SlideShare a Scribd company logo
1 of 22
Download to read offline
Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla
Block A.
How to obtain normal stress due to eccentric axial loading
Step by step example.
Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla
Normal stress in a member subjected to an eccentric axial load
1. Find and mark on the cross section the point where te
eccentric axial load has been applied (cm).
2. Obtain the point where the neutral line interscts the Y
axis. Represent the neutral line on the figure (cm).
3. Normal stress on the centroid is 25 N/mm2. Find the
value of the axial load (kN).
4. Find the value and the point where the maximum positive
normal stress will appear (kN/cm2).
5. Find the value and the point where the maximum
negative normal stress will appear (kN/cm2).
6. The member is fix supported to the ground and free at
the other end. Represent on the 3D schematic the
neutral line, the area of the cross section subjected to
tension, the one subjected to compression, the expected
deformation and the point where the maximum normal
stress as an absolute value appears.
 The cross section in the figure is subjected to an eccentric axial load which has been applied on line a-a’. Point
A belongs to the neutral line. Answer the following:
Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla
Normal stress in a member subjected to an eccentric axial load
1. Find and mark on the cross section the point where the eccentric axial load
has been applied (cm).
We start at the general case of normal stress due to vending (acording to the sign
convention used througout this course). The cordinates of the point where the axial
force has been applied can be obtained after manipulating this formula:
yz
x
z y
M zM yN
A I I


  



2
4
4
116
24318,67
8198,67
z
y
A cm
I cm
I cm
Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla
Normal stress in a member subjected to an eccentric axial load
1. Find and mark on the cross section the point where the eccentric axial load
has been applied (cm).
We start at the general case of normal stress due to vending (acording to the sign
convention used througout this course). The cordinates of the point where the axial
force has been applied can be obtained after manipulating this formula:
If we substitute in the previous formula Mz and My with the moments that a point
load applied eccentrically would produce and use “P” as the value of the load that
has been applied, the formula would be this:
yz
x
z y
M zM yN
A I I


  
y z
x
z y
P e y P e zP
A I I

   
  


2
4
4
116
24318,67
8198,67
z
y
A cm
I cm
I cm
Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla
Normal stress in a member subjected to an eccentric axial load
1. Find and mark on the cross section the point where the eccentric axial load
has been applied (cm).
We start at the general case of normal stress due to vending (acording to the sign
convention used througout this course). The cordinates of the point where the axial
force has been applied can be obtained after manipulating this formula:
If we substitute in the previous formula Mz and My with the moments that a point
load applied eccentrically would produce and use “P” as the value of the load that
has been applied, the formula would be this:
And obtaining P as a common factor:
yz
x
z y
M zM yN
A I I


  
y z
x
z y
P e y P e zP
A I I

   
  


2
4
4
116
24318,67
8198,67
z
y
A cm
I cm
I cm
1 y z
x
z y
e y e z
P
A I I

  
    
 
Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla
Normal stress in a member subjected to an eccentric axial load
ey and ez are the coordinates of the point where load P has been applied. The
subindexes indicate the axis related to each of these eccentricities. The following
schematic shows an example:



2
4
4
116
24318,67
8198,67
z
y
A cm
I cm
I cm
Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla
Normal stress in a member subjected to an eccentric axial load
ey and ez are the coordinates of the point where load P has been applied. The
subindexes indicate the axis related to each of these eccentricities. The following
schematic shows an example:
We’ve been told that normal stress at point A is zero (because it belongs to the
neutral axis). Substituting everything we know so far in the formula:
(0, 10)
0 ( 10)1
0
116 24318,67 8198,67
y z
A
e e
P 
  
    
 



2
4
4
116
24318,67
8198,67
z
y
A cm
I cm
I cm
Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla
Normal stress in a member subjected to an eccentric axial load
If P where zero there wouldn’t be any problem to be solved, therefore the value to
be found verifies this:
    
      
 
0 ( 10)1 8198,67
0 7.067
116 24318,67 8198,67 1160
y z
z
e e
e cm



2
4
4
116
24318,67
8198,67
z
y
A cm
I cm
I cm
Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla
Normal stress in a member subjected to an eccentric axial load
If P where zero there wouldn’t be any problem to be solved, therefore the value to
be found verifies this:
We also know that P is on line a-a’, therefore the ey value can be obtained with the
geometrical relationship between them:
    
      
 
0 ( 10)1 8198,67
0 7.067
116 24318,67 8198,67 1160
y z
z
e e
e cm
1
; 14,13
2
z y ye e e cm 



