                1 d 1 2 
                                                      v    g sin 
                                                l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
                                                    when   0, v  V
   1 d 1 2 
           v    g sin                         V 2  2 gl  c
   l d  2 
                                                    c  V 2  2 gl
     d 1 2 
         v    gl sin                     v 2  2 gl cos  V 2  2 gl
    d  2 
     1 2                                      V 2  v 2  2 gl  2 gl cos
        v  gl cos  c
      2                                       V 2  v 2  2 gl 1  cos 
        v 2  2 gl cos  c
1 2
d) Explain why T-mg cos θ  mv
                           l
1 2
d) Explain why T-mg cos θ  mv
                           l
1 2
d) Explain why T-mg cos θ  mv
                           l
      T
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos
    m
     x
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos              m  T  mg cos
                                  x
    m
     x
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l
                1
 0  mg cos  m3 gl  2 gl 1  cos 
                l
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l
                1
 0  mg cos  m3 gl  2 gl 1  cos 
                l
     mg cos  m g  2 g cos 
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l
                1
 0  mg cos  m3 gl  2 gl 1  cos 
                l
     mg cos  m g  2 g cos 
    3mg cos   mg
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l                                   cos  
                                                               1
                1
 0  mg cos  m3 gl  2 gl 1  cos                       3
                l
     mg cos  m g  2 g cos 
    3mg cos   mg
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l                                   cos  
                                                               1
                1
 0  mg cos  m3 gl  2 gl 1  cos                       3
                l                                     1.911radians
     mg cos  m g  2 g cos 
    3mg cos   mg
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
               1 2
  T  mg cos  mv
               l
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
(iii) (2003)
     A particle of mass m is thrown from the top, O, of a very tall building
     with an initial velocity u at an angle of  to the horizontal. The
     particle experiences the effect of gravity, and a resistance
     proportional to its velocity in both directions.
                         The equations of motion in the horizontal and
                         vertical directions are given respectively by
                                    kx and    ky  g
                                 x               y      
                          where k is a constant and the acceleration due
                          to gravity is g.
                               (You are NOT required to show these)
a) Derive the result x  ue  kt cos 
                     
a) Derive the result x  ue  kt cos 
                     
   dx
    
        kx
           
   dt
a) Derive the result x  ue  kt cos 
                     
   dx
    
        kx
           
   dt         x
              
         1       dx
    t 
         k u cos x
                  
a) Derive the result x  ue  kt cos 
                        
   dx
         kx
            
   dt          x
               
          1       dx 
    t 
          k u cos x
          1
    t   log x u cos
                      x
                      
                   
          k
a) Derive the result x  ue  kt cos 
                        
   dx
         kx
            
   dt          x
               
          1       dx 
    t 
          k u cos x
          1
    t   log x u cos
                      x
                      
                   
          k
          1
    t   log x  logu cos  
                   
          k
a) Derive the result x  ue  kt cos 
                                                      x 
                                         t   log
                                              1        
   dx                                                     
         kx
                                             k    u cos  
   dt          x
               
          1       dx 
    t 
          k u cos x
          1
    t   log x u cos
                      x
                      
                   
          k
          1
    t   log x  logu cos  
                   
          k
a) Derive the result x  ue  kt cos 
                                                                    x 
                                                t   log
                                                       1             
   dx                                                                   
         kx
                                                      k         u cos  
   dt          x
               
          1       dx                                       x  
    t                                     kt  log               
          k u cos x                                       u cos  
          1                                 x
                                            
    t   log x u cos                           e  kt
                      x
                      
                   
          k                              u cos 
          1
    t   log x  logu cos  
                                              x  ue  kt cos 
                                                
          k
a) Derive the result x  ue  kt cos 
                                                                       x 
                                                   t   log
                                                          1             
   dx                                                                      
         kx
                                                         k         u cos  
   dt          x
               
          1        dx                                         x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                      x
                      
                   
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                        1
                  
                        k
   equation of motion and initial condition
a) Derive the result x  ue  kt cos 
                                                                       x 
                                                   t   log
                                                          1             
   dx                                                                      
         kx
                                                         k         u cos  
   dt          x
               
          1        dx                                         x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                      x
                      
                   
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                        1
                  
                        k
   equation of motion and initial condition
   dy
         ky  g
            
   dt
a) Derive the result x  ue  kt cos 
                                                                       x 
                                                   t   log
                                                          1             
   dx                                                                      
         kx                                            k         u cos  
   dt             x
                  
