SlideShare a Scribd company logo
1 of 18
Presentation on:double integral
 
0 2
sin(y) cos(x) 1 dy dx
 
 
  
y
y 2
0
cos(y) ycos(x) y dx


 
     
0
2 3 3 cos(x d) x

    
0
2x 3 x 3 sin(x)

      
2
2 3   
R
Let f(x,y) sin(y) cos(x) 1 and let R be the region in the xy-plane bounded
by x 0,x ,y 2 ,and y . Calculate f(x,y) dA :
  
        
is a function that sweeps out
vertical area cross sections f
2 3 3 cos(x)
rom x 0 to x .
   
  
If we integrate these area cross sections,
we accumulate the volume of the solid:
 
2 0
sin(y) cos(x) 1 dx dy
 
 
  
x
x 0
2
xsin(y) sin(x) x dy



 
    
2
sin(y dy)

 
  

 
      2
y cos(y)
2
2 3   
R R R
Calculate f(x,y) dA by computing f(x,y) dy dx instead of f(x,y) dx dy.  
is a function that sweeps out
horizontal area cross sections from y 2
to y . If we integrate these area cross
sections, we accumulate the volume of the solid:
sin(y)
  
 
  
d b
c a
1) Set up f(x,y) dx dy.
d d
x b
x a
c c
2) Hold y constant and
integrate with respect to x:
F(x,y) dy F(b,y) F(a,y) dy


        
R
Let z f(x,y) be a surface and let R be the rectangular region in the
xy-plane bounded by a x b and c y d. Calculate f(x,y) dA :

    
d
c
3) F(b,y) F(a,y) is a function of y
that measures the area of horizontal
cross sections between y c and y d.
So we can integrate these area cross
sections to get our volume:
F(b,y) F(a,y) dy

 
  
b d
a c
1) Set up f(x,y) dy dx.
b b
x d
x c
a a
2) Hold x constant and
integrate with respect to y:
G(x,y) dx G(x,d) G(x,c) dx


        
b
a
3) G(x,d) G(x,c) is a function of x
that measures the area of vertical
cross sections between x a and x b.
So we can integrate these area cross
sections to get our volume:
G(x,d) G(x,c) dx

 
  
 
3 4
3 4
2sin(xy) 1 dx dy
 
 
x 43
3 x 4
2cos(xy)
x dy
y

 
 
   
 

3
3
2cos(4y) 2cos( 4y)
4 ( 4) dy
y y
    
          
    

3
3
8 dy

 
y 3
y 3
8y


   
48 
R
Let f(x,y) 2sin(xy) 1 and let R be the region in the xy-plane bounded by
x 4,x 4,y 3,and y 3. Calculate f(x,y) dA :
 
      
How did this end up negative??
2 2
2
R
Let f(x,y) x y 3 and let R be the region in the xy-plane bounded above by
y x 4 and below by y 5. Calculate f(x,y) dA :
  
     
2
y3 3
2
3 y 5
x 4
y
yx 3y dx
3
 
 
 
   
 

6
2 4
3
3
x
90 10x 3x dx
3
 
  
 
  
R
f(x,y) dA
 
highright
left lowy (x)
y (x)x
2 2
x
x y 3 dy dx    2
high
y (x) x 4  
low
y (x) 5 
left
x 3  right
x 3
 
2
2 2
3
5
4
3
x
x y 3 dy dx

 

   
6
2 4 x
90 10x 3x is a function that sweeps
3
out vertical area cross sections from 3 to 3.
  

6
2 4
If we integrate these cross sections given by
x
90 10x 3x from x 3 to x 3,
3
we accumulate the volume of the solid:
     
2 2
2
R
Let f(x,y) x y 3 and let R be the region in the xy-plane bounded above by
y x 4 and below by y 5. Calculate f(x,y) dA :
  
     
6
2 4
3
3
x
90 10x 3x dx
3
 
  
 
  
7
3 5
3
3
10 3 x
21
90x x x
3 5 
 
  
 
  
15516
35

R
Calculate f(x,y) dA again, but change the order of integration :
4 yx4
5 y
3
2
4x
x
y x 3x dy
3

 

 
    
 

2
4
5
26 4 y 2
y 4 y 2y 4 dyy
3 3
 
 


   

 

R
f(x,y) dA
 
ht ighop
bottom lowx (y)
x (y)y
y
2 2
x y 3 dx dy   
high
x (y) 4 y 
low
x (y) 4 y  
top
y 4
 2 2
44
4
y
5 y
x y 3 dx dy
 


   
2
26 4 y 2
y 4 y 2y 4 y is a function
3 3
that sweeps out horizontal area cross sections
from y 5 to y 4.