2
4
4
116
24318,67
8198,67
z
y
A cm
I cm
I cm
Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla
Normal stress in a member subjected to an eccentric axial load
If P where zero there wouldn’t be any problem to be solved, therefore the value to
be found verifies this:
We also know that P is on line a-a’, therefore the ey value can be obtained with the
geometrical relationship between them:
This is the point where the load has been applied:
    
      
 
0 ( 10)1 8198,67
0 7.067
116 24318,67 8198,67 1160
y z
z
e e
e cm
1
; 14,13
2
z y ye e e cm 



2
4
4
116
24318,67
8198,67
z
y
A cm
I cm
I cm
Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla
Normal stress in a member subjected to an eccentric axial load
2. Obtain the point where the neutral line intersects the Y axis.
Represent the neutral line on the figure (cm).
Once the eccentricities have been obtained, we just have to substitute the “z”
coordinate with zero in the formula (because we are looking for a point that
belongs to the neutral line). The only unknown left will be the “y” coordinate we are
looking for.



2
4
4
116
24318,67
8198,67
z
y
A cm
I cm
I cm
Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla
Normal stress in a member subjected to an eccentric axial load
2. Obtain the point where the neutral line intersects the Y axis.
Represent the neutral line on the figure (cm).
Once the eccentricities have been obtained, we just have to substitute the “z”
coordinate with zero in the formula (because we are looking for a point that
belongs to the neutral line). The only unknown left will be the “y” coordinate we are
looking for.



2
4
4
116
24318,67
8198,67
z
y
A cm
I cm
I cm
( ,0)
1 14,3 7,067 (0)
0 ; 14.86
116 24318,67 8198,67
EN y
y
P y cm
  
      
 
Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla
Normal stress in a member subjected to an eccentric axial load
2. Obtain the point where the neutral line intersects the Y axis.
Represent the neutral line on the figure (cm).
Once the eccentricities have been obtained, we just have to substitute the “z”
coordinate with zero in the formula (because we are looking for a point that
belongs to the neutral line). The only unknown left will be the “y” coordinate we are
looking for.



2
4
4
116
24318,67
8198,67
z
y
A cm
I cm
I cm
( ,0)
1 14,3 7,067 (0)
0 ; 14.86
116 24318,67 8198,67
EN y
y
P y cm
  
      
 
Notice that the position of the neutral line doesn’t depend on the value
nor the sign of the axial load, just .
Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla
Normal stress in a member subjected to an eccentric axial load
3. Normal stress on the centroid is 25 N/mm2. Find the value of the axial
load (kN).
In the general formula, let’s substitute all known values: eccentricity, coordinates of
the centroid (where normal stress is 25 N/mm2) and the normal stress itself and I’ll
be able to obtain “P”.
1 y z
x
z y
e y e z
P
A I I

  
    
 
Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla
Normal stress in a member subjected to an eccentric axial load
3. Normal stress on the centroid is 25 N/mm2. Find the value of the axial
load (kN).
In the general formula, let’s substitute all known values: eccentricity, coordinates of
the centroid (where normal stress is 25 N/mm2) and the normal stress itself and I’ll
be able to obtain “P”.
1 y z
x
z y
e y e z
P
A I I

  
    
 

  
    
 
    
2(0,0) 2 4 4
3
1 14,3 0 7,067 0
2500
116 24318,67 8198,67
290 10 290
G
cm cmN P
cm cm cm cm
P N kN
Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla
Normal stress in a member subjected to an eccentric axial load
3. Normal stress on the centroid is 25 N/mm2. Find the value of the axial
load (kN).
In the general formula, let’s substitute all known values: eccentricity, coordinates of
the centroid (where normal stress is 25 N/mm2) and the normal stress itself and I’ll
be able to obtain “P”.
1 y z
x
z y
e y e z
P
A I I

  
    
 

  
    
 
    
2(0,0) 2 4 4
3
1 14,3 0 7,067 0
2500
116 24318,67 8198,67
290 10 290
G
cm cmN P
cm cm cm cm
P N kN
4. Find the value and the point where the maximum positive normal stress will appear (kN/cm2).
The maximum positive normal stress (tensile) will take place in the furthest point from the neutral line in, the tension zone of
the cross section (shaded in blue) thus coordinates (+20,+10)
Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla
Normal stress in a member subjected to an eccentric axial load
3. Normal stress on the centroid is 25 N/mm2. Find the value of the axial
load (kN).
In the general formula, let’s substitute all known values: eccentricity, coordinates of
the centroid (where normal stress is 25 N/mm2) and the normal stress itself and I’ll
be able to obtain “P”.
1 y z
x
z y
e y e z
P
A I I

