SlideShare a Scribd company logo

Deep Learning for Recommender Systems

(Presented at the Deep Learning Re-Work SF Summit on 01/25/2018) In this talk, we go through the traditional recommendation systems set-up, and show that deep learning approaches in that set-up don't bring a lot of extra value. We then focus on different ways to leverage these techniques, most of which relying on breaking away from that traditional set-up; through providing additional data to your recommendation algorithm, modeling different facets of user/item interactions, and most importantly re-framing the recommendation problem itself. In particular we show a few results obtained by casting the problem as a contextual sequence prediction task, and using it to model time (a very important dimension in most recommendation systems).

1 of 33
Download to read offline
Deep Learning for
Recommender Systems
Yves Raimond & Justin Basilico
January 25, 2017
Re·Work Deep Learning Summit San Francisco
@moustaki @JustinBasilico
The value of recommendations
● A few seconds to find something
great to watch…
● Can only show a few titles
● Enjoyment directly impacts
customer satisfaction
● Generates over $1B per year of
Netflix revenue
● How? Personalize everything
Deep learning for
recommendations: a first try
0 1 0 1 0
0 0 1 1 0
1 0 0 1 1
0 1 0 0 0
0 0 0 0 1
UsersItems
Traditional Recommendation Setup
U≈R
V
A Matrix Factorization view
U
A Feed-Forward Network view
V

Recommended

Time, Context and Causality in Recommender Systems
Time, Context and Causality in Recommender SystemsTime, Context and Causality in Recommender Systems
Time, Context and Causality in Recommender SystemsYves Raimond
 
Contextualization at Netflix
Contextualization at NetflixContextualization at Netflix
Contextualization at NetflixLinas Baltrunas
 
Personalizing "The Netflix Experience" with Deep Learning
Personalizing "The Netflix Experience" with Deep LearningPersonalizing "The Netflix Experience" with Deep Learning
Personalizing "The Netflix Experience" with Deep LearningAnoop Deoras
 
Making Netflix Machine Learning Algorithms Reliable
Making Netflix Machine Learning Algorithms ReliableMaking Netflix Machine Learning Algorithms Reliable
Making Netflix Machine Learning Algorithms ReliableJustin Basilico
 
Déjà Vu: The Importance of Time and Causality in Recommender Systems
Déjà Vu: The Importance of Time and Causality in Recommender SystemsDéjà Vu: The Importance of Time and Causality in Recommender Systems
Déjà Vu: The Importance of Time and Causality in Recommender SystemsJustin Basilico
 
Artwork Personalization at Netflix
Artwork Personalization at NetflixArtwork Personalization at Netflix
Artwork Personalization at NetflixJustin Basilico
 
Past, Present & Future of Recommender Systems: An Industry Perspective
Past, Present & Future of Recommender Systems: An Industry PerspectivePast, Present & Future of Recommender Systems: An Industry Perspective
Past, Present & Future of Recommender Systems: An Industry PerspectiveJustin Basilico
 

More Related Content

What's hot

Deeper Things: How Netflix Leverages Deep Learning in Recommendations and Se...
 Deeper Things: How Netflix Leverages Deep Learning in Recommendations and Se... Deeper Things: How Netflix Leverages Deep Learning in Recommendations and Se...
Deeper Things: How Netflix Leverages Deep Learning in Recommendations and Se...Sudeep Das, Ph.D.
 
Missing values in recommender models
Missing values in recommender modelsMissing values in recommender models
Missing values in recommender modelsParmeshwar Khurd
 
Recent Trends in Personalization: A Netflix Perspective
Recent Trends in Personalization: A Netflix PerspectiveRecent Trends in Personalization: A Netflix Perspective
Recent Trends in Personalization: A Netflix PerspectiveJustin Basilico
 
Crafting Recommenders: the Shallow and the Deep of it!
Crafting Recommenders: the Shallow and the Deep of it! Crafting Recommenders: the Shallow and the Deep of it!
Crafting Recommenders: the Shallow and the Deep of it! Sudeep Das, Ph.D.
 
Deep Learning for Recommender Systems
Deep Learning for Recommender SystemsDeep Learning for Recommender Systems
Deep Learning for Recommender SystemsJustin Basilico
 
Context Aware Recommendations at Netflix
Context Aware Recommendations at NetflixContext Aware Recommendations at Netflix
Context Aware Recommendations at NetflixLinas Baltrunas
 
Lessons Learned from Building Machine Learning Software at Netflix
Lessons Learned from Building Machine Learning Software at NetflixLessons Learned from Building Machine Learning Software at Netflix
Lessons Learned from Building Machine Learning Software at NetflixJustin Basilico
 
Tutorial on Deep Learning in Recommender System, Lars summer school 2019
Tutorial on Deep Learning in Recommender System, Lars summer school 2019Tutorial on Deep Learning in Recommender System, Lars summer school 2019
Tutorial on Deep Learning in Recommender System, Lars summer school 2019Anoop Deoras
 