   
  
bottom
y 5 
2
26 4 y 2
y 4 y 2y 4 y is a function
3 3
that sweeps out horizontal area cross sections
from y 5 to y 4.

   
  
2 2
2
R
Let f(x,y) x y 3 and let R be the region in the xy-plane bounded above by
y x 4 and below by y 5. Calculate f(x,y) dA :
  
     
2
4
5
26 4 y 2
y 4 y 2y 4 dyy
3 3
 
 


   

 

 
4
3/2 2
5
4
(4 y) 15y 41y 261
105 
 
    
 

15516
35

   
 






      
2
5 4 y
2 2 2
4 yx3 44
3
2
5
x y 3 dy dx and x y 3 dx dy compute
the exact same thing!!!
high
x (y) 4 y 
low
x (y) 4 y  
top
y 4
bottom
y 5 
2
high
y (x) x 4  
low
y (x) 5 
left
x 3  right
x 3
We have changed the order of integration. This works whenever
we can bound the curve with top/bottom bounding functions
or left/right bounding functions.
right high
left low
x y (x)
x y (x)
1) Set up f(x,y) dy dx 
right right
high
low
left left
x x
y y (x)
high lowy y (x)
x x
2) Hold x constant and
integrate with respect to y:
F(x,y) dx F(x,y (x)) F(x,y (x)) dx


        
R
Let z f(x,y) be a surface and let R be the non-rectangular region in the
xy-plane bounded by y f(x) on top and y g(x) on bottom. Calculate f(x,y) dA :

  
high low
left right
high
3) F(x,y (x)) F(x,y (x)) is a function
of x that measures the area of vertical
cross sections between x x and x x .
So we can integrate these area cross
sections to get our volume:
F(x,y (x)) F(x
  
 

right
left
x
low
x
,y (x)) dx 
 
Likewise for the order
integration being reversed.
Old Way:
    2
Let R be the region in the xy-plane from Example 4 and 5 that is bounded above
by y x 4 and below by y 5. Find the area of R.
    
   
3
2
3
x 4 5 dx
R
New Way:
 

  
3
2
3
x 9 dx

 
   
 
3
3
3
x
9x
3
 36
 
 
  
2
3 x 4
3 5
1 dy dx
R
1 dA
 


   
23
y x 4
y 5
3
y dx
    
    
3
2
3
x 4 5 dx
 R
R
Claim: For a region R, Area 1 dA
It works!!!
The two intervals determine the region of integration R on the iterated integral
    
high
low
t
R t
x' n x((t)
n m
dA dtm x(t),y(t t),
x y
y() '(t)t) y
  
   
  
 
low high
Let R be a region in the xy-plane whose boundary is parameterized
by (x(t),y(t)) for . Then the following formula hot :t st ld 
Main Idea: You can compute a double integral
as a single integral, as long as you have
a reasonable parameterization of th boundary
cu
e
rve.
low high
Main Rule: For this formula to hold:
1) Your parameterization must be counterclockwise.
2) Your must bring you around the
boundary curve exactly ONCE.
3) Your must be a sibound mple
t
c
t
l
t
oary sedcu curve.rve
 
22
R
Example 6 : Let f(x,y) y xy 9 and let R by the region in the xy-plane
yx
whose boundary is described by the ellipse 1.
3 4
Find f(x,y) dx dy :
  
  
   
   

   Let x(t),y(t) 3cos(t),4sin(t) tfor 0 2  
    
high
lowR
t
t
m x(t x'),y(t
n m
Gauss-Green: dx dy dt
x
n x(t),y(t y( '
y
() tt) ))
  
   
  