  
    
 

  
    
 
    
2(0,0) 2 4 4
3
1 14,3 0 7,067 0
2500
116 24318,67 8198,67
290 10 290
G
cm cmN P
cm cm cm cm
P N kN
4. Find the value and the point where the maximum positive normal stress will appear (kN/cm2).
The maximum positive normal stress (tensile) will take place in the furthest point from the neutral line in, the tension zone of
the cross section (shaded in blue) thus coordinates (+20,+10)

    
    
 
2
(20,10) 2 4 4
1 14,3 ( 20 ) 7,067 ( 10 )
290 8,360 /
116 24318,67 8198,67
G
cm cm cm cm
kN kN cm
cm cm cm
Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla
Normal stress in a member subjected to an eccentric axial load
5, Normal stress on the centroid is 25 N/mm2. Find the value of the axial
load (kN).
The maximum negative normal stress (compression) will take place in the furthest
point from the neutral line in, the compressed zone of the cross section (shaded in
red) thus coordinates (-20,-10)


 
 
    
   
 
 
( 20, 10) 2 4 4
2
( 20, 10)
1 14,3 ( 20 ) 7,067 ( 10 )
290
116 24318,67 8198,67
3,365 /
G
G
cm cm cm cm
kN
cm cm cm
kN cm
Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla
Normal stress in a member subjected to an eccentric axial load
6. The member is fix supported to the ground and free at the other end. Represent on the 3D schematic the neutral line,
the area of the cross section subjected to tension, the one subjected to compression, the expected deformation and the
point where the maximum normal stress as an absolute value appears.
Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla
Normal stress in a member subjected to an eccentric axial load
6. The member is fix supported to the ground and free at the other end. Represent on the 3D schematic the neutral line,
the area of the cross section subjected to tension, the one subjected to compression, the expected deformation and the
point where the maximum normal stress as an absolute value appears.
Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla
Normal stress in a member subjected to an eccentric axial load
The edge with the
greatest normal
stress as an
absolute value
6. The member is fix supported to the ground and free at the other end. Represent on the 3D schematic the neutral line,
the area of the cross section subjected to tension, the one subjected to compression, the expected deformation and the
point where the maximum normal stress as an absolute value appears.
Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla
Block A.
How to obtain normal stress due to eccentric axial loading
Step by step example.

More Related Content

What's hot

Seismic Analysis
Seismic AnalysisSeismic Analysis
Seismic AnalysisKrishnagnr
 
Principle stresses and planes
Principle stresses and planesPrinciple stresses and planes
Principle stresses and planesPRAJWAL SHRIRAO
 
Bearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana missBearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana missSHAMJITH KM
 
Retaining wall ppt Final year Civil ENGINEERING
Retaining wall ppt Final year Civil ENGINEERINGRetaining wall ppt Final year Civil ENGINEERING
Retaining wall ppt Final year Civil ENGINEERINGRavindra Puniya
 
Module 8, Spring 2020.pdf
Module 8, Spring 2020.pdfModule 8, Spring 2020.pdf
Module 8, Spring 2020.pdfMohammad Javed
 
37467305 torsion-design-of-beam
37467305 torsion-design-of-beam37467305 torsion-design-of-beam
37467305 torsion-design-of-beamSopheak Thap
 
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #0: Course Material]
Geotechnical Engineering-II [Lec #0: Course Material]Geotechnical Engineering-II [Lec #0: Course Material]
Geotechnical Engineering-II [Lec #0: Course Material]Muhammad Irfan
 
COMPARISON OF SEISMIC CODES OF CHINA, INDIA, UK AND USA (STRUCTURAL IRREGULA...
COMPARISON OF SEISMIC CODES OF CHINA, INDIA, UK AND USA  (STRUCTURAL IRREGULA...COMPARISON OF SEISMIC CODES OF CHINA, INDIA, UK AND USA  (STRUCTURAL IRREGULA...
COMPARISON OF SEISMIC CODES OF CHINA, INDIA, UK AND USA (STRUCTURAL IRREGULA...shankar kumar
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirSHAMJITH KM
 
Design calculations of raft foundation
Design calculations of raft foundationDesign calculations of raft foundation
Design calculations of raft foundationShahzad Ali
 
Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresChhay Teng
 

What's hot (20)

Seismic Analysis
Seismic AnalysisSeismic Analysis
Seismic Analysis
 
Principle stresses and planes
Principle stresses and planesPrinciple stresses and planes
Principle stresses and planes
 
Bearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana missBearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana miss
 
Retaining wall ppt Final year Civil ENGINEERING
Retaining wall ppt Final year Civil ENGINEERINGRetaining wall ppt Final year Civil ENGINEERING
Retaining wall ppt Final year Civil ENGINEERING
 
Module 8, Spring 2020.pdf
Module 8, Spring 2020.pdfModule 8, Spring 2020.pdf
Module 8, Spring 2020.pdf
 
37467305 torsion-design-of-beam
37467305 torsion-design-of-beam37467305 torsion-design-of-beam
37467305 torsion-design-of-beam
 
Pile foundation
Pile foundationPile foundation
Pile foundation
 
Beam buckling
Beam bucklingBeam buckling
Beam buckling
 
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]Geotechnical Engineering-II [Lec #13: Elastic Settlements]
Geotechnical Engineering-II [Lec #13: Elastic Settlements]
 
Geotechnical Engineering-II [Lec #0: Course Material]
Geotechnical Engineering-II [Lec #0: Course Material]Geotechnical Engineering-II [Lec #0: Course Material]
Geotechnical Engineering-II [Lec #0: Course Material]
 
COMPARISON OF SEISMIC CODES OF CHINA, INDIA, UK AND USA (STRUCTURAL IRREGULA...
COMPARISON OF SEISMIC CODES OF CHINA, INDIA, UK AND USA  (STRUCTURAL IRREGULA...COMPARISON OF SEISMIC CODES OF CHINA, INDIA, UK AND USA  (STRUCTURAL IRREGULA...
COMPARISON OF SEISMIC CODES OF CHINA, INDIA, UK AND USA (STRUCTURAL IRREGULA...
 
Soil dynamics
Soil dynamicsSoil dynamics
Soil dynamics
 
Geotech2.pptx
Geotech2.pptxGeotech2.pptx
Geotech2.pptx
 
IS 1893 part 1-2016
IS 1893 part 1-2016IS 1893 part 1-2016
IS 1893 part 1-2016
 
T Beam USD
T Beam USDT Beam USD
T Beam USD
 
Foundation Engineering
Foundation EngineeringFoundation Engineering
Foundation Engineering
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sir
 
Design calculations of raft foundation
Design calculations of raft foundationDesign calculations of raft foundation
Design calculations of raft foundation
 
Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structures
 
Chapter 19
Chapter 19Chapter 19
Chapter 19
 

Similar to SES - Block A - Eccentric loading. Step by step example

Solid Mechanics Eccentrically Loaded Columns.pptx
Solid Mechanics Eccentrically Loaded Columns.pptxSolid Mechanics Eccentrically Loaded Columns.pptx
Solid Mechanics Eccentrically Loaded Columns.pptxsmghumare
 
4b. Stress Transformation Equations & Mohr Circle-1.pptx
4b. Stress Transformation Equations & Mohr Circle-1.pptx4b. Stress Transformation Equations & Mohr Circle-1.pptx
4b. Stress Transformation Equations & Mohr Circle-1.pptxEgbuwokuOghenerurie
 
STRENGTH OF MATERIALS for beginners
STRENGTH OF MATERIALS for  beginnersSTRENGTH OF MATERIALS for  beginners
STRENGTH OF MATERIALS for beginnersmusadoto
 
Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)Alessandro Palmeri
 
Curved beams (stress equations)
Curved beams (stress equations)Curved beams (stress equations)
Curved beams (stress equations)MohammadSaad129
 
LECT_01.pptx
LECT_01.pptxLECT_01.pptx
LECT_01.pptxMistAe1
 
Chapter 1: Stress, Axial Loads and Safety Concepts
Chapter 1: Stress, Axial Loads and Safety ConceptsChapter 1: Stress, Axial Loads and Safety Concepts
Chapter 1: Stress, Axial Loads and Safety ConceptsMonark Sutariya
 
Stress5_ht08.pdf
Stress5_ht08.pdfStress5_ht08.pdf
Stress5_ht08.pdfFikadu19
 
Stress in frame systems. Step by step problem.
Stress in frame systems. Step by step problem.Stress in frame systems. Step by step problem.
Stress in frame systems. Step by step problem.Maribel Castilla Heredia
 