Sequential Decision Making in Recommendations
Sequential Decision Making in RecommendationsSequential Decision Making in Recommendations
Sequential Decision Making in RecommendationsJaya Kawale
 
Recommending for the World
Recommending for the WorldRecommending for the World
Recommending for the WorldYves Raimond
 
Ehtsham Elahi, Senior Research Engineer, Personalization Science and Engineer...
Ehtsham Elahi, Senior Research Engineer, Personalization Science and Engineer...Ehtsham Elahi, Senior Research Engineer, Personalization Science and Engineer...
Ehtsham Elahi, Senior Research Engineer, Personalization Science and Engineer...MLconf
 
Recent Trends in Personalization at Netflix
Recent Trends in Personalization at NetflixRecent Trends in Personalization at Netflix
Recent Trends in Personalization at NetflixJustin Basilico
 
Artwork Personalization at Netflix Fernando Amat RecSys2018
Artwork Personalization at Netflix Fernando Amat RecSys2018 Artwork Personalization at Netflix Fernando Amat RecSys2018
Artwork Personalization at Netflix Fernando Amat RecSys2018 Fernando Amat
 
Personalized Page Generation for Browsing Recommendations
Personalized Page Generation for Browsing RecommendationsPersonalized Page Generation for Browsing Recommendations
Personalized Page Generation for Browsing RecommendationsJustin Basilico
 
Learning a Personalized Homepage
Learning a Personalized HomepageLearning a Personalized Homepage
Learning a Personalized HomepageJustin Basilico
 
Calibrated Recommendations
Calibrated RecommendationsCalibrated Recommendations
Calibrated RecommendationsHarald Steck
 
Data council SF 2020 Building a Personalized Messaging System at Netflix
Data council SF 2020 Building a Personalized Messaging System at NetflixData council SF 2020 Building a Personalized Messaging System at Netflix
Data council SF 2020 Building a Personalized Messaging System at NetflixGrace T. Huang
 
Shallow and Deep Latent Models for Recommender System
Shallow and Deep Latent Models for Recommender SystemShallow and Deep Latent Models for Recommender System
Shallow and Deep Latent Models for Recommender SystemAnoop Deoras
 
A Multi-Armed Bandit Framework For Recommendations at Netflix
A Multi-Armed Bandit Framework For Recommendations at NetflixA Multi-Armed Bandit Framework For Recommendations at Netflix
A Multi-Armed Bandit Framework For Recommendations at NetflixJaya Kawale
 

What's hot (20)

Deeper Things: How Netflix Leverages Deep Learning in Recommendations and Se...
 Deeper Things: How Netflix Leverages Deep Learning in Recommendations and Se... Deeper Things: How Netflix Leverages Deep Learning in Recommendations and Se...
Deeper Things: How Netflix Leverages Deep Learning in Recommendations and Se...
 
Missing values in recommender models
Missing values in recommender modelsMissing values in recommender models
Missing values in recommender models
 
Recent Trends in Personalization: A Netflix Perspective
Recent Trends in Personalization: A Netflix PerspectiveRecent Trends in Personalization: A Netflix Perspective
Recent Trends in Personalization: A Netflix Perspective
 
Crafting Recommenders: the Shallow and the Deep of it!
Crafting Recommenders: the Shallow and the Deep of it! Crafting Recommenders: the Shallow and the Deep of it!
Crafting Recommenders: the Shallow and the Deep of it!
 
Deep Learning for Recommender Systems
Deep Learning for Recommender SystemsDeep Learning for Recommender Systems
Deep Learning for Recommender Systems
 
Context Aware Recommendations at Netflix
Context Aware Recommendations at NetflixContext Aware Recommendations at Netflix
Context Aware Recommendations at Netflix
 
Lessons Learned from Building Machine Learning Software at Netflix
Lessons Learned from Building Machine Learning Software at NetflixLessons Learned from Building Machine Learning Software at Netflix
Lessons Learned from Building Machine Learning Software at Netflix
 
Tutorial on Deep Learning in Recommender System, Lars summer school 2019
Tutorial on Deep Learning in Recommender System, Lars summer school 2019Tutorial on Deep Learning in Recommender System, Lars summer school 2019
Tutorial on Deep Learning in Recommender System, Lars summer school 2019
 
Sequential Decision Making in Recommendations
Sequential Decision Making in RecommendationsSequential Decision Making in Recommendations
Sequential Decision Making in Recommendations
 
Recommending for the World
Recommending for the WorldRecommending for the World
Recommending for the World
 
Ehtsham Elahi, Senior Research Engineer, Personalization Science and Engineer...
Ehtsham Elahi, Senior Research Engineer, Personalization Science and Engineer...Ehtsham Elahi, Senior Research Engineer, Personalization Science and Engineer...
Ehtsham Elahi, Senior Research Engineer, Personalization Science and Engineer...
 
