Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Equation of a line through a point and intersection of    another two lines
Equation of a line through a    point and intersection of       another two linese.g. Find the equation of the line that p...
Equation of a line through a    point and intersection of       another two linese.g. Find the equation of the line that p...
Equation of a line through a    point and intersection of       another two linese.g. Find the equation of the line that p...
Equation of a line through a    point and intersection of       another two linese.g. Find the equation of the line that p...
Equation of a line through a    point and intersection of       another two linese.g. Find the equation of the line that p...
Equation of a line through a    point and intersection of       another two linese.g. Find the equation of the line that p...
Equation of a line through a    point and intersection of       another two linese.g. Find the equation of the line that p...
Equation of a line through a    point and intersection of       another two linese.g. Find the equation of the line that p...
Equation of a line through a    point and intersection of       another two linese.g. Find the equation of the line that p...
Equation of a line through a    point and intersection of       another two linese.g. Find the equation of the line that p...
Equation of a line through a    point and intersection of       another two linese.g. Find the equation of the line that p...
Alternatively
Alternatively                a1 x  b1 y  c1  k  a2 x  b2 y  c2   0
Alternatively                a1 x  b1 y  c1  k  a2 x  b2 y  c2   0                2 x  y  1  k  3x  5 y  9 ...
Alternatively                 a1 x  b1 y  c1  k  a2 x  b2 y  c2   0                 2 x  y  1  k  3x  5 y  9...
Alternatively                 a1 x  b1 y  c1  k  a2 x  b2 y  c2   0                 2 x  y  1  k  3x  5 y  9...
Alternatively                 a1 x  b1 y  c1  k  a2 x  b2 y  c2   0                 2 x  y  1  k  3x  5 y  9...
Alternatively                 a1 x  b1 y  c1  k  a2 x  b2 y  c2   0                 2 x  y  1  k  3x  5 y  9...
Alternatively                  a1 x  b1 y  c1  k  a2 x  b2 y  c2   0                  2 x  y  1  k  3x  5 y ...
Alternatively                  a1 x  b1 y  c1  k  a2 x  b2 y  c2   0                  2 x  y  1  k  3x  5 y ...
Alternatively                  a1 x  b1 y  c1  k  a2 x  b2 y  c2   0                  2 x  y  1  k  3x  5 y ...
Alternatively                  a1 x  b1 y  c1  k  a2 x  b2 y  c2   0                  2 x  y  1  k  3x  5 y ...
Upcoming SlideShare
Loading in …5
×