ME 205- Chapter 6 - Pure Bending of Beams.pdf
ME 205- Chapter 6 - Pure Bending of Beams.pdfME 205- Chapter 6 - Pure Bending of Beams.pdf
ME 205- Chapter 6 - Pure Bending of Beams.pdfaae4149584
 
Chapter nine.pptx
Chapter nine.pptxChapter nine.pptx
Chapter nine.pptxhaymanot16
 
PM [B09] The Trigo Companions
PM [B09] The Trigo CompanionsPM [B09] The Trigo Companions
PM [B09] The Trigo CompanionsStephen Kwong
 
Solution manual for introduction to finite element analysis and design nam ...
Solution manual for introduction to finite element analysis and design   nam ...Solution manual for introduction to finite element analysis and design   nam ...
Solution manual for introduction to finite element analysis and design nam ...Salehkhanovic
 
chp 4 Example.pptx
chp 4 Example.pptxchp 4 Example.pptx
chp 4 Example.pptxteseraaddis1
 
Engineering Mechanics Manual
Engineering Mechanics ManualEngineering Mechanics Manual
Engineering Mechanics ManualPhurba Tamang
 

Similar to SES - Block A - Eccentric loading. Step by step example (20)

Solid Mechanics Eccentrically Loaded Columns.pptx
Solid Mechanics Eccentrically Loaded Columns.pptxSolid Mechanics Eccentrically Loaded Columns.pptx
Solid Mechanics Eccentrically Loaded Columns.pptx
 
Mohr circle
Mohr circleMohr circle
Mohr circle
 
4b. Stress Transformation Equations & Mohr Circle-1.pptx
4b. Stress Transformation Equations & Mohr Circle-1.pptx4b. Stress Transformation Equations & Mohr Circle-1.pptx
4b. Stress Transformation Equations & Mohr Circle-1.pptx
 
STRENGTH OF MATERIALS for beginners
STRENGTH OF MATERIALS for  beginnersSTRENGTH OF MATERIALS for  beginners
STRENGTH OF MATERIALS for beginners
 
Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)
 
Curved beams (stress equations)
Curved beams (stress equations)Curved beams (stress equations)
Curved beams (stress equations)
 
LECT_01.pptx
LECT_01.pptxLECT_01.pptx
LECT_01.pptx
 
Chapter 1: Stress, Axial Loads and Safety Concepts
Chapter 1: Stress, Axial Loads and Safety ConceptsChapter 1: Stress, Axial Loads and Safety Concepts
Chapter 1: Stress, Axial Loads and Safety Concepts
 
Stress5_ht08.pdf
Stress5_ht08.pdfStress5_ht08.pdf
Stress5_ht08.pdf
 
Structures and Materials- Section 8 Statically Indeterminate Structures
Structures and Materials- Section 8 Statically Indeterminate StructuresStructures and Materials- Section 8 Statically Indeterminate Structures
Structures and Materials- Section 8 Statically Indeterminate Structures
 
Stress in frame systems. Step by step problem.
Stress in frame systems. Step by step problem.Stress in frame systems. Step by step problem.
Stress in frame systems. Step by step problem.
 
ME 205- Chapter 6 - Pure Bending of Beams.pdf
ME 205- Chapter 6 - Pure Bending of Beams.pdfME 205- Chapter 6 - Pure Bending of Beams.pdf
ME 205- Chapter 6 - Pure Bending of Beams.pdf
 
T2
T2T2
T2
 
Lecture3
Lecture3Lecture3
Lecture3
 
Chapter nine.pptx
Chapter nine.pptxChapter nine.pptx
Chapter nine.pptx
 
PM [B09] The Trigo Companions
PM [B09] The Trigo CompanionsPM [B09] The Trigo Companions
PM [B09] The Trigo Companions
 
Solution manual for introduction to finite element analysis and design nam ...
Solution manual for introduction to finite element analysis and design   nam ...Solution manual for introduction to finite element analysis and design   nam ...
Solution manual for introduction to finite element analysis and design nam ...
 