          1           dx                                      x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy
         ky  g
              
   dt         y
                      dy
     t 
           u sin 
                    ky  g
                     
a) Derive the result x  ue  kt cos 
                                                                       x 
                                                   t   log
                                                          1             
   dx                                                                      
         kx                                            k         u cos  
   dt             x
                  
          1           dx                                      x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy
         ky  g
              
   dt         y
                      dy
     t 
           u sin 
                    ky  g
                     
            1
     t   logky  g u sin 
                               y
                               
                         
            k
a) Derive the result x  ue  kt cos 
                                                                       x 
                                                   t   log
                                                          1             
   dx                                                                      
         kx                                            k         u cos  
   dt             x
                  
          1           dx                                      x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy                                    kt  logky  g   logku sin   g 
         ky  g
                                                       
   dt         y
                      dy
     t 
           u sin 
                    ky  g
                     
            1
     t   logky  g u sin 
                               y
                               
                         
            k
a) Derive the result x  ue  kt cos 
                                                                       x 
                                                   t   log
                                                          1             
   dx                                                                      
         kx                                            k         u cos  
   dt             x
                  
          1           dx                                      x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy                                    kt  logky  g   logku sin   g 
         ky  g
                                                       
   dt         y                                      ky  g 
                      dy                  kt  log                    
     t                                             ku sin   g 
           u sin 
                    ky  g
                     
            1
     t   logky  g u sin 
                               y
                               
                         
            k
a) Derive the result x  ue  kt cos 
                                                                       x 
                                                   t   log
                                                          1             
   dx                                                                      
         kx                                            k         u cos  
   dt             x
                  
          1           dx                                      x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy                                    kt  logky  g   logku sin   g 
         ky  g
                                                       
   dt         y                                      ky  g 
                      dy                  kt  log                    
     t                                             ku sin   g 
           u sin 
                    ky  g
                                         ky  g
                                           
                                                      e  kt
            1
     t   logky  g u sin 
                         
                               y
                                      ku sin   g
            k
a) Derive the result x  ue  kt cos 
                                                                        x 
                                                   t   log
                                                           1             
   dx                                                                       
         kx                                             k         u cos  
   dt             x
                  
          1           dx                                      x   
    t                                        kt  log                
          k u cos x                                           u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy                                    kt  logky  g   logku sin   g 
         ky  g
                                                        
   dt         y                                        ky  g 
                                                                
                      dy                  kt  log                     
     t                                               ku sin   g 
           u sin 
                    ky  g
                                         ky  g
                                           
                                                        e  kt
            1
     t   logky  g u sin 
                         
                               y
                                      ku sin   g
                                                     y  ku sin   g e  kt  g 
                                                           1
            k                                        
                                                           k
c) Find the value of t when the particle reaches its maximum height
c) Find the value of t when the particle reaches its maximum height
  Maximum height occurs when y  0
                             
c) Find the value of t when the particle reaches its maximum height
  Maximum height occurs when y  0
                              
       1
  t   logky  g u sin 
                      0
              
       k
c) Find the value of t when the particle reaches its maximum height
  Maximum height occurs when y  0 
       1
  t   logky  g u sin 
                       0
               
       k
       1
  t   log g   logku sin   g 
       k
c) Find the value of t when the particle reaches its maximum height
  Maximum height occurs when y  0 
        1
  t   logky  g u sin 
                       0
               
        k
        1
  t   log g   logku sin   g 
        k
      1  ku sin   g 
   t  log                 
      k           g        
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
         1
   t   logky  g u sin 
                        0
                 
         k
         1
   t   log g   logku sin   g 
         k
       1  ku sin   g 
    t  log                 
       k           g        
d) What is the limiting value of the horizontal displacement of the
   particle?
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
         1
   t   logky  g u sin 
                        0
                 
         k
         1
   t   log g   logku sin   g 
         k
       1  ku sin   g 
    t  log                 
       k           g        
d) What is the limiting value of the horizontal displacement of the
   particle?
    x  ue  kt cos 
    
   dx
       ue  kt cos 
   dt
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
          1
   t   logky  g u sin 
                          0
                    
          k
          1
   t   log g   logku sin   g 
          k
        1  ku sin   g 
    t  log                 
        k              g    
d) What is the limiting value of the horizontal displacement of the
                                                 