11X1 T06 06 line through pt of intersection

433 views

Published on

Published in: Education
  • Be the first to comment

  • Be the first to like this

11X1 T06 06 line through pt of intersection

  1. 1. Equation of a line through a point and intersection of another two lines
  2. 2. Equation of a line through a point and intersection of another two linese.g. Find the equation of the line that passes through the intersection of 2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2).
  3. 3. Equation of a line through a point and intersection of another two linese.g. Find the equation of the line that passes through the intersection of 2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2). 2x  y 1  0 3x  5 y  9  0
  4. 4. Equation of a line through a point and intersection of another two linese.g. Find the equation of the line that passes through the intersection of 2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2). 2x  y 1  0 10 x  5 y  5  3x  5 y  9  0 3x  5 y  9
  5. 5. Equation of a line through a point and intersection of another two linese.g. Find the equation of the line that passes through the intersection of 2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2). 2x  y 1  0 10 x  5 y  5 ()  3x  5 y  9  0 3x  5 y  9
  6. 6. Equation of a line through a point and intersection of another two linese.g. Find the equation of the line that passes through the intersection of 2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2). 2x  y 1  0 10 x  5 y  5 ()  3x  5 y  9  0 3x  5 y  9 7x =  14
  7. 7. Equation of a line through a point and intersection of another two linese.g. Find the equation of the line that passes through the intersection of 2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2). 2x  y 1  0 10 x  5 y  5 ()  3x  5 y  9  0 3x  5 y  9 7x =  14 x  2
  8. 8. Equation of a line through a point and intersection of another two linese.g. Find the equation of the line that passes through the intersection of 2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2). 2x  y 1  0 10 x  5 y  5 ()  3x  5 y  9  0 3x  5 y  9 7x =  14 x  2  2  2   y  1  0 y3
  9. 9. Equation of a line through a point and intersection of another two linese.g. Find the equation of the line that passes through the intersection of 2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2). 2x  y 1  0 10 x  5 y  5 ()  3x  5 y  9  0 3x  5 y  9 7x =  14 x  2  2  2   y  1  0 y3  the lines intersect at  2,3
  10. 10. Equation of a line through a point and intersection of another two linese.g. Find the equation of the line that passes through the intersection of 2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2). 2x  y 1  0 10 x  5 y  5 ()  3x  5 y  9  0 3x  5 y  9 7x =  14 x  2  2  2   y  1  0 y3 3 2  the lines intersect at  2,3 m 2  1 1  3
  11. 11. Equation of a line through a point and intersection of another two linese.g. Find the equation of the line that passes through the intersection of 2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2). 2x  y 1  0 10 x  5 y  5 ()  3x  5 y  9  0 3x  5 y  9 7x =  14 x  2  2  2   y  1  0 y3 3 2 1 y  2    x  1  the lines intersect at  2,3 m 2  1 3 1  3
  12. 12. Equation of a line through a point and intersection of another two linese.g. Find the equation of the line that passes through the intersection of 2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2). 2x  y 1  0 10 x  5 y  5 ()  3x  5 y  9  0 3x  5 y  9 7x =  14 x  2  2  2   y  1  0 y3 3 2 1 y  2    x  1  the lines intersect at  2,3 m 2  1 3 1 3y  6  x 1  3 x  3y  7  0
  13. 13. Alternatively
  14. 14. Alternatively a1 x  b1 y  c1  k  a2 x  b2 y  c2   0
  15. 15. Alternatively a1 x  b1 y  c1  k  a2 x  b2 y  c2   0 2 x  y  1  k  3x  5 y  9   0
  16. 16. Alternatively a1 x  b1 y  c1  k  a2 x  b2 y  c2   0 2 x  y  1  k  3x  5 y  9   0 1, 2  : 2 1   2   1  k  3 1  5  2   9   0
  17. 17. Alternatively a1 x  b1 y  c1  k  a2 x  b2 y  c2   0 2 x  y  1  k  3x  5 y  9   0 1, 2  : 2 1   2   1  k  3 1  5  2   9   0 5  4k  0
  18. 18. Alternatively a1 x  b1 y  c1  k  a2 x  b2 y  c2   0 2 x  y  1  k  3x  5 y  9   0 1, 2  : 2 1   2   1  k  3 1  5  2   9   0 5  4k  0 4k  5 5 k  4
  19. 19. Alternatively a1 x  b1 y  c1  k  a2 x  b2 y  c2   0 2 x  y  1  k  3x  5 y  9   0 1, 2  : 2 1   2   1  k  3 1  5  2   9   0 5  4k  0 4k  5 5 k  4 5 2x  y 1  3x  5 y  9   0 4
  20. 20. Alternatively a1 x  b1 y  c1  k  a2 x  b2 y  c2   0 2 x  y  1  k  3x  5 y  9   0 1, 2  : 2 1   2   1  k  3 1  5  2   9   0 5  4k  0 4k  5 5 k  4 5 2x  y 1  3x  5 y  9   0 48 x  4 y  4  15 x  25 y  45  0
  21. 21. Alternatively a1 x  b1 y  c1  k  a2 x  b2 y  c2   0 2 x  y  1  k  3x  5 y  9   0 1, 2  : 2 1   2   1  k  3 1  5  2   9   0 5  4k  0 4k  5 5 k  4 5 2x  y 1  3x  5 y  9   0 48 x  4 y  4  15 x  25 y  45  0 7 x  21 y  49  0
  22. 22. Alternatively a1 x  b1 y  c1  k  a2 x  b2 y  c2   0 2 x  y  1  k  3x  5 y  9   0 1, 2  : 2 1   2   1  k  3 1  5  2   9   0 5  4k  0 4k  5 5 k  4 5 2x  y 1  3x  5 y  9   0 48 x  4 y  4  15 x  25 y  45  0 7 x  21 y  49  0 x  3y  7  0
  23. 23. Alternatively a1 x  b1 y  c1  k  a2 x  b2 y  c2   0 2 x  y  1  k  3x  5 y  9   0 1, 2  : 2 1   2   1  k  3 1  5  2   9   0 5  4k  0 4k  5 5 k  4 5 2x  y 1  3x  5 y  9   0 48 x  4 y  4  15 x  25 y  45  0 Exercise 5F; 2b, 3b, 6b(i), 7ab (i, iii), 9, 10, 13* 7 x  21 y  49  0 x  3y  7  0 Exercise 5G; 2 to 14 evens, 15*

×