UDA 5 - P.pdf
UDA 5 - P.pdfUDA 5 - P.pdf
UDA 5 - P.pdf
 
chp 4 Example.pptx
chp 4 Example.pptxchp 4 Example.pptx
chp 4 Example.pptx
 
Engineering Mechanics Manual
Engineering Mechanics ManualEngineering Mechanics Manual
Engineering Mechanics Manual
 

More from Maribel Castilla Heredia

Sizing trusses for spaghetti truss competition
Sizing trusses for spaghetti truss competitionSizing trusses for spaghetti truss competition
Sizing trusses for spaghetti truss competitionMaribel Castilla Heredia
 
Solid Mechanics. Reactions and internal forces. Step by step example . Part 2
Solid Mechanics. Reactions and internal forces. Step by step example . Part 2Solid Mechanics. Reactions and internal forces. Step by step example . Part 2
Solid Mechanics. Reactions and internal forces. Step by step example . Part 2Maribel Castilla Heredia
 
Solid Mechanics. Reactions and internal force diagrams. Step by step example....
Solid Mechanics. Reactions and internal force diagrams. Step by step example....Solid Mechanics. Reactions and internal force diagrams. Step by step example....
Solid Mechanics. Reactions and internal force diagrams. Step by step example....Maribel Castilla Heredia
 
Sistemas estructurales - Obtención de deformaciones en estructuras reticulada...
Sistemas estructurales - Obtención de deformaciones en estructuras reticulada...Sistemas estructurales - Obtención de deformaciones en estructuras reticulada...
Sistemas estructurales - Obtención de deformaciones en estructuras reticulada...Maribel Castilla Heredia
 
Dimensionado cerchas concurso espaguetis 2014 Sistemas Estructurales - Grado ...
Dimensionado cerchas concurso espaguetis 2014 Sistemas Estructurales - Grado ...Dimensionado cerchas concurso espaguetis 2014 Sistemas Estructurales - Grado ...
Dimensionado cerchas concurso espaguetis 2014 Sistemas Estructurales - Grado ...Maribel Castilla Heredia
 
Apuntes y ejemplos de estructuras trianguladas
Apuntes y ejemplos de estructuras trianguladasApuntes y ejemplos de estructuras trianguladas
Apuntes y ejemplos de estructuras trianguladasMaribel Castilla Heredia
 
Dimensionado de Estructuras de Edificación - Arriostramientos en naves indust...
Dimensionado de Estructuras de Edificación - Arriostramientos en naves indust...Dimensionado de Estructuras de Edificación - Arriostramientos en naves indust...
Dimensionado de Estructuras de Edificación - Arriostramientos en naves indust...Maribel Castilla Heredia
 
Ejercicio flexión esviada compuesta debida a axil excéntrico - Sistemas Estru...
Ejercicio flexión esviada compuesta debida a axil excéntrico - Sistemas Estru...Ejercicio flexión esviada compuesta debida a axil excéntrico - Sistemas Estru...
Ejercicio flexión esviada compuesta debida a axil excéntrico - Sistemas Estru...Maribel Castilla Heredia
 
Ejercicio de obtención de tensiones paso a paso - Sistemas Estructurales - Gr...
Ejercicio de obtención de tensiones paso a paso - Sistemas Estructurales - Gr...Ejercicio de obtención de tensiones paso a paso - Sistemas Estructurales - Gr...
Ejercicio de obtención de tensiones paso a paso - Sistemas Estructurales - Gr...Maribel Castilla Heredia
 
Mecánica de Sólidos - Bloque B - Detección de barras sin esfuerzo axil en est...
Mecánica de Sólidos - Bloque B - Detección de barras sin esfuerzo axil en est...Mecánica de Sólidos - Bloque B - Detección de barras sin esfuerzo axil en est...
Mecánica de Sólidos - Bloque B - Detección de barras sin esfuerzo axil en est...Maribel Castilla Heredia
 
Mecánica de sólidos - Bloque B - Cálculo de esfuerzo axil en estructuras arti...
Mecánica de sólidos - Bloque B - Cálculo de esfuerzo axil en estructuras arti...Mecánica de sólidos - Bloque B - Cálculo de esfuerzo axil en estructuras arti...
Mecánica de sólidos - Bloque B - Cálculo de esfuerzo axil en estructuras arti...Maribel Castilla Heredia
 
Bloque A - Teoría de representación de diagramas de esfuerzos - Mecánica de s...
Bloque A - Teoría de representación de diagramas de esfuerzos - Mecánica de s...Bloque A - Teoría de representación de diagramas de esfuerzos - Mecánica de s...
Bloque A - Teoría de representación de diagramas de esfuerzos - Mecánica de s...Maribel Castilla Heredia
 
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Primera parte: Reacci...
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Primera parte: Reacci...Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Primera parte: Reacci...
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Primera parte: Reacci...Maribel Castilla Heredia
 