 
 
x
0
Set f(s,y)n ,y dsx    
x
0
y sy 9 ds  
x
2
0
s y
sy 9s
2
 
   
 2
x y
xy 9x
2
 
   y'(t)x'(t) 3sin(tFurther, , ,4co )) .s(t
    
high
low
t
t
n x(t),y(t y'(x'(t t)Plug in : dm x(t), t)t )y( ) 
  2
n x(t),y(t) 12sin(t)cos(t) 18cos (t)sin(t) 27S to cos( ) 
22
Example 6 : Let f(x,y) y xy 9 and let R by the region in the xy-plane
yx
whose boundary is described by the ellipse 1.
3 4
  
  
   
   
    
high
low
t
t
x' n x
Plug into Gaus
(t),y(t y'(t(t) )m x(t),y(t
s-Green :
) dt) 
  2
2
0
12sin(t)cos(t) 18cos (t)sin d(t) 27co( 3si s(t) t(4cos(t)t )n( ))0

  
 
2
2 3 2
0
48cos (t)sin(t) 72cos (t)sin(t) 108cos (t) dt

  
 
  2
low high
n x(t),y(t) 12sin(t)cos(t) 18cos (t)sin(t)
[t ,t ] [0
y'(t) 4cos(t)
x'(t) 3si
m x(t),y(t) 0
,2 ]
27cos(t)
n(t)
 


k 1 k 1
b
k
a
k 1 k 1
b
k
a
2
(
c
(a)
(
sin (b) sin a)
Hint: sin (t) os(t)dt
k 1 k 1
cos (b) cos
and cos in(t)dt
k 1 k 1
1 cos(2t)
and cos (t)
t)
2
s
 
 
 
 

 
 




108 
 The integral of an integral
 Another Method for finding
• Volume
• Mass density
• Centers of mass
• Joint probability
• Expected value
 Fibuni’s Theorem states that if f is continuous on a plane
region R
Integrate with respect to x
first then y when you have a
region R that is bounded on
the left and right by two
functions of y:
Integrate with respect to y
first then x when you have a
region R that is bounded on
the top and bottom by two
functions of x:
Use Gauss-Green when
you have a region R whose
boundary you can
parameterize with a single
function of t, (x(t),y(t)) for
tlow ≤ t ≤ thigh.
 
right high
left low
x y (x)
x y (x)
f(x,y) dy dx  
high
low
t
t
n x(t),y(t) y'(t) dt
 low high
t t t
(x(t),y(t))
R
 
hightop
bottom low
x (y)y
y x (y)
f(x,y) dy dx
high
y (x)
Rlow
x (y)
high
x (y)
R

More Related Content

What's hot

General Quadrature Equation
General Quadrature EquationGeneral Quadrature Equation
General Quadrature EquationMrinalDev1
 
Maxima & Minima of Calculus
Maxima & Minima of CalculusMaxima & Minima of Calculus
Maxima & Minima of CalculusArpit Modh
 
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Hareem Aslam
 
trapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 ruletrapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 rulehitarth shah
 
4.3 The Definite Integral
4.3 The Definite Integral4.3 The Definite Integral
4.3 The Definite IntegralSharon Henry
 
Function transformations
Function transformationsFunction transformations
Function transformationsTerry Gastauer
 
Functions and its Applications in Mathematics
Functions and its Applications in MathematicsFunctions and its Applications in Mathematics
Functions and its Applications in MathematicsAmit Amola
 
Definite Integral and Properties of Definite Integral
Definite Integral and Properties of Definite IntegralDefinite Integral and Properties of Definite Integral
Definite Integral and Properties of Definite IntegralShaifulIslam56
 
Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its applicationmayur1347
 
6-1 nth roots reg
6-1 nth roots reg6-1 nth roots reg
6-1 nth roots regswartzje
 
Partial Differentiation & Application
Partial Differentiation & Application Partial Differentiation & Application
Partial Differentiation & Application Yana Qlah
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite IntegralSilvius
 
5.1 Defining and visualizing functions. A handout.
5.1 Defining and visualizing functions. A handout.5.1 Defining and visualizing functions. A handout.
5.1 Defining and visualizing functions. A handout.Jan Plaza
 
Double integral using polar coordinates
Double integral using polar coordinatesDouble integral using polar coordinates
Double integral using polar coordinatesHarishRagav10
 