Recent Trends in Personalization at Netflix
Recent Trends in Personalization at NetflixRecent Trends in Personalization at Netflix
Recent Trends in Personalization at Netflix
 
Artwork Personalization at Netflix Fernando Amat RecSys2018
Artwork Personalization at Netflix Fernando Amat RecSys2018 Artwork Personalization at Netflix Fernando Amat RecSys2018
Artwork Personalization at Netflix Fernando Amat RecSys2018
 
Personalized Page Generation for Browsing Recommendations
Personalized Page Generation for Browsing RecommendationsPersonalized Page Generation for Browsing Recommendations
Personalized Page Generation for Browsing Recommendations
 
Learning a Personalized Homepage
Learning a Personalized HomepageLearning a Personalized Homepage
Learning a Personalized Homepage
 
Calibrated Recommendations
Calibrated RecommendationsCalibrated Recommendations
Calibrated Recommendations
 
Data council SF 2020 Building a Personalized Messaging System at Netflix
Data council SF 2020 Building a Personalized Messaging System at NetflixData council SF 2020 Building a Personalized Messaging System at Netflix
Data council SF 2020 Building a Personalized Messaging System at Netflix
 
Shallow and Deep Latent Models for Recommender System
Shallow and Deep Latent Models for Recommender SystemShallow and Deep Latent Models for Recommender System
Shallow and Deep Latent Models for Recommender System
 
A Multi-Armed Bandit Framework For Recommendations at Netflix
A Multi-Armed Bandit Framework For Recommendations at NetflixA Multi-Armed Bandit Framework For Recommendations at Netflix
A Multi-Armed Bandit Framework For Recommendations at Netflix
 
Recommender Systems
Recommender SystemsRecommender Systems
Recommender Systems
 

Similar to Deep Learning for Recommender Systems

Video Recommendation Engines as a Service
Video Recommendation Engines as a ServiceVideo Recommendation Engines as a Service
Video Recommendation Engines as a ServiceKamil Sindi
 
Strata NYC: Building turn-key recommendations for 5% of internet video
Strata NYC: Building turn-key recommendations for 5% of internet videoStrata NYC: Building turn-key recommendations for 5% of internet video
Strata NYC: Building turn-key recommendations for 5% of internet videoKamil Sindi
 
Further enhancements of recommender systems using deep learning
Further enhancements of recommender systems using deep learningFurther enhancements of recommender systems using deep learning
Further enhancements of recommender systems using deep learningInstitute of Contemporary Sciences
 
[CS570] Machine Learning Team Project (I know what items really are)
[CS570] Machine Learning Team Project (I know what items really are)[CS570] Machine Learning Team Project (I know what items really are)
[CS570] Machine Learning Team Project (I know what items really are)Kunwoo Park
 
Building turn-key recommendations for 5% of internet video
Building turn-key recommendations for 5% of internet videoBuilding turn-key recommendations for 5% of internet video
Building turn-key recommendations for 5% of internet videoNir Yungster
 
Intelligent Software Engineering: Synergy between AI and Software Engineering
Intelligent Software Engineering: Synergy between AI and Software EngineeringIntelligent Software Engineering: Synergy between AI and Software Engineering
Intelligent Software Engineering: Synergy between AI and Software EngineeringTao Xie
 
Recommending Sequences RecTour 2017
Recommending Sequences RecTour 2017Recommending Sequences RecTour 2017
Recommending Sequences RecTour 2017Gunjan Kumar
 
Qcon SF 2013 - Machine Learning & Recommender Systems @ Netflix Scale
Qcon SF 2013 - Machine Learning & Recommender Systems @ Netflix ScaleQcon SF 2013 - Machine Learning & Recommender Systems @ Netflix Scale
Qcon SF 2013 - Machine Learning & Recommender Systems @ Netflix ScaleXavier Amatriain
 
Gunjan insight student conference v2
Gunjan insight student conference v2Gunjan insight student conference v2
Gunjan insight student conference v2Gunjan Kumar
 
Rokach-GomaxSlides (1).pptx
Rokach-GomaxSlides (1).pptxRokach-GomaxSlides (1).pptx
Rokach-GomaxSlides (1).pptxJadna Almeida
 
Rokach-GomaxSlides.pptx
Rokach-GomaxSlides.pptxRokach-GomaxSlides.pptx
Rokach-GomaxSlides.pptxJadna Almeida
 
Strata 2016 - Lessons Learned from building real-life Machine Learning Systems
Strata 2016 -  Lessons Learned from building real-life Machine Learning SystemsStrata 2016 -  Lessons Learned from building real-life Machine Learning Systems
Strata 2016 - Lessons Learned from building real-life Machine Learning SystemsXavier Amatriain
 
Dialogue system②
Dialogue system②Dialogue system②
Dialogue system②Kent T
 
Cikm 2013 - Beyond Data From User Information to Business Value
Cikm 2013 - Beyond Data From User Information to Business ValueCikm 2013 - Beyond Data From User Information to Business Value
Cikm 2013 - Beyond Data From User Information to Business ValueXavier Amatriain
 
