SlideShare a Scribd company logo
1 of 8
Download to read offline
Multiple ntegrals
.2
Double
integrals in
polar co-ordinatees
Double integral in
polar co-ordinates is the symbol
3.27
T2
fr,0) drde
(i.e) fr,0) is to be
integrated with respect tor
between the limits ri and rz (keeping 0 as
constant) which
are functions of 8 and then the resulting expression is to
be integrated with respect to 0 between the limits
e, and 2 (keepingr as constant) which are constants.
Tt/2 a cos 0
Example 3.26: Evaluate dr d 0
0
Solution:
Tt/2 a cos
cos
dr d6=
0 0 r= 0
tl2
(acos°-0)d
0
cos 0 d 0
1
Ttl2
n-1n-3 .1,nis odd)
(Since cos 0 d 0 =*
n n - 2
0
ntegral Ca
Multiple Integrals
3.28
3.29
a s i n 6
rd dr r/2
E x a m p l e 3 . 2 7 : E v a l u a t e
cos 0d e .(1)
Tt/2
cose is even function of 6
Solution:
a s i n e
d 8 T/2
(1) LHS= cos e d
r d r d 0 =
0
- sin'ode - 1-
Example 3.29: By
changingg into polar co-ordinates
sin'ed 2a V2ax
evaluate the integral
+ dxdy
0
1 cos 20 Solution:
de The region of
integration is shown below.
2
0
The limits are x =
0 andx =
2a
sin20 y =0 andy =
V2ax -x
(+-2ax=0)
Je =0
(t-0)- (0-0)]- +-2ax
,0)
T/2 2 cos 6
Example 3.28: Evaluate drde P (a, 0)
2a
- Tt/2 0
The strip PQ moves in the x
direction from * =0 to
= 2a and in the y direction from y = 0 to y =
N2ax-
Solution:
T/2 2 cos T/2 -2 cos 8
x+-2ax =
0 is a circle with centre(a, 0) and radius
Pdrde- d
Na +0 +0-0=a
r =0
-T/2 0 - Tt/2
T/2
8cosed8
- Tt/2
C
3.30
then x+y2 Multiple Integrals
Let
r
= r
cos0,y = r sin 6
d x d y = r
drd 0
Here
v a r i e s
from 0 to t/2 (since.
3.E
the integra
in the
first
q u a d r a n t )
+ y 2 a x r ° = 2 a r c o s e
r= 2a cos 0
r
varies
from 0 to 2a cose
(t,
8 )
t/2 2a cos
V2ax-x
rdrde
+ de dy =
T/2 +=a2P=r
2a cos8
i.e)rvaries from 0 to a and 0 varies from 0 to n/2
d
SS y dx dy= cosrsinrdr d
Tt/2
T/2
16a cos* 0de 0
0
Tt/2
Ttl2 cose sin 0 dr d 0
= 4a
0
cos* 0de
0
-E.cos0 sin 6d0
=o
3 na 0
4a 42 4
-
cosfesin 6de
n/2 0
cos"e d
9 = 2 - 1 n
-3
n
cos0 d (- cos 8)
over
Example 3.30: Evaluate S y dedyover t/2
quadrant of the
c i r c l e + y = a
Solution:
The region of integration
is shown
below Cos
-coo
Let x = r cose and y = r sin 6 -50-1)=
de
Then +y=a and drdy=rdrd"
Integral c
3.34
Multiple Integrals
TT/2 Cos 0
3.35
x =r
cos8,y =
r sins 0
Then dx dy =
rdr d 6
r/2
+y=P2
.- [?-a costey2-(a3/2da
Here r
varies from a to b
0
varies from 0 to 2 T
t/2
aa sin'e-a)de 2 T
dx dy =
rdr d
2
3 / 2
-- io-1d 2 T
cos 0sinedr de
n/2
2 T
-(0)
coso sinede
-
(3 Tt 4)