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Segunda parte: Esfuer...
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Segunda parte: Esfuer...Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Segunda parte: Esfuer...
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Segunda parte: Esfuer...Maribel Castilla Heredia
 

More from Maribel Castilla Heredia (17)

Sizing trusses for spaghetti truss competition
Sizing trusses for spaghetti truss competitionSizing trusses for spaghetti truss competition
Sizing trusses for spaghetti truss competition
 
Solid Mechanics. Reactions and internal forces. Step by step example . Part 2
Solid Mechanics. Reactions and internal forces. Step by step example . Part 2Solid Mechanics. Reactions and internal forces. Step by step example . Part 2
Solid Mechanics. Reactions and internal forces. Step by step example . Part 2
 
Solid Mechanics. Reactions and internal force diagrams. Step by step example....
Solid Mechanics. Reactions and internal force diagrams. Step by step example....Solid Mechanics. Reactions and internal force diagrams. Step by step example....
Solid Mechanics. Reactions and internal force diagrams. Step by step example....
 
Bending moment, shear and normal diagrams
Bending moment, shear and normal diagramsBending moment, shear and normal diagrams
Bending moment, shear and normal diagrams
 
Sistemas estructurales - Obtención de deformaciones en estructuras reticulada...
Sistemas estructurales - Obtención de deformaciones en estructuras reticulada...Sistemas estructurales - Obtención de deformaciones en estructuras reticulada...
Sistemas estructurales - Obtención de deformaciones en estructuras reticulada...
 
Dimensionado cerchas concurso espaguetis 2014 Sistemas Estructurales - Grado ...
Dimensionado cerchas concurso espaguetis 2014 Sistemas Estructurales - Grado ...Dimensionado cerchas concurso espaguetis 2014 Sistemas Estructurales - Grado ...
Dimensionado cerchas concurso espaguetis 2014 Sistemas Estructurales - Grado ...
 
Apuntes y ejemplos de estructuras trianguladas
Apuntes y ejemplos de estructuras trianguladasApuntes y ejemplos de estructuras trianguladas
Apuntes y ejemplos de estructuras trianguladas
 
Videotutoriales cype
Videotutoriales cypeVideotutoriales cype
Videotutoriales cype
 
Dimensionado de Estructuras de Edificación - Arriostramientos en naves indust...
Dimensionado de Estructuras de Edificación - Arriostramientos en naves indust...Dimensionado de Estructuras de Edificación - Arriostramientos en naves indust...
Dimensionado de Estructuras de Edificación - Arriostramientos en naves indust...
 
Ejercicio flexión esviada compuesta debida a axil excéntrico - Sistemas Estru...
Ejercicio flexión esviada compuesta debida a axil excéntrico - Sistemas Estru...Ejercicio flexión esviada compuesta debida a axil excéntrico - Sistemas Estru...
Ejercicio flexión esviada compuesta debida a axil excéntrico - Sistemas Estru...
 
Ejercicio de obtención de tensiones paso a paso - Sistemas Estructurales - Gr...
Ejercicio de obtención de tensiones paso a paso - Sistemas Estructurales - Gr...Ejercicio de obtención de tensiones paso a paso - Sistemas Estructurales - Gr...
Ejercicio de obtención de tensiones paso a paso - Sistemas Estructurales - Gr...
 
Procedimientos útiles en Nuevo Metal 3D
Procedimientos útiles en Nuevo Metal 3DProcedimientos útiles en Nuevo Metal 3D
Procedimientos útiles en Nuevo Metal 3D
 
Mecánica de Sólidos - Bloque B - Detección de barras sin esfuerzo axil en est...
Mecánica de Sólidos - Bloque B - Detección de barras sin esfuerzo axil en est...Mecánica de Sólidos - Bloque B - Detección de barras sin esfuerzo axil en est...
Mecánica de Sólidos - Bloque B - Detección de barras sin esfuerzo axil en est...
 
Mecánica de sólidos - Bloque B - Cálculo de esfuerzo axil en estructuras arti...
Mecánica de sólidos - Bloque B - Cálculo de esfuerzo axil en estructuras arti...Mecánica de sólidos - Bloque B - Cálculo de esfuerzo axil en estructuras arti...
Mecánica de sólidos - Bloque B - Cálculo de esfuerzo axil en estructuras arti...
 