Active Learning on Question Answering with Dialogues
 Active Learning on Question Answering with Dialogues Active Learning on Question Answering with Dialogues
Active Learning on Question Answering with DialoguesJinho Choi
 
KaoNet: Face Recognition and Generation App using Deep Learning
KaoNet: Face Recognition and Generation App using Deep LearningKaoNet: Face Recognition and Generation App using Deep Learning
KaoNet: Face Recognition and Generation App using Deep LearningVan Huy
 
Our journey with druid - from initial research to full production scale
Our journey with druid - from initial research to full production scaleOur journey with druid - from initial research to full production scale
Our journey with druid - from initial research to full production scaleItai Yaffe
 
Retweet Prediction with Attention-based Deep Neural Network
Retweet Prediction with Attention-based Deep Neural NetworkRetweet Prediction with Attention-based Deep Neural Network
Retweet Prediction with Attention-based Deep Neural NetworkGUANGYUAN PIAO
 

Similar to Deep Learning for Recommender Systems (20)

Video Recommendation Engines as a Service
Video Recommendation Engines as a ServiceVideo Recommendation Engines as a Service
Video Recommendation Engines as a Service
 
Strata NYC: Building turn-key recommendations for 5% of internet video
Strata NYC: Building turn-key recommendations for 5% of internet videoStrata NYC: Building turn-key recommendations for 5% of internet video
Strata NYC: Building turn-key recommendations for 5% of internet video
 
Further enhancements of recommender systems using deep learning
Further enhancements of recommender systems using deep learningFurther enhancements of recommender systems using deep learning
Further enhancements of recommender systems using deep learning
 
[CS570] Machine Learning Team Project (I know what items really are)
[CS570] Machine Learning Team Project (I know what items really are)[CS570] Machine Learning Team Project (I know what items really are)
[CS570] Machine Learning Team Project (I know what items really are)
 
Building turn-key recommendations for 5% of internet video
Building turn-key recommendations for 5% of internet videoBuilding turn-key recommendations for 5% of internet video
Building turn-key recommendations for 5% of internet video
 
Deep Learning Recommender Systems
Deep Learning Recommender SystemsDeep Learning Recommender Systems
Deep Learning Recommender Systems
 
Intelligent Software Engineering: Synergy between AI and Software Engineering
Intelligent Software Engineering: Synergy between AI and Software EngineeringIntelligent Software Engineering: Synergy between AI and Software Engineering
Intelligent Software Engineering: Synergy between AI and Software Engineering
 
Recommending Sequences RecTour 2017
Recommending Sequences RecTour 2017Recommending Sequences RecTour 2017
Recommending Sequences RecTour 2017
 
Qcon SF 2013 - Machine Learning & Recommender Systems @ Netflix Scale
Qcon SF 2013 - Machine Learning & Recommender Systems @ Netflix ScaleQcon SF 2013 - Machine Learning & Recommender Systems @ Netflix Scale
Qcon SF 2013 - Machine Learning & Recommender Systems @ Netflix Scale
 
Gunjan insight student conference v2
Gunjan insight student conference v2Gunjan insight student conference v2
Gunjan insight student conference v2
 
Rokach-GomaxSlides (1).pptx
Rokach-GomaxSlides (1).pptxRokach-GomaxSlides (1).pptx
Rokach-GomaxSlides (1).pptx
 
Rokach-GomaxSlides.pptx
Rokach-GomaxSlides.pptxRokach-GomaxSlides.pptx
Rokach-GomaxSlides.pptx
 
Strata 2016 - Lessons Learned from building real-life Machine Learning Systems
Strata 2016 -  Lessons Learned from building real-life Machine Learning SystemsStrata 2016 -  Lessons Learned from building real-life Machine Learning Systems
Strata 2016 - Lessons Learned from building real-life Machine Learning Systems
 
Dialogue system②
Dialogue system②Dialogue system②
Dialogue system②
 
Cikm 2013 - Beyond Data From User Information to Business Value
Cikm 2013 - Beyond Data From User Information to Business ValueCikm 2013 - Beyond Data From User Information to Business Value
Cikm 2013 - Beyond Data From User Information to Business Value
 
Active Learning on Question Answering with Dialogues
 Active Learning on Question Answering with Dialogues Active Learning on Question Answering with Dialogues
Active Learning on Question Answering with Dialogues
 
GKumarAICS
GKumarAICSGKumarAICS
GKumarAICS
 
KaoNet: Face Recognition and Generation App using Deep Learning
KaoNet: Face Recognition and Generation App using Deep LearningKaoNet: Face Recognition and Generation App using Deep Learning
KaoNet: Face Recognition and Generation App using Deep Learning
 
Our journey with druid - from initial research to full production scale
Our journey with druid - from initial research to full production scaleOur journey with druid - from initial research to full production scale
Our journey with druid - from initial research to full production scale
 