cos-0 sin 0d0
4
0
S dxdy
+
Example 3.33: Evaluate
cose(1-coso) d6
4
0
annular region bounded by +y =a,?+f
2r
4 (cos 0-cos'e) de
Solution:
integration is
region of
a2 (coße-cos'0)d 0
4
The
0
2+y=a?,+y=b (b>a)
n/2
(cose-cos0)d0
4
0
-
n(6-a
16
Multiple Integrals
3.36
the 3.37
E x a m p l e
3.34:
E v a l u a t e
J sine drd 0 ov
of
the
c i r c l e
r
= a
c o s 0
er the po
S o l u t i o n :
Here
the region of
i n t e g r a t i o n
is taken
P,0)
q u a d r a n t
of the
circle.
0 varies from
to
r
varies from 0 to a cos
T/2 acos
0 varies from 0 to t/2
:. [[ sinfedrde =
J r*sinedra
0
rvaries from 0 to 2a cose
cos68
sin0 dr de Tt/2 2a cos 0
Jsinedr d0 =
sin0dr d0e
0 R
0
cose sin'0 de
Pa cos 0
sin 0d e
T/2
(coste-cos0)de mi2
cos'e sin 0 d0
0
Ta
128
3 cos'ed(-cos 0)
t/2
Example 3.35: Evaluate sin drd 6,Ris
R
circle r 2a cos 6 above the initial line.
co-cos'o
Solution:
The region of integration is shown low
2a3
3 0-1=2a3
3
Multiple Integralss
3.39
3.38 a V a -
y+)dxdy
- sin 0 d 0
us
E x a m p l e 3 . 3 6 : E v a l u a t e
n/2
-
p o l a r co-ordinates.
sin0d 0=
-cos 0)6
aVa-
Solution:
Va-
y+y)
( a y + )
dxdy
= a ,
--0-1)-
x
varies
from 0 to a
Example 3.37: Evaluatee
dedy by
varies
from 0 to
V a - x 2
taking polar co-ordinates.
y = 0 , y = V a " - x 2 » 2 + y 2 = a 2
Solution:
I= + dxdy .1)
I a Let =r cos 0, y =
r
sin0
Then
+y=and dxdy =
rdr de
r=0
X
P
Take x=r cos
0,y =r sin 6
Then+y=r and dxdy =r dxde
r0
r varies from 0 to a;0 varies from 0 to 2
t/2
since x
varies from 0 to o, and y varies from 0 to
o, the
region of
integration is the 1st
quadrant.
I= r
sin0rdrd0
0 0
In the first
quadrant 0 varies from 0 to t/2
r/2
sin drd 0
-
Integral Calcu
Multiple Integrals
x/2 S rdrdde
3.41
T/2
(,a)
B
- -
0
T/2
de
A
,0)
n/2 (0,0
- - - d e
-
0
n/2
Cose sec0
n/2
(0-1)
de=J de rvaries from 0 to a sec0
0
e varies from 0 to
T/2 a sec 8
dy= f cos rdr de
V
mple 3.38:
Evaluate the integral
0
T/2 asec 0
J cos2e drde
hanging to polar
co-ordinates. 0
t/2
-T5
sec 6
tion: cos0 de
dxdy
+
Let 2 T/2
asece
cOse
cose de
3
0
The region of integration is bounded by1=*
Tt/2
,y =a sece d0
Let X=r cos 6, y = r sin6
Then 2+y2 =2 log (sec0+ tan 0)1
T/2
and dxdy = rdr d0
The line AB is rcos 6 a
3 . 4 2
[log
(V2+1)-
(0+0)]
3
log (2+1)
Exercise 3.2
a
Tt/2.
2dr
drd Ans.
364
1 Evaluate
0 a(1-cos0)
a (1+Cos0)
rdrd e
Ans:
2. Evaluate
0 0
T/2
drd 0 Ans
3. Evaluate
0 0
4, Evaluate r dr d8 over the positive quad
the circle +y2=a2 by changing into
4
co-ordinates.
A
Tt/2
rdrd
(+022
5: Evaluate
Ans
0 0