What's hot (20)

General Quadrature Equation
General Quadrature EquationGeneral Quadrature Equation
General Quadrature Equation
 
Maxima & Minima of Calculus
Maxima & Minima of CalculusMaxima & Minima of Calculus
Maxima & Minima of Calculus
 
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
 
trapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 ruletrapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 rule
 
4.3 The Definite Integral
4.3 The Definite Integral4.3 The Definite Integral
4.3 The Definite Integral
 
Math1.2
Math1.2Math1.2
Math1.2
 
Function transformations
Function transformationsFunction transformations
Function transformations
 
Functions and its Applications in Mathematics
Functions and its Applications in MathematicsFunctions and its Applications in Mathematics
Functions and its Applications in Mathematics
 
Definite Integral and Properties of Definite Integral
Definite Integral and Properties of Definite IntegralDefinite Integral and Properties of Definite Integral
Definite Integral and Properties of Definite Integral
 
Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its application
 
Romberg’s method
Romberg’s methodRomberg’s method
Romberg’s method
 
6-1 nth roots reg
6-1 nth roots reg6-1 nth roots reg
6-1 nth roots reg
 
Exponential functions
Exponential functionsExponential functions
Exponential functions
 
Partial Differentiation & Application
Partial Differentiation & Application Partial Differentiation & Application
Partial Differentiation & Application
 
Double Integrals
Double IntegralsDouble Integrals
Double Integrals
 
Volume of revolution
Volume of revolutionVolume of revolution
Volume of revolution
 
The Definite Integral
The Definite IntegralThe Definite Integral
The Definite Integral
 
5.1 Defining and visualizing functions. A handout.
5.1 Defining and visualizing functions. A handout.5.1 Defining and visualizing functions. A handout.
5.1 Defining and visualizing functions. A handout.
 
Double integral using polar coordinates
Double integral using polar coordinatesDouble integral using polar coordinates
Double integral using polar coordinates
 
Es272 ch6
Es272 ch6Es272 ch6
Es272 ch6
 

Viewers also liked

B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationRai University
 
Multi variable integral
Multi variable integralMulti variable integral
Multi variable integralJ M
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integralsTarun Gehlot
 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionRai University
 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Rai University
 
4. solving inequalities
4. solving inequalities4. solving inequalities
4. solving inequalitiesMedhaKetkar
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
 
Direct Variation
Direct VariationDirect Variation
Direct Variationswartzje
 
Chapter 2 : EQUATIONS AND INEQUALITIES
Chapter 2 : EQUATIONS AND INEQUALITIESChapter 2 : EQUATIONS AND INEQUALITIES
Chapter 2 : EQUATIONS AND INEQUALITIESNurul Ainn
 
Applications of Integrations
Applications of IntegrationsApplications of Integrations
Applications of Integrationsitutor
 
INTEGRALES DOBLES
INTEGRALES DOBLESINTEGRALES DOBLES
INTEGRALES DOBLESclaualemana
 
Integrales multiples
Integrales multiplesIntegrales multiples
Integrales multiplesEms Es
 
Integral Calculus
Integral CalculusIntegral Calculus
Integral Calculusitutor
 

Viewers also liked (20)

B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integration
 
Multi variable integral
Multi variable integralMulti variable integral
Multi variable integral
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma function
 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3
 
1523 double integrals
1523 double integrals1523 double integrals
1523 double integrals
 
Integrales dobles
Integrales  doblesIntegrales  dobles
Integrales dobles
 
4. solving inequalities
4. solving inequalities4. solving inequalities
4. solving inequalities
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
Direct Variation
Direct VariationDirect Variation
Direct Variation
 
Integrales Dobles
Integrales DoblesIntegrales Dobles
Integrales Dobles
 
Chapter 2 : EQUATIONS AND INEQUALITIES
Chapter 2 : EQUATIONS AND INEQUALITIESChapter 2 : EQUATIONS AND INEQUALITIES
Chapter 2 : EQUATIONS AND INEQUALITIES
 
Inequalities
InequalitiesInequalities
Inequalities
 
Applications of Integrations
Applications of IntegrationsApplications of Integrations
Applications of Integrations
 