Retweet Prediction with Attention-based Deep Neural Network
Retweet Prediction with Attention-based Deep Neural NetworkRetweet Prediction with Attention-based Deep Neural Network
Retweet Prediction with Attention-based Deep Neural Network
 

More from Yves Raimond

(Some) pitfalls of distributed learning
(Some) pitfalls of distributed learning(Some) pitfalls of distributed learning
(Some) pitfalls of distributed learningYves Raimond
 
Spark Meetup @ Netflix, 05/19/2015
Spark Meetup @ Netflix, 05/19/2015Spark Meetup @ Netflix, 05/19/2015
Spark Meetup @ Netflix, 05/19/2015Yves Raimond
 
Utilisation du Web Semantique pour les sites de la BBC
Utilisation du Web Semantique pour les sites de la BBCUtilisation du Web Semantique pour les sites de la BBC
Utilisation du Web Semantique pour les sites de la BBCYves Raimond
 
Linked Data on the BBC
Linked Data on the BBCLinked Data on the BBC
Linked Data on the BBCYves Raimond
 
Publishing and interlinking music-related data on the Web
Publishing and interlinking music-related data on the WebPublishing and interlinking music-related data on the Web
Publishing and interlinking music-related data on the WebYves Raimond
 
Linked data and applications
Linked data and applicationsLinked data and applications
Linked data and applicationsYves Raimond
 
Towards a musical Semantic Web
Towards a musical Semantic WebTowards a musical Semantic Web
Towards a musical Semantic WebYves Raimond
 

More from Yves Raimond (9)

(Some) pitfalls of distributed learning
(Some) pitfalls of distributed learning(Some) pitfalls of distributed learning
(Some) pitfalls of distributed learning
 
Paris ML meetup
Paris ML meetupParis ML meetup
Paris ML meetup
 
Spark Meetup @ Netflix, 05/19/2015
Spark Meetup @ Netflix, 05/19/2015Spark Meetup @ Netflix, 05/19/2015
Spark Meetup @ Netflix, 05/19/2015
 
Utilisation du Web Semantique pour les sites de la BBC
Utilisation du Web Semantique pour les sites de la BBCUtilisation du Web Semantique pour les sites de la BBC
Utilisation du Web Semantique pour les sites de la BBC
 
Linked Data on the BBC
Linked Data on the BBCLinked Data on the BBC
Linked Data on the BBC
 
Publishing and interlinking music-related data on the Web
Publishing and interlinking music-related data on the WebPublishing and interlinking music-related data on the Web
Publishing and interlinking music-related data on the Web
 
Linked data and applications
Linked data and applicationsLinked data and applications
Linked data and applications
 
Web of data
Web of dataWeb of data
Web of data
 
Towards a musical Semantic Web
Towards a musical Semantic WebTowards a musical Semantic Web
Towards a musical Semantic Web
 

Recently uploaded

Architectural Preservation - Heritage, focused on Saudi Arabia
Architectural Preservation - Heritage, focused on Saudi ArabiaArchitectural Preservation - Heritage, focused on Saudi Arabia
Architectural Preservation - Heritage, focused on Saudi ArabiaIgnacio J. Palma, Arch PhD.
 
INTERACTIVE AQUATIC MUSEUM AT BAGH IBN QASIM CLIFTON KARACHI
INTERACTIVE AQUATIC MUSEUM AT BAGH IBN QASIM CLIFTON KARACHIINTERACTIVE AQUATIC MUSEUM AT BAGH IBN QASIM CLIFTON KARACHI
INTERACTIVE AQUATIC MUSEUM AT BAGH IBN QASIM CLIFTON KARACHIKiranKandhro1
 
CCW332-DIGITAL MARKETING QUESTION BANK WITH ANSWERS
CCW332-DIGITAL MARKETING QUESTION BANK WITH ANSWERSCCW332-DIGITAL MARKETING QUESTION BANK WITH ANSWERS
CCW332-DIGITAL MARKETING QUESTION BANK WITH ANSWERSTamil949112
 
Microstrip Bandpass Filter Design using EDA Tolol such as keysight ADS and An...
Microstrip Bandpass Filter Design using EDA Tolol such as keysight ADS and An...Microstrip Bandpass Filter Design using EDA Tolol such as keysight ADS and An...
Microstrip Bandpass Filter Design using EDA Tolol such as keysight ADS and An...GauravBhartie
 
HB Self-Body characteristics UHV understanding
HB Self-Body characteristics UHV understandingHB Self-Body characteristics UHV understanding
HB Self-Body characteristics UHV understandingLeoRaju4
 
Forged Fitting Socket Welding Standard- ASME-B16.11-2001.pdf
Forged Fitting Socket Welding Standard- ASME-B16.11-2001.pdfForged Fitting Socket Welding Standard- ASME-B16.11-2001.pdf
Forged Fitting Socket Welding Standard- ASME-B16.11-2001.pdfVikasKumar11936
 
Nexus - Final Day 12th February 2024.pptx
Nexus - Final Day 12th February 2024.pptxNexus - Final Day 12th February 2024.pptx
Nexus - Final Day 12th February 2024.pptxRohanAgarwal340656
 