   particle?
                                 x  lim u cos   e  kt dt
      x  ue  kt cos 
                                     t 
                                                 0

   dx
         ue  kt cos 
   dt
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
          1
   t   logky  g u sin 
                          0
                    
          k
          1
   t   log g   logku sin   g 
          k
        1  ku sin   g 
    t  log                 
        k              g    
d) What is the limiting value of the horizontal displacement of the
                                                 
   particle?
                                 x  lim u cos   e  kt dt
      x  ue  kt cos 
                                     t 
                                                 0
                                                               t
   dx                            x  lim u cos   e  kt 
                                                     1
         ue cos 
              kt
                                                  k         0
   dt                                 t                   
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
          1
   t   logky  g u sin 
                          0
                    
          k
          1
   t   log g   logku sin   g 
          k
        1  ku sin   g 
    t  log                 
        k              g    
d) What is the limiting value of the horizontal displacement of the
                                                   
   particle?
                                 x  lim u cos   e  kt dt
      x  ue  kt cos 
                                     t 
                                                   0
                                                                t
   dx                            x  lim u cos   e  kt 
                                                      1
         ue cos 
              kt
                                                    k        0
   dt                                 t                    
                                           u cos 
                                 x  lim            e kt  1
                                     t      k
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
          1
   t   logky  g u sin 
                          0
                    
          k
          1
   t   log g   logku sin   g 
          k
        1  ku sin   g 
    t  log                 
        k              g    
d) What is the limiting value of the horizontal displacement of the
                                                   
   particle?
                                 x  lim u cos   e  kt dt
      x  ue  kt cos 
                                     t 
                                                   0
                                                                t
   dx                            x  lim u cos   e  kt 
                                                      1
         ue cos 
              kt
                                                    k        0
   dt                                 t                    
                                           u cos 
                                 x  lim            e kt  1
                                     t      k
                                      u cos 
                                 x
                                          k
Exercise 9E; 1 to 4, 7

Exercise 9F; 1, 2, 4, 7, 9, 12, 14, 16, 20, 22, 25

More Related Content

Viewers also liked

Xamarin day9 - Advance Xamarin Forms
Xamarin day9 - Advance Xamarin FormsXamarin day9 - Advance Xamarin Forms
Xamarin day9 - Advance Xamarin FormsSubodh Pushpak
 
X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)Nigel Simmons
 
Xaga slides 1 v1
Xaga slides 1 v1Xaga slides 1 v1
Xaga slides 1 v1Yann Xoual
 
X2 T07 06 banked curves
X2 T07 06 banked curvesX2 T07 06 banked curves
X2 T07 06 banked curvesNigel Simmons
 
X2 T05 08 odd and even functions (2010)
X2 T05 08 odd and even functions (2010)X2 T05 08 odd and even functions (2010)
X2 T05 08 odd and even functions (2010)Nigel Simmons
 
Xarxes info rogerramirez
Xarxes info rogerramirezXarxes info rogerramirez
Xarxes info rogerramirezRogerRamirez9
 
오피사이트 『 Bamcafe2.net』종로오피,역곡오피,매니져실사,신논현오피,안산오피Å
오피사이트 『 Bamcafe2.net』종로오피,역곡오피,매니져실사,신논현오피,안산오피Å오피사이트 『 Bamcafe2.net』종로오피,역곡오피,매니져실사,신논현오피,안산오피Å
오피사이트 『 Bamcafe2.net』종로오피,역곡오피,매니져실사,신논현오피,안산오피Åhans5762
 
X.6 cindy melinda sofyani
X.6 cindy melinda sofyaniX.6 cindy melinda sofyani
X.6 cindy melinda sofyanicindysofyani
 
Xamarin user group san diego kick-off!
Xamarin user group san diego   kick-off!Xamarin user group san diego   kick-off!
Xamarin user group san diego kick-off!Seamgen
 
Xamarin.iOS Presentation
Xamarin.iOS PresentationXamarin.iOS Presentation
Xamarin.iOS PresentationMichael Ridland
 

Viewers also liked (15)

Xamarin day9 - Advance Xamarin Forms
Xamarin day9 - Advance Xamarin FormsXamarin day9 - Advance Xamarin Forms
Xamarin day9 - Advance Xamarin Forms
 
X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)
 