INTEGRALES DOBLES
INTEGRALES DOBLESINTEGRALES DOBLES
INTEGRALES DOBLES
 
Integrales multiples
Integrales multiplesIntegrales multiples
Integrales multiples
 
Integration Ppt
Integration PptIntegration Ppt
Integration Ppt
 
Integrales multiples
Integrales multiplesIntegrales multiples
Integrales multiples
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Integral Calculus
Integral CalculusIntegral Calculus
Integral Calculus
 

Similar to Maths-double integrals

double integral.pptx
double integral.pptxdouble integral.pptx
double integral.pptxssuser521537
 
25 surface area
25 surface area25 surface area
25 surface areamath267
 
Notes up to_ch7_sec3
Notes up to_ch7_sec3Notes up to_ch7_sec3
Notes up to_ch7_sec3neenos
 
Double_Integral.pdf
Double_Integral.pdfDouble_Integral.pdf
Double_Integral.pdfd00a7ece
 
Areas of bounded regions
Areas of bounded regionsAreas of bounded regions
Areas of bounded regionsHimani Asija
 
The chain rule
The chain ruleThe chain rule
The chain ruleJ M
 
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014)
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014) DOUBLE INTEGRALS PPT GTU CALCULUS (2110014)
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014) Panchal Anand
 
7.1 area between curves
7.1 area between curves7.1 area between curves
7.1 area between curvesdicosmo178
 
7.1 area between curves
7.1 area between curves7.1 area between curves
7.1 area between curvesdicosmo178
 
exponential functions and their graphs.ppt
exponential functions and their graphs.pptexponential functions and their graphs.ppt
exponential functions and their graphs.pptTonetSalagoCantere
 
22 double integrals
22 double integrals22 double integrals
22 double integralsmath267
 
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docxFINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docxvoversbyobersby
 
Y11+gdc+maximize+your+use+of+the++ev+2
Y11+gdc+maximize+your+use+of+the++ev+2Y11+gdc+maximize+your+use+of+the++ev+2
Y11+gdc+maximize+your+use+of+the++ev+2estelav
 
Mathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concreteMathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concretemocr84810
 

Similar to Maths-double integrals (20)

double integral.pptx
double integral.pptxdouble integral.pptx
double integral.pptx
 
25 surface area
25 surface area25 surface area
25 surface area
 
Notes up to_ch7_sec3
Notes up to_ch7_sec3Notes up to_ch7_sec3
Notes up to_ch7_sec3
 
Notes up to_ch7_sec3
Notes up to_ch7_sec3Notes up to_ch7_sec3
Notes up to_ch7_sec3
 
0 calc7-1
0 calc7-10 calc7-1
0 calc7-1
 
Double_Integral.pdf
Double_Integral.pdfDouble_Integral.pdf
Double_Integral.pdf
 
multiple intrigral lit
multiple intrigral litmultiple intrigral lit
multiple intrigral lit
 
Areas of bounded regions
Areas of bounded regionsAreas of bounded regions
Areas of bounded regions
 
The chain rule
The chain ruleThe chain rule
The chain rule
 
Double integration
Double integrationDouble integration
Double integration
 
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014)
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014) DOUBLE INTEGRALS PPT GTU CALCULUS (2110014)
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014)
 
7.1 area between curves
7.1 area between curves7.1 area between curves
7.1 area between curves
 
7.1 area between curves
7.1 area between curves7.1 area between curves
7.1 area between curves
 
exponential functions and their graphs.ppt
exponential functions and their graphs.pptexponential functions and their graphs.ppt
exponential functions and their graphs.ppt
 
22 double integrals
22 double integrals22 double integrals
22 double integrals
 
Tcu12 crc multi
Tcu12 crc multiTcu12 crc multi
Tcu12 crc multi
 
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docxFINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
 
Y11+gdc+maximize+your+use+of+the++ev+2
Y11+gdc+maximize+your+use+of+the++ev+2Y11+gdc+maximize+your+use+of+the++ev+2
Y11+gdc+maximize+your+use+of+the++ev+2
 
Mathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concreteMathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concrete
 