CDE_Sustainability Performance_20240214.pdf
CDE_Sustainability Performance_20240214.pdfCDE_Sustainability Performance_20240214.pdf
CDE_Sustainability Performance_20240214.pdf8-koi
 
fat and edible oil processsing.ppt, refining
fat and edible oil processsing.ppt, refiningfat and edible oil processsing.ppt, refining
fat and edible oil processsing.ppt, refiningteddymebratie
 
GE8073 - FUNDAMENTALS OF NANOSCIENCE.ppt
GE8073 - FUNDAMENTALS OF NANOSCIENCE.pptGE8073 - FUNDAMENTALS OF NANOSCIENCE.ppt
GE8073 - FUNDAMENTALS OF NANOSCIENCE.pptsrajece
 
PM24_Oral_Presentation_Template_Guidelines.pptx
PM24_Oral_Presentation_Template_Guidelines.pptxPM24_Oral_Presentation_Template_Guidelines.pptx
PM24_Oral_Presentation_Template_Guidelines.pptxnissamant
 
Introduction to the telecom tower industry
Introduction to the telecom tower industryIntroduction to the telecom tower industry
Introduction to the telecom tower industryssuserf5bbfd
 
Introduction to Machine Learning Unit-1 Notes for II-II Mechanical Engineerin...
Introduction to Machine Learning Unit-1 Notes for II-II Mechanical Engineerin...Introduction to Machine Learning Unit-1 Notes for II-II Mechanical Engineerin...
Introduction to Machine Learning Unit-1 Notes for II-II Mechanical Engineerin...C Sai Kiran
 
ExtraordinAIre Monthly Newsletter Jan 2024
ExtraordinAIre Monthly Newsletter Jan 2024ExtraordinAIre Monthly Newsletter Jan 2024
ExtraordinAIre Monthly Newsletter Jan 2024Savipriya Raghavendra
 
GDSC Web Bootcamp - Day - 2 - JavaScript
GDSC Web Bootcamp -  Day - 2   - JavaScriptGDSC Web Bootcamp -  Day - 2   - JavaScript
GDSC Web Bootcamp - Day - 2 - JavaScriptSahithiGurlinka
 
Introduction about Technology roadmap for Industry 4.0
Introduction about Technology roadmap for Industry 4.0Introduction about Technology roadmap for Industry 4.0
Introduction about Technology roadmap for Industry 4.0RaishKhanji
 
CHAPTER 1_ HTML and CSS Introduction Module
CHAPTER 1_ HTML and CSS Introduction ModuleCHAPTER 1_ HTML and CSS Introduction Module
CHAPTER 1_ HTML and CSS Introduction Modulessusera4f8281
 
Model Approved Food/ sanitary Grade Flow Meter
Model Approved Food/ sanitary Grade Flow MeterModel Approved Food/ sanitary Grade Flow Meter
Model Approved Food/ sanitary Grade Flow MeterManasMicrosystems
 
Microservices: Benefits, drawbacks and are they for me?
Microservices: Benefits, drawbacks and are they for me?Microservices: Benefits, drawbacks and are they for me?
Microservices: Benefits, drawbacks and are they for me?Marian Marinov
 

Recently uploaded (20)

Architectural Preservation - Heritage, focused on Saudi Arabia
Architectural Preservation - Heritage, focused on Saudi ArabiaArchitectural Preservation - Heritage, focused on Saudi Arabia
Architectural Preservation - Heritage, focused on Saudi Arabia
 
INTERACTIVE AQUATIC MUSEUM AT BAGH IBN QASIM CLIFTON KARACHI
INTERACTIVE AQUATIC MUSEUM AT BAGH IBN QASIM CLIFTON KARACHIINTERACTIVE AQUATIC MUSEUM AT BAGH IBN QASIM CLIFTON KARACHI
INTERACTIVE AQUATIC MUSEUM AT BAGH IBN QASIM CLIFTON KARACHI
 
CCW332-DIGITAL MARKETING QUESTION BANK WITH ANSWERS
CCW332-DIGITAL MARKETING QUESTION BANK WITH ANSWERSCCW332-DIGITAL MARKETING QUESTION BANK WITH ANSWERS
CCW332-DIGITAL MARKETING QUESTION BANK WITH ANSWERS
 
Microstrip Bandpass Filter Design using EDA Tolol such as keysight ADS and An...
Microstrip Bandpass Filter Design using EDA Tolol such as keysight ADS and An...Microstrip Bandpass Filter Design using EDA Tolol such as keysight ADS and An...
Microstrip Bandpass Filter Design using EDA Tolol such as keysight ADS and An...
 