More Related Content

What's hot

the fourier series
the fourier seriesthe fourier series
the fourier series
safi al amu
 
Polynomials and factoring
Polynomials and factoringPolynomials and factoring
Polynomials and factoring
Shilpi Singh
 

What's hot (20)

Matrices
Matrices Matrices
Matrices
 
5.1 Quadratic Functions
5.1 Quadratic Functions5.1 Quadratic Functions
5.1 Quadratic Functions
 
Composite Functions.ppt
Composite Functions.pptComposite Functions.ppt
Composite Functions.ppt
 
numerical methods
numerical methodsnumerical methods
numerical methods
 
Linear algebra-Basis & Dimension
Linear algebra-Basis & DimensionLinear algebra-Basis & Dimension
Linear algebra-Basis & Dimension
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
Line integral & ML inequality
Line integral & ML inequalityLine integral & ML inequality
Line integral & ML inequality
 
differentiol equation.pptx
differentiol equation.pptxdifferentiol equation.pptx
differentiol equation.pptx
 
Trapezoidal Method IN Numerical Analysis
Trapezoidal Method IN  Numerical AnalysisTrapezoidal Method IN  Numerical Analysis
Trapezoidal Method IN Numerical Analysis
 
Thomas algorithm
Thomas algorithmThomas algorithm
Thomas algorithm
 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
 
linear transformation
linear transformationlinear transformation
linear transformation
 
Laplace Transform of Periodic Function
Laplace Transform of Periodic FunctionLaplace Transform of Periodic Function
Laplace Transform of Periodic Function
 
Exact & non differential equation
Exact & non differential equationExact & non differential equation
Exact & non differential equation
 
Factoring general trinomials
Factoring general trinomialsFactoring general trinomials
Factoring general trinomials
 
Gauss elimination
Gauss eliminationGauss elimination
Gauss elimination
 
the fourier series
the fourier seriesthe fourier series
the fourier series
 
Es272 ch6
Es272 ch6Es272 ch6
Es272 ch6
 
Polynomials and factoring
Polynomials and factoringPolynomials and factoring
Polynomials and factoring
 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma function
 

Similar to Double integral using polar coordinates

Numerical modeling-of-gas-turbine-engines
Numerical modeling-of-gas-turbine-enginesNumerical modeling-of-gas-turbine-engines
Numerical modeling-of-gas-turbine-engines
Cemal Ardil
 
Multiple intigration ppt
Multiple intigration pptMultiple intigration ppt
Multiple intigration ppt
Manish Mor
 

Similar to Double integral using polar coordinates (20)

Double Integration examples of double integration with substitution.pptx
Double Integration examples of double integration with substitution.pptxDouble Integration examples of double integration with substitution.pptx
Double Integration examples of double integration with substitution.pptx
 
Elementary Differential Equations 11th Edition Boyce Solutions Manual
Elementary Differential Equations 11th Edition Boyce Solutions ManualElementary Differential Equations 11th Edition Boyce Solutions Manual
Elementary Differential Equations 11th Edition Boyce Solutions Manual
 
Precessing magnetic impurity on sc
Precessing magnetic impurity on scPrecessing magnetic impurity on sc
Precessing magnetic impurity on sc
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Heat problems
Heat problemsHeat problems
Heat problems
 
2014 st josephs geelong spec maths
2014 st josephs geelong spec maths2014 st josephs geelong spec maths
2014 st josephs geelong spec maths
 
SMT1105-1.pdf
SMT1105-1.pdfSMT1105-1.pdf
SMT1105-1.pdf
 
IIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationIIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY Trajectoryeducation
 
D021018022
D021018022D021018022
D021018022
 
Solution 3 i ph o 35
Solution 3 i ph o 35Solution 3 i ph o 35
Solution 3 i ph o 35
 
Fisika - Ulangan Harian 1
Fisika - Ulangan Harian 1Fisika - Ulangan Harian 1
Fisika - Ulangan Harian 1
 
Simple harmonic motion1
Simple harmonic motion1Simple harmonic motion1
Simple harmonic motion1
 
optimal solution method of integro-differential equaitions under laplace tran...
optimal solution method of integro-differential equaitions under laplace tran...optimal solution method of integro-differential equaitions under laplace tran...
optimal solution method of integro-differential equaitions under laplace tran...
 