Multiple ppt
Multiple pptMultiple ppt
Multiple ppt
 

More from mihir jain

Schering bridge
Schering bridge Schering bridge
Schering bridge mihir jain
 
signal & system inverse z-transform
signal & system inverse z-transformsignal & system inverse z-transform
signal & system inverse z-transformmihir jain
 
Types of system
Types of system Types of system
Types of system mihir jain
 
euler's theorem
euler's theoremeuler's theorem
euler's theoremmihir jain
 
inverse z-transform ppt
inverse z-transform pptinverse z-transform ppt
inverse z-transform pptmihir jain
 
Ct signal operations
Ct signal operationsCt signal operations
Ct signal operationsmihir jain
 
KARNAUGH MAP(K-MAP)
KARNAUGH MAP(K-MAP)KARNAUGH MAP(K-MAP)
KARNAUGH MAP(K-MAP)mihir jain
 
SIGNAL OPERATIONS
SIGNAL OPERATIONSSIGNAL OPERATIONS
SIGNAL OPERATIONSmihir jain
 
SPECIAL PURPOSE DIODE
SPECIAL PURPOSE DIODESPECIAL PURPOSE DIODE
SPECIAL PURPOSE DIODEmihir jain
 
2 port network
2 port network2 port network
2 port networkmihir jain
 
Advance engineering mathematics
Advance engineering mathematicsAdvance engineering mathematics
Advance engineering mathematicsmihir jain
 

More from mihir jain (14)

Schering bridge
Schering bridge Schering bridge
Schering bridge
 
signal & system inverse z-transform
signal & system inverse z-transformsignal & system inverse z-transform
signal & system inverse z-transform
 
Types of system
Types of system Types of system
Types of system
 
Pump theory
Pump theory Pump theory
Pump theory
 
euler's theorem
euler's theoremeuler's theorem
euler's theorem
 
Ozone layer
Ozone layer Ozone layer
Ozone layer
 
inverse z-transform ppt
inverse z-transform pptinverse z-transform ppt
inverse z-transform ppt
 
Ch1
Ch1Ch1
Ch1
 
Ct signal operations
Ct signal operationsCt signal operations
Ct signal operations
 
KARNAUGH MAP(K-MAP)
KARNAUGH MAP(K-MAP)KARNAUGH MAP(K-MAP)
KARNAUGH MAP(K-MAP)
 
SIGNAL OPERATIONS
SIGNAL OPERATIONSSIGNAL OPERATIONS
SIGNAL OPERATIONS
 
SPECIAL PURPOSE DIODE
SPECIAL PURPOSE DIODESPECIAL PURPOSE DIODE
SPECIAL PURPOSE DIODE
 
2 port network
2 port network2 port network
2 port network
 
Advance engineering mathematics
Advance engineering mathematicsAdvance engineering mathematics
Advance engineering mathematics
 

Recently uploaded

Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Intro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdfIntro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdfrs7054576148
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...tanu pandey
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptMsecMca
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Standamitlee9823
 

Recently uploaded (20)

Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
Intro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdfIntro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdf
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 