HB Self-Body characteristics UHV understanding
HB Self-Body characteristics UHV understandingHB Self-Body characteristics UHV understanding
HB Self-Body characteristics UHV understanding
 
Forged Fitting Socket Welding Standard- ASME-B16.11-2001.pdf
Forged Fitting Socket Welding Standard- ASME-B16.11-2001.pdfForged Fitting Socket Welding Standard- ASME-B16.11-2001.pdf
Forged Fitting Socket Welding Standard- ASME-B16.11-2001.pdf
 
Nexus - Final Day 12th February 2024.pptx
Nexus - Final Day 12th February 2024.pptxNexus - Final Day 12th February 2024.pptx
Nexus - Final Day 12th February 2024.pptx
 
CDE_Sustainability Performance_20240214.pdf
CDE_Sustainability Performance_20240214.pdfCDE_Sustainability Performance_20240214.pdf
CDE_Sustainability Performance_20240214.pdf
 
fat and edible oil processsing.ppt, refining
fat and edible oil processsing.ppt, refiningfat and edible oil processsing.ppt, refining
fat and edible oil processsing.ppt, refining
 
GE8073 - FUNDAMENTALS OF NANOSCIENCE.ppt
GE8073 - FUNDAMENTALS OF NANOSCIENCE.pptGE8073 - FUNDAMENTALS OF NANOSCIENCE.ppt
GE8073 - FUNDAMENTALS OF NANOSCIENCE.ppt
 
PM24_Oral_Presentation_Template_Guidelines.pptx
PM24_Oral_Presentation_Template_Guidelines.pptxPM24_Oral_Presentation_Template_Guidelines.pptx
PM24_Oral_Presentation_Template_Guidelines.pptx
 
Introduction to the telecom tower industry
Introduction to the telecom tower industryIntroduction to the telecom tower industry
Introduction to the telecom tower industry
 
Introduction to Machine Learning Unit-1 Notes for II-II Mechanical Engineerin...
Introduction to Machine Learning Unit-1 Notes for II-II Mechanical Engineerin...Introduction to Machine Learning Unit-1 Notes for II-II Mechanical Engineerin...
Introduction to Machine Learning Unit-1 Notes for II-II Mechanical Engineerin...
 
ExtraordinAIre Monthly Newsletter Jan 2024
ExtraordinAIre Monthly Newsletter Jan 2024ExtraordinAIre Monthly Newsletter Jan 2024
ExtraordinAIre Monthly Newsletter Jan 2024
 
AC DISTRIBUTION - ELECTRICAL POWER SYSTEM
AC DISTRIBUTION - ELECTRICAL POWER SYSTEMAC DISTRIBUTION - ELECTRICAL POWER SYSTEM
AC DISTRIBUTION - ELECTRICAL POWER SYSTEM
 
GDSC Web Bootcamp - Day - 2 - JavaScript
GDSC Web Bootcamp -  Day - 2   - JavaScriptGDSC Web Bootcamp -  Day - 2   - JavaScript
GDSC Web Bootcamp - Day - 2 - JavaScript
 
Introduction about Technology roadmap for Industry 4.0
Introduction about Technology roadmap for Industry 4.0Introduction about Technology roadmap for Industry 4.0
Introduction about Technology roadmap for Industry 4.0
 
CHAPTER 1_ HTML and CSS Introduction Module
CHAPTER 1_ HTML and CSS Introduction ModuleCHAPTER 1_ HTML and CSS Introduction Module
CHAPTER 1_ HTML and CSS Introduction Module
 
Model Approved Food/ sanitary Grade Flow Meter
Model Approved Food/ sanitary Grade Flow MeterModel Approved Food/ sanitary Grade Flow Meter
Model Approved Food/ sanitary Grade Flow Meter
 
Microservices: Benefits, drawbacks and are they for me?
Microservices: Benefits, drawbacks and are they for me?Microservices: Benefits, drawbacks and are they for me?
Microservices: Benefits, drawbacks and are they for me?
 