Xaga slides 1 v1
Xaga slides 1 v1Xaga slides 1 v1
Xaga slides 1 v1
 
X2 T07 06 banked curves
X2 T07 06 banked curvesX2 T07 06 banked curves
X2 T07 06 banked curves
 
X2 T05 08 odd and even functions (2010)
X2 T05 08 odd and even functions (2010)X2 T05 08 odd and even functions (2010)
X2 T05 08 odd and even functions (2010)
 
Xambo
XamboXambo
Xambo
 
Xander Resume 2016 (1)
Xander Resume 2016 (1)Xander Resume 2016 (1)
Xander Resume 2016 (1)
 
X.ak.1
X.ak.1X.ak.1
X.ak.1
 
Xarxes info rogerramirez
Xarxes info rogerramirezXarxes info rogerramirez
Xarxes info rogerramirez
 
Xalqlarin həlaki. azərbaycan
Xalqlarin həlaki. azərbaycanXalqlarin həlaki. azərbaycan
Xalqlarin həlaki. azərbaycan
 
SOMOS DA UNITA
SOMOS DA UNITASOMOS DA UNITA
SOMOS DA UNITA
 
오피사이트 『 Bamcafe2.net』종로오피,역곡오피,매니져실사,신논현오피,안산오피Å
오피사이트 『 Bamcafe2.net』종로오피,역곡오피,매니져실사,신논현오피,안산오피Å오피사이트 『 Bamcafe2.net』종로오피,역곡오피,매니져실사,신논현오피,안산오피Å
오피사이트 『 Bamcafe2.net』종로오피,역곡오피,매니져실사,신논현오피,안산오피Å
 
X.6 cindy melinda sofyani
X.6 cindy melinda sofyaniX.6 cindy melinda sofyani
X.6 cindy melinda sofyani
 
Xamarin user group san diego kick-off!
Xamarin user group san diego   kick-off!Xamarin user group san diego   kick-off!
Xamarin user group san diego kick-off!
 
Xamarin.iOS Presentation
Xamarin.iOS PresentationXamarin.iOS Presentation
Xamarin.iOS Presentation
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 

Recently uploaded (20)