1st and 2and Semester Physics Streem (2013-December) Question Papers
1st and 2and  Semester Physics Streem  (2013-December) Question Papers1st and 2and  Semester Physics Streem  (2013-December) Question Papers
1st and 2and Semester Physics Streem (2013-December) Question Papers
 
Numerical modeling-of-gas-turbine-engines
Numerical modeling-of-gas-turbine-enginesNumerical modeling-of-gas-turbine-engines
Numerical modeling-of-gas-turbine-engines
 
Notions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsNotions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systems
 
Conceptual Short Tricks for JEE(Main and Advanced)
Conceptual Short Tricks for JEE(Main and Advanced)Conceptual Short Tricks for JEE(Main and Advanced)
Conceptual Short Tricks for JEE(Main and Advanced)
 
Multiple ppt
Multiple pptMultiple ppt
Multiple ppt
 
Multiple intigration ppt
Multiple intigration pptMultiple intigration ppt
Multiple intigration ppt
 
Sol71
Sol71Sol71
Sol71
 

Recently uploaded

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
ssuserdda66b
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 

Recently uploaded (20)

Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 

Double integral using polar coordinates

  • 1. Multiple ntegrals .2 Double integrals in polar co-ordinatees Double integral in polar co-ordinates is the symbol 3.27 T2 fr,0) drde (i.e) fr,0) is to be integrated with respect tor between the limits ri and rz (keeping 0 as constant) which are functions of 8 and then the resulting expression is to be integrated with respect to 0 between the limits e, and 2 (keepingr as constant) which are constants. Tt/2 a cos 0 Example 3.26: Evaluate dr d 0 0 Solution: Tt/2 a cos cos dr d6= 0 0 r= 0 tl2 (acos°-0)d 0 cos 0 d 0 1 Ttl2 n-1n-3 .1,nis odd) (Since cos 0 d 0 =* n n - 2 0
  • 2. ntegral Ca Multiple Integrals 3.28 3.29 a s i n 6 rd dr r/2 E x a m p l e 3 . 2 7 : E v a l u a t e cos 0d e .(1) Tt/2 cose is even function of 6 Solution: a s i n e d 8 T/2 (1) LHS= cos e d r d r d 0 = 0 - sin'ode - 1- Example 3.29: By changingg into polar co-ordinates sin'ed 2a V2ax evaluate the integral + dxdy 0 1 cos 20 Solution: de The region of integration is shown below. 2 0 The limits are x = 0 andx = 2a sin20 y =0 andy = V2ax -x (+-2ax=0) Je =0 (t-0)- (0-0)]- +-2ax ,0) T/2 2 cos 6 Example 3.28: Evaluate drde P (a, 0) 2a - Tt/2 0 The strip PQ moves in the x direction from * =0 to = 2a and in the y direction from y = 0 to y = N2ax- Solution: T/2 2 cos T/2 -2 cos 8 x+-2ax = 0 is a circle with centre(a, 0) and radius Pdrde- d Na +0 +0-0=a r =0 -T/2 0 - Tt/2 T/2 8cosed8 - Tt/2
  • 3. C 3.30 then x+y2 Multiple Integrals Let r = r cos0,y = r sin 6 d x d y = r drd 0 Here v a r i e s from 0 to t/2 (since. 3.E the integra in the first q u a d r a n t ) + y 2 a x r ° = 2 a r c o s e r= 2a cos 0 r varies from 0 to 2a cose (t, 8 ) t/2 2a cos V2ax-x rdrde + de dy = T/2 +=a2P=r 2a cos8 i.e)rvaries from 0 to a and 0 varies from 0 to n/2 d SS y dx dy= cosrsinrdr d Tt/2 T/2 16a cos* 0de 0 0 Tt/2 Ttl2 cose sin 0 dr d 0 = 4a 0 cos* 0de 0 -E.cos0 sin 6d0 =o 3 na 0 4a 42 4 - cosfesin 6de n/2 0 cos"e d 9 = 2 - 1 n -3 n cos0 d (- cos 8) over Example 3.30: Evaluate S y dedyover t/2 quadrant of the c i r c l e + y = a Solution: The region of integration is shown below Cos -coo Let x = r cose and y = r sin 6 -50-1)= de Then +y=a and drdy=rdrd"