Deep Learning for Recommender Systems

  • 1. Deep Learning for Recommender Systems Yves Raimond & Justin Basilico January 25, 2017 Re·Work Deep Learning Summit San Francisco @moustaki @JustinBasilico
  • 2. The value of recommendations ● A few seconds to find something great to watch… ● Can only show a few titles ● Enjoyment directly impacts customer satisfaction ● Generates over $1B per year of Netflix revenue ● How? Personalize everything
  • 4. 0 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 UsersItems Traditional Recommendation Setup
  • 7. U A (deeper) feed-forward view V Mean squared loss?
  • 8. A quick & dirty experiment ● MovieLens-20M ○ Binarized ratings ○ Two weeks validation, two weeks test ● Comparing two models ○ ‘Standard’ MF, with hyperparameters: ■ L2 regularization ■ Rank ○ Feed-forward net, with hyperparameters: ■ L2 regularization (for all layers + embeddings) ■ Embeddings dimensionality ■ Number of hidden layers ■ Hidden layer dimensionalities ■ Activations ● After hyperparameter search for both models, what do we get?
  • 11. What’s going on? ● Very similar models: representation learning through embeddings, MSE loss, gradient-based optimization ● Main difference is that we can learn a different embedding combination than a dot product ● … but embeddings are arbitrary representations ● … and capturing pairwise interactions through a feed-forward net requires a very large model
  • 12. Conclusion? ● Not much benefit in the ‘traditional’ recommendation setup of a deep versus a properly tuned model ● … Is this talk over?
  • 13. Breaking the ‘traditional’ recsys setup ● Adding extra data / inputs ● Modeling different facets of users and items ● Alternative framings of the problem
  • 15. Content-based side information ● VBPR: helping cold-start by augmenting item factors with visual factors from CNNs [He et. al., 2015] ● Content2Vec [Nedelec et. al., 2017] ● Learning to approximate MF item embeddings from content [Dieleman, 2014]
  • 16. Metadata-based side information ● Factorization Machines [Rendle, 2010] with side-information ○ Extending the factorization framework to an arbitrary number of inputs ● Meta-Prod2Vec [Vasile et. al., 2016] ○ Regularize item embeddings using side-information ● DCF [Li et al., 2016] ● Using associated textual information for recommendations [Bansal et. al., 2016]
  • 17. YouTube Recommendations ● Two stage ranker: candidate generation (shrinking set of items to rank) and ranking (classifying actual impressions) ● Two feed-forward, fully connected, networks with hundreds of features [Covington et. al., 2016]
  • 19. Restricted Boltzmann Machines ● RBMs for Collaborative Filtering [Salakhutdinov, Minh & Hinton, 2007] ● Part of the ensemble that won the $1M Netflix Prize ● Used in our rating prediction system for several years
  • 20. Auto-encoders ● RBMs are hard to train ● CF-NADE [Zheng et al., 2016] ○ Define (random) orderings over conditionals and model with a neural network ● Denoising auto-encoders: CDL [Wang et al., 2015], CDAE [Wu et al., 2016] ● Variational auto-encoders [Liang et al., 2017]
  • 21. (*)2Vec ● Prod2Vec [Grbovic et al., 2015], Item2Vec [Barkan & Koenigstein, 2016], Pin2Vec [Ma, 2017] ● Item-item co-occurrence factorization (instead of user-item factorization) ● The two approaches can be blended [Liang et al., 2016] prod2vec (Skip-gram) user2vec (Continuous Bag of Words)
  • 22. Wide + Deep models ● Wide model: memorize sparse, specific rules ● Deep model: generalize to similar items via embeddings [Cheng et. al., 2016] Deep Wide (many parameters due to cross product)
  • 24. Sequence prediction ● Treat recommendations as a sequence classification problem ○ Input: sequence of user actions ○ Output: next action ● E.g. Gru4Rec [Hidasi et. al., 2016] ○ Input: sequence of items in a sessions ○ Output: next item in the session ● Also co-evolution: [Wu et al., 2017], [Dai et al., 2017]
  • 25. Contextual sequence prediction ● Input: sequence of contextual user actions, plus current context ● Output: probability of next action ● E.g. “Given all the actions a user has taken so far, what’s the most likely video they’re going to play right now?” ● e.g. [Smirnova & Vasile, 2017], [Beutel et. al., 2018]
  • 26. Contextual sequence data 2017-12-10 15:40:22 2017-12-23 19:32:10 2017-12-24 12:05:53 2017-12-27 22:40:22 2017-12-29 19:39:36 2017-12-30 20:42:13 Context ActionSequence per user ? Time
  • 27. Time-sensitive sequence prediction ● Recommendations are actions at a moment in time ○ Proper modeling of time and system dynamics is critical ● Experiment on a Netflix internal dataset ○ Context: ■ Discrete time ● Day-of-week: Sunday, Monday, … ● Hour-of-day ■ Continuous time (Timestamp) ○ Predict next play (temporal split data)
  • 29. Other framings ● Causality in recommendations ○ Explicitly modeling the consequence of a recommender systems’ intervention [Schnabel et al., 2016] ● Recommendation as question answering ○ E.g. “I loved Billy Madison, My Neighbor Totoro, Blades of Glory, Bio-Dome, Clue, and Happy Gilmore. I’m looking for a Music movie.” [Dodge et al., 2016] ● Deep Reinforcement Learning for recommendations [Zhao et al, 2017]
  • 31. Takeaways ● Deep Learning can work well for Recommendations... when you go beyond the classic problem definition ● Similarities between DL and MF are a good thing: Lots of MF work can be translated to DL ● Lots of open areas to improve recommendations using deep learning ● Think beyond solving existing problems with new tools and instead what new problems they can solve
  • 32. More Resources ● RecSys 2017 tutorial by Karatzoglou and Hidasi ● RecSys Summer School slides by Hidasi ● DLRS Workshop 2016, 2017 ● Recommenders Shallow/Deep by Sudeep Das ● Survey paper by Zhang, Yao & Sun ● GitHub repo of papers by Nandi
  • 33. Thank you. @moustaki @JustinBasilico Yves Raimond & Justin Basilico Yes, we’re hiring...