Maths-double integrals

  • 2.   0 2 sin(y) cos(x) 1 dy dx        y y 2 0 cos(y) ycos(x) y dx           0 2 3 3 cos(x d) x       0 2x 3 x 3 sin(x)         2 2 3    R Let f(x,y) sin(y) cos(x) 1 and let R be the region in the xy-plane bounded by x 0,x ,y 2 ,and y . Calculate f(x,y) dA :             is a function that sweeps out vertical area cross sections f 2 3 3 cos(x) rom x 0 to x .        If we integrate these area cross sections, we accumulate the volume of the solid:
  • 3.   2 0 sin(y) cos(x) 1 dx dy        x x 0 2 xsin(y) sin(x) x dy           2 sin(y dy)                2 y cos(y) 2 2 3    R R R Calculate f(x,y) dA by computing f(x,y) dy dx instead of f(x,y) dx dy.   is a function that sweeps out horizontal area cross sections from y 2 to y . If we integrate these area cross sections, we accumulate the volume of the solid: sin(y)        
  • 4. d b c a 1) Set up f(x,y) dx dy. d d x b x a c c 2) Hold y constant and integrate with respect to x: F(x,y) dy F(b,y) F(a,y) dy            R Let z f(x,y) be a surface and let R be the rectangular region in the xy-plane bounded by a x b and c y d. Calculate f(x,y) dA :       d c 3) F(b,y) F(a,y) is a function of y that measures the area of horizontal cross sections between y c and y d. So we can integrate these area cross sections to get our volume: F(b,y) F(a,y) dy       b d a c 1) Set up f(x,y) dy dx. b b x d x c a a 2) Hold x constant and integrate with respect to y: G(x,y) dx G(x,d) G(x,c) dx            b a 3) G(x,d) G(x,c) is a function of x that measures the area of vertical cross sections between x a and x b. So we can integrate these area cross sections to get our volume: G(x,d) G(x,c) dx      
  • 5.   3 4 3 4 2sin(xy) 1 dx dy     x 43 3 x 4 2cos(xy) x dy y             3 3 2cos(4y) 2cos( 4y) 4 ( 4) dy y y                       3 3 8 dy    y 3 y 3 8y       48  R Let f(x,y) 2sin(xy) 1 and let R be the region in the xy-plane bounded by x 4,x 4,y 3,and y 3. Calculate f(x,y) dA :          How did this end up negative??
  • 6. 2 2 2 R Let f(x,y) x y 3 and let R be the region in the xy-plane bounded above by y x 4 and below by y 5. Calculate f(x,y) dA :          2 y3 3 2 3 y 5 x 4 y yx 3y dx 3              6 2 4 3 3 x 90 10x 3x dx 3           R f(x,y) dA   highright left lowy (x) y (x)x 2 2 x x y 3 dy dx    2 high y (x) x 4   low y (x) 5  left x 3  right x 3   2 2 2 3 5 4 3 x x y 3 dy dx         6 2 4 x 90 10x 3x is a function that sweeps 3 out vertical area cross sections from 3 to 3.    
  • 7. 6 2 4 If we integrate these cross sections given by x 90 10x 3x from x 3 to x 3, 3 we accumulate the volume of the solid:       2 2 2 R Let f(x,y) x y 3 and let R be the region in the xy-plane bounded above by y x 4 and below by y 5. Calculate f(x,y) dA :          6 2 4 3 3 x 90 10x 3x dx 3           7 3 5 3 3 10 3 x 21 90x x x 3 5            15516 35 
  • 8. R Calculate f(x,y) dA again, but change the order of integration : 4 yx4 5 y 3 2 4x x y x 3x dy 3               2 4 5 26 4 y 2 y 4 y 2y 4 dyy 3 3               R f(x,y) dA   ht ighop bottom lowx (y) x (y)y y 2 2 x y 3 dx dy    high x (y) 4 y  low x (y) 4 y   top y 4  2 2 44 4 y 5 y x y 3 dx dy         2 26 4 y 2 y 4 y 2y 4 y is a function 3 3 that sweeps out horizontal area cross sections from y 5 to y 4.         bottom y 5 
  • 9. 2 26 4 y 2 y 4 y 2y 4 y is a function 3 3 that sweeps out horizontal area cross sections from y 5 to y 4.         2 2 2 R Let f(x,y) x y 3 and let R be the region in the xy-plane bounded above by y x 4 and below by y 5. Calculate f(x,y) dA :          2 4 5 26 4 y 2 y 4 y 2y 4 dyy 3 3                 4 3/2 2 5 4 (4 y) 15y 41y 261 105            15516 35 
  • 10.                    2 5 4 y 2 2 2 4 yx3 44 3 2 5 x y 3 dy dx and x y 3 dx dy compute the exact same thing!!! high x (y) 4 y  low x (y) 4 y   top y 4 bottom y 5  2 high y (x) x 4   low y (x) 5  left x 3  right x 3 We have changed the order of integration. This works whenever we can bound the curve with top/bottom bounding functions or left/right bounding functions.