call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 

X2 T07 07 miscellaneous dynamics questions

  • 1. Miscellaneous Dynamics Questions e.g. (i) (1992) – variable angular velocity The diagram shows a model train T that is moving around a circular track, centre O and radius a metres. The train is travelling at a constant speed of u m/s. The point N is in the same plane as the track and is x metres from the nearest point on the track. The line NO produced meets the track at S. Let TNS   and TOS   as in the diagram
  • 2. dθ a) Express in terms of a and u dt
  • 3. dθ a) Express in terms of a and u l  a dt
  • 4. dθ a) Express in terms of a and u l  a dt dl d a dt dt
  • 5. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a
  • 6. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a b) Show that a sin    - x  a sin  0 and deduce that; d u cos     dt  x  a  cos   a cos   
  • 7. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a b) Show that a sin    - x  a sin  0 and deduce that; d u cos     dt  x  a  cos   a cos    NTO  TNO  TOS (exterior , OTN )
  • 8. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a b) Show that a sin    - x  a sin  0 and deduce that; d u cos     dt  x  a  cos   a cos    NTO  TNO  TOS (exterior , OTN ) NTO     NTO    
  • 9. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a b) Show that a sin    - x  a sin  0 and deduce that; d u cos     dt  x  a  cos   a cos    NTO  TNO  TOS (exterior , OTN ) NTO     a ax In NTO;  NTO     sin  sin    
  • 10. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a b) Show that a sin    - x  a sin  0 and deduce that; d u cos     dt  x  a  cos   a cos    NTO  TNO  TOS (exterior , OTN ) NTO     a ax In NTO;  NTO     sin  sin     a sin      a  x  sin  a sin      a  x  sin   0
  • 11. differentiate with respect to t  d  d   a  x  cos  d  0 a cos       dt dt  dt
  • 12. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt
  • 13. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a
  • 14. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos 
  • 15. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt when NT is a tangent;
  • 16. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T N O
  • 17. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T when NT is a tangent; N O
  • 18. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T when NT is a tangent; NTO  90 (tangent  radius) N O
  • 19. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T when NT is a tangent; NTO  90 (tangent  radius) N O     90
  • 20. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T when NT is a tangent; NTO  90 (tangent  radius) N O     90 d u cos 90  dt a cos 90  a  x  cos 
  • 21. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T when NT is a tangent; NTO  90 (tangent  radius) N O     90 d u cos 90 d   0 dt a cos 90  a  x  cos  dt
  • 22. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5
  • 23. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2
  • 24. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T  N O
  • 25. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T a  N O
  • 26. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T a  N O 2a
  • 27. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T 5a a  N O 2a
  • 28. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T 2 cos   5a 5 a  N O 2a
  • 29. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T 2 cos   5a 5 a   cos       1 N 2a O 2  5
  • 30. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2    cos       1 N 2a O 2  5
  • 31. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2   cos     1     1  N 2a O 2  5 u    5  1   2a  2  a      5  5
  • 32. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2   cos     1     1  N 2a O 2  5 u    5  1   2a  2  a      5  5 u  5a
  • 33. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2   cos     1     1  N 2a O 2  5 u    5 when   0  1   2a  2  a      5  5 u  5a
  • 34. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2   cos     1     1  N 2a O 2  5 u    5 when   0  1   2a  2  a     d u cos 0  5  5  dt a cos 0  2a cos 0 u  5a
  • 35. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2   cos     1     1  N 2a O 2  5 u    5 when   0  1   2a  2  a     d u cos 0  5  5  dt a cos 0  2a cos 0 u u   5a 3a
  • 36. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2   cos     1     1  N 2a O 2  5 u    5 when   0  1   2a  2  a     d u cos 0  5  5  dt a cos 0  2a cos 0 u u   5a 3a 5 u   3 5a
  • 37. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2   cos     1     1  N 2a O 2  5 u    5 when   0  1   2a  2  a     d u cos 0  5  5  dt a cos 0  2a cos 0 u u   5a 3a  3 Thus the angular velocity when   is times 5 u 2 5   3 5a the angular velocity when   0
  • 38. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle.
  • 39. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2 
  • 40. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l
  • 41. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l ds v dt d l dt
  • 42. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2  ds dt 2 dt v dt d l dt
  • 43. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2  ds dt 2 dt v dv d dt   d d dt l dt
  • 44. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2  ds dt 2 dt v dv d dt   d d dt l dt dv v   d l
  • 45. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2 1 dv   v  ds dt 2 dt l d v dv d dt   d d dt l dt dv v   d l
  • 46. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2 1 dv   v  ds dt 2 dt l d v 1 dv d 1 dt dv d     v2      l d dv  2  d d dt l dt dv v   d l
  • 47. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2 1 dv   v  ds dt 2 dt l d v 1 dv d 1 dt dv d     v2      l d dv  2  d d dt l 1 d 1 2  dt dv v   v    l d  2  d l
  • 48. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2 
  • 49. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2 
  • 50. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T
  • 51. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T mg
  • 52. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T  mg
  • 53. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T  mg mg sin 
  • 54. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s  mg mg sin 
  • 55. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg mg sin 
  • 56. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin 
  • 57. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2 
  • 58. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos 