  • 4. Integral c 3.34 Multiple Integrals TT/2 Cos 0 3.35 x =r cos8,y = r sins 0 Then dx dy = rdr d 6 r/2 +y=P2 .- [?-a costey2-(a3/2da Here r varies from a to b 0 varies from 0 to 2 T t/2 aa sin'e-a)de 2 T dx dy = rdr d 2 3 / 2 -- io-1d 2 T cos 0sinedr de n/2 2 T -(0) coso sinede - (3 Tt 4) cos-0 sin 0d0 4 0 S dxdy + Example 3.33: Evaluate cose(1-coso) d6 4 0 annular region bounded by +y =a,?+f 2r 4 (cos 0-cos'e) de Solution: integration is region of a2 (coße-cos'0)d 0 4 The 0 2+y=a?,+y=b (b>a) n/2 (cose-cos0)d0 4 0 - n(6-a 16
  • 5. Multiple Integrals 3.36 the 3.37 E x a m p l e 3.34: E v a l u a t e J sine drd 0 ov of the c i r c l e r = a c o s 0 er the po S o l u t i o n : Here the region of i n t e g r a t i o n is taken P,0) q u a d r a n t of the circle. 0 varies from to r varies from 0 to a cos T/2 acos 0 varies from 0 to t/2 :. [[ sinfedrde = J r*sinedra 0 rvaries from 0 to 2a cose cos68 sin0 dr de Tt/2 2a cos 0 Jsinedr d0 = sin0dr d0e 0 R 0 cose sin'0 de Pa cos 0 sin 0d e T/2 (coste-cos0)de mi2 cos'e sin 0 d0 0 Ta 128 3 cos'ed(-cos 0) t/2 Example 3.35: Evaluate sin drd 6,Ris R circle r 2a cos 6 above the initial line. co-cos'o Solution: The region of integration is shown low 2a3 3 0-1=2a3 3
  • 6. Multiple Integralss 3.39 3.38 a V a - y+)dxdy - sin 0 d 0 us E x a m p l e 3 . 3 6 : E v a l u a t e n/2 - p o l a r co-ordinates. sin0d 0= -cos 0)6 aVa- Solution: Va- y+y) ( a y + ) dxdy = a , --0-1)- x varies from 0 to a Example 3.37: Evaluatee dedy by varies from 0 to V a - x 2 taking polar co-ordinates. y = 0 , y = V a " - x 2 » 2 + y 2 = a 2 Solution: I= + dxdy .1) I a Let =r cos 0, y = r sin0 Then +y=and dxdy = rdr de r=0 X P Take x=r cos 0,y =r sin 6 Then+y=r and dxdy =r dxde r0 r varies from 0 to a;0 varies from 0 to 2 t/2 since x varies from 0 to o, and y varies from 0 to o, the region of integration is the 1st quadrant. I= r sin0rdrd0 0 0 In the first quadrant 0 varies from 0 to t/2 r/2 sin drd 0 -
  • 7. Integral Calcu Multiple Integrals x/2 S rdrdde 3.41 T/2 (,a) B - - 0 T/2 de A ,0) n/2 (0,0 - - - d e - 0 n/2 Cose sec0 n/2 (0-1) de=J de rvaries from 0 to a sec0 0 e varies from 0 to T/2 a sec 8 dy= f cos rdr de V mple 3.38: Evaluate the integral 0 T/2 asec 0 J cos2e drde hanging to polar co-ordinates. 0 t/2 -T5 sec 6 tion: cos0 de dxdy + Let 2 T/2 asece cOse cose de 3 0 The region of integration is bounded by1=* Tt/2 ,y =a sece d0 Let X=r cos 6, y = r sin6 Then 2+y2 =2 log (sec0+ tan 0)1 T/2 and dxdy = rdr d0 The line AB is rcos 6 a
  • 8. 3 . 4 2 [log (V2+1)- (0+0)] 3 log (2+1) Exercise 3.2 a Tt/2. 2dr drd Ans. 364 1 Evaluate 0 a(1-cos0) a (1+Cos0) rdrd e Ans: 2. Evaluate 0 0 T/2 drd 0 Ans 3. Evaluate 0 0 4, Evaluate r dr d8 over the positive quad the circle +y2=a2 by changing into 4 co-ordinates. A Tt/2 rdrd (+022 5: Evaluate Ans 0 0