  • 11. right high left low x y (x) x y (x) 1) Set up f(x,y) dy dx  right right high low left left x x y y (x) high lowy y (x) x x 2) Hold x constant and integrate with respect to y: F(x,y) dx F(x,y (x)) F(x,y (x)) dx            R Let z f(x,y) be a surface and let R be the non-rectangular region in the xy-plane bounded by y f(x) on top and y g(x) on bottom. Calculate f(x,y) dA :     high low left right high 3) F(x,y (x)) F(x,y (x)) is a function of x that measures the area of vertical cross sections between x x and x x . So we can integrate these area cross sections to get our volume: F(x,y (x)) F(x       right left x low x ,y (x)) dx    Likewise for the order integration being reversed.
  • 12. Old Way:     2 Let R be the region in the xy-plane from Example 4 and 5 that is bounded above by y x 4 and below by y 5. Find the area of R.          3 2 3 x 4 5 dx R New Way:       3 2 3 x 9 dx          3 3 3 x 9x 3  36        2 3 x 4 3 5 1 dy dx R 1 dA         23 y x 4 y 5 3 y dx           3 2 3 x 4 5 dx  R R Claim: For a region R, Area 1 dA It works!!!
  • 13. The two intervals determine the region of integration R on the iterated integral
  • 14.      high low t R t x' n x((t) n m dA dtm x(t),y(t t), x y y() '(t)t) y             low high Let R be a region in the xy-plane whose boundary is parameterized by (x(t),y(t)) for . Then the following formula hot :t st ld  Main Idea: You can compute a double integral as a single integral, as long as you have a reasonable parameterization of th boundary cu e rve. low high Main Rule: For this formula to hold: 1) Your parameterization must be counterclockwise. 2) Your must bring you around the boundary curve exactly ONCE. 3) Your must be a sibound mple t c t l t oary sedcu curve.rve  
  • 15. 22 R Example 6 : Let f(x,y) y xy 9 and let R by the region in the xy-plane yx whose boundary is described by the ellipse 1. 3 4 Find f(x,y) dx dy :                   Let x(t),y(t) 3cos(t),4sin(t) tfor 0 2        high lowR t t m x(t x'),y(t n m Gauss-Green: dx dy dt x n x(t),y(t y( ' y () tt) ))               x 0 Set f(s,y)n ,y dsx     x 0 y sy 9 ds   x 2 0 s y sy 9s 2        2 x y xy 9x 2      y'(t)x'(t) 3sin(tFurther, , ,4co )) .s(t      high low t t n x(t),y(t y'(x'(t t)Plug in : dm x(t), t)t )y( )    2 n x(t),y(t) 12sin(t)cos(t) 18cos (t)sin(t) 27S to cos( ) 
  • 16. 22 Example 6 : Let f(x,y) y xy 9 and let R by the region in the xy-plane yx whose boundary is described by the ellipse 1. 3 4                    high low t t x' n x Plug into Gaus (t),y(t y'(t(t) )m x(t),y(t s-Green : ) dt)    2 2 0 12sin(t)cos(t) 18cos (t)sin d(t) 27co( 3si s(t) t(4cos(t)t )n( ))0       2 2 3 2 0 48cos (t)sin(t) 72cos (t)sin(t) 108cos (t) dt         2 low high n x(t),y(t) 12sin(t)cos(t) 18cos (t)sin(t) [t ,t ] [0 y'(t) 4cos(t) x'(t) 3si m x(t),y(t) 0 ,2 ] 27cos(t) n(t)     k 1 k 1 b k a k 1 k 1 b k a 2 ( c (a) ( sin (b) sin a) Hint: sin (t) os(t)dt k 1 k 1 cos (b) cos and cos in(t)dt k 1 k 1 1 cos(2t) and cos (t) t) 2 s                  108 
  • 17.  The integral of an integral  Another Method for finding • Volume • Mass density • Centers of mass • Joint probability • Expected value  Fibuni’s Theorem states that if f is continuous on a plane region R
  • 18. Integrate with respect to x first then y when you have a region R that is bounded on the left and right by two functions of y: Integrate with respect to y first then x when you have a region R that is bounded on the top and bottom by two functions of x: Use Gauss-Green when you have a region R whose boundary you can parameterize with a single function of t, (x(t),y(t)) for tlow ≤ t ≤ thigh.   right high left low x y (x) x y (x) f(x,y) dy dx   high low t t n x(t),y(t) y'(t) dt  low high t t t (x(t),y(t)) R   hightop bottom low x (y)y y x (y) f(x,y) dy dx high y (x) Rlow x (y) high x (y) R