  • 59. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos  1 d 1 2   v    g sin  l d  2 
  • 60. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos  1 d 1 2   v    g sin  l d  2  d 1 2   v    gl sin  d  2 
  • 61. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos  1 d 1 2   v    g sin  l d  2  d 1 2   v    gl sin  d  2  1 2 v  gl cos  c 2 v 2  2 gl cos  c
  • 62. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos  when   0, v  V 1 d 1 2   v    g sin  V 2  2 gl  c l d  2  c  V 2  2 gl d 1 2   v    gl sin  d  2  1 2 v  gl cos  c 2 v 2  2 gl cos  c
  • 63. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos  when   0, v  V 1 d 1 2   v    g sin  V 2  2 gl  c l d  2  c  V 2  2 gl d 1 2   v    gl sin  v 2  2 gl cos  V 2  2 gl d  2  1 2 V 2  v 2  2 gl  2 gl cos v  gl cos  c 2 V 2  v 2  2 gl 1  cos  v 2  2 gl cos  c
  • 64. 1 2 d) Explain why T-mg cos θ  mv l
  • 65. 1 2 d) Explain why T-mg cos θ  mv l
  • 66. 1 2 d) Explain why T-mg cos θ  mv l T
  • 67. 1 2 d) Explain why T-mg cos θ  mv l T mg cos
  • 68. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m x
  • 69. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x
  • 70. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force.
  • 71. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l
  • 72. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0
  • 73. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l
  • 74. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l 1 0  mg cos  m3 gl  2 gl 1  cos  l
  • 75. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l 1 0  mg cos  m3 gl  2 gl 1  cos  l  mg cos  m g  2 g cos 
  • 76. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l 1 0  mg cos  m3 gl  2 gl 1  cos  l  mg cos  m g  2 g cos  3mg cos   mg
  • 77. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l cos   1 1 0  mg cos  m3 gl  2 gl 1  cos  3 l  mg cos  m g  2 g cos  3mg cos   mg
  • 78. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l cos   1 1 0  mg cos  m3 gl  2 gl 1  cos  3 l   1.911radians  mg cos  m g  2 g cos  3mg cos   mg
  • 79. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero.
  • 80. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude;
  • 81. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l
  • 82. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l
  • 83. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 84. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 85. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 86. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 87. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 88. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 89. (iii) (2003) A particle of mass m is thrown from the top, O, of a very tall building with an initial velocity u at an angle of  to the horizontal. The particle experiences the effect of gravity, and a resistance proportional to its velocity in both directions. The equations of motion in the horizontal and vertical directions are given respectively by    kx and    ky  g x  y  where k is a constant and the acceleration due to gravity is g. (You are NOT required to show these)
  • 90. a) Derive the result x  ue  kt cos  
  • 91. a) Derive the result x  ue  kt cos   dx    kx  dt
  • 92. a) Derive the result x  ue  kt cos   dx    kx  dt x  1 dx t  k u cos x 
  • 93. a) Derive the result x  ue  kt cos   dx   kx  dt x  1 dx  t  k u cos x 1 t   log x u cos x   k
  • 94. a) Derive the result x  ue  kt cos   dx   kx  dt x  1 dx  t  k u cos x 1 t   log x u cos x   k 1 t   log x  logu cos    k
  • 95. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  t  k u cos x 1 t   log x u cos x   k 1 t   log x  logu cos    k
  • 96. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx   x   t   kt  log  k u cos x  u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k
  • 97. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x  u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition
  • 98. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x  u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy   ky  g  dt
  • 99. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy   ky  g  dt y dy t  u sin  ky  g 
  • 100. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy   ky  g  dt y dy t  u sin  ky  g  1 t   logky  g u sin  y   k
  • 101. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy  kt  logky  g   logku sin   g    ky  g   dt y dy t  u sin  ky  g  1 t   logky  g u sin  y   k
  • 102. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy  kt  logky  g   logku sin   g    ky  g   dt y  ky  g  dy  kt  log  t   ku sin   g  u sin  ky  g  1 t   logky  g u sin  y   k
  • 103. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy  kt  logky  g   logku sin   g    ky  g   dt y  ky  g  dy  kt  log  t   ku sin   g  u sin  ky  g  ky  g   e  kt 1 t   logky  g u sin   y  ku sin   g k
  • 104. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy  kt  logky  g   logku sin   g    ky  g   dt y  ky  g   dy  kt  log  t   ku sin   g  u sin  ky  g  ky  g   e  kt 1 t   logky  g u sin   y  ku sin   g y  ku sin   g e  kt  g  1 k  k
  • 105. c) Find the value of t when the particle reaches its maximum height
  • 106. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0 
  • 107. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k
  • 108. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k
  • 109. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g 
  • 110. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the particle?
  • 111. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the particle? x  ue  kt cos   dx  ue  kt cos  dt
  • 112. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the  particle? x  lim u cos   e  kt dt x  ue  kt cos   t  0 dx  ue  kt cos  dt
  • 113. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the  particle? x  lim u cos   e  kt dt x  ue  kt cos   t  0 t dx x  lim u cos   e  kt  1  ue cos   kt  k 0 dt t   
  • 114. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the  particle? x  lim u cos   e  kt dt x  ue  kt cos   t  0 t dx x  lim u cos   e  kt  1  ue cos   kt  k 0 dt t    u cos  x  lim  e kt  1 t  k
  • 115. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the  particle? x  lim u cos   e  kt dt x  ue  kt cos   t  0 t dx x  lim u cos   e  kt  1  ue cos   kt  k 0 dt t    u cos  x  lim  e kt  1 t  k u cos  x k
  • 116. Exercise 9E; 1 to 4, 7 Exercise 9F; 1, 2, 4, 7, 9, 12, 14, 16, 20, 22, 25