Bloque A - Teoría de representación de diagramas de esfuerzos - Mecánica de s...
Bloque A - Teoría de representación de diagramas de esfuerzos - Mecánica de s...Bloque A - Teoría de representación de diagramas de esfuerzos - Mecánica de s...
Bloque A - Teoría de representación de diagramas de esfuerzos - Mecánica de s...
 
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Primera parte: Reacci...
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Primera parte: Reacci...Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Primera parte: Reacci...
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Primera parte: Reacci...
 
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Segunda parte: Esfuer...
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Segunda parte: Esfuer...Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Segunda parte: Esfuer...
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Segunda parte: Esfuer...
 

Recently uploaded

APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 

Recently uploaded (20)

APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 

SES - Block A - Eccentric loading. Step by step example

  • 1. Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla Block A. How to obtain normal stress due to eccentric axial loading Step by step example.
  • 2. Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla Normal stress in a member subjected to an eccentric axial load 1. Find and mark on the cross section the point where te eccentric axial load has been applied (cm). 2. Obtain the point where the neutral line interscts the Y axis. Represent the neutral line on the figure (cm). 3. Normal stress on the centroid is 25 N/mm2. Find the value of the axial load (kN). 4. Find the value and the point where the maximum positive normal stress will appear (kN/cm2). 5. Find the value and the point where the maximum negative normal stress will appear (kN/cm2). 6. The member is fix supported to the ground and free at the other end. Represent on the 3D schematic the neutral line, the area of the cross section subjected to tension, the one subjected to compression, the expected deformation and the point where the maximum normal stress as an absolute value appears.  The cross section in the figure is subjected to an eccentric axial load which has been applied on line a-a’. Point A belongs to the neutral line. Answer the following:
  • 3. Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla Normal stress in a member subjected to an eccentric axial load 1. Find and mark on the cross section the point where the eccentric axial load has been applied (cm). We start at the general case of normal stress due to vending (acording to the sign convention used througout this course). The cordinates of the point where the axial force has been applied can be obtained after manipulating this formula: yz x z y M zM yN A I I         2 4 4 116 24318,67 8198,67 z y A cm I cm I cm
  • 4. Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla Normal stress in a member subjected to an eccentric axial load 1. Find and mark on the cross section the point where the eccentric axial load has been applied (cm). We start at the general case of normal stress due to vending (acording to the sign convention used througout this course). The cordinates of the point where the axial force has been applied can be obtained after manipulating this formula: If we substitute in the previous formula Mz and My with the moments that a point load applied eccentrically would produce and use “P” as the value of the load that has been applied, the formula would be this: yz x z y M zM yN A I I      y z x z y P e y P e zP A I I           2 4 4 116 24318,67 8198,67 z y A cm I cm I cm
  • 5. Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla Normal stress in a member subjected to an eccentric axial load 1. Find and mark on the cross section the point where the eccentric axial load has been applied (cm). We start at the general case of normal stress due to vending (acording to the sign convention used througout this course). The cordinates of the point where the axial force has been applied can be obtained after manipulating this formula: If we substitute in the previous formula Mz and My with the moments that a point load applied eccentrically would produce and use “P” as the value of the load that has been applied, the formula would be this: And obtaining P as a common factor: yz x z y M zM yN A I I      y z x z y P e y P e zP A I I           2 4 4 116 24318,67 8198,67 z y A cm I cm I cm 1 y z x z y e y e z P A I I           
  • 6. Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla Normal stress in a member subjected to an eccentric axial load ey and ez are the coordinates of the point where load P has been applied. The subindexes indicate the axis related to each of these eccentricities. The following schematic shows an example:    2 4 4 116 24318,67 8198,67 z y A cm I cm I cm
  • 7. Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla Normal stress in a member subjected to an eccentric axial load ey and ez are the coordinates of the point where load P has been applied. The subindexes indicate the axis related to each of these eccentricities. The following schematic shows an example: We’ve been told that normal stress at point A is zero (because it belongs to the neutral axis). Substituting everything we know so far in the formula: (0, 10) 0 ( 10)1 0 116 24318,67 8198,67 y z A e e P               2 4 4 116 24318,67 8198,67 z y A cm I cm I cm
  • 8. Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla Normal stress in a member subjected to an eccentric axial load If P where zero there wouldn’t be any problem to be solved, therefore the value to be found verifies this:               0 ( 10)1 8198,67 0 7.067 116 24318,67 8198,67 1160 y z z e e e cm    2 4 4 116 24318,67 8198,67 z y A cm I cm I cm
  • 9. Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla Normal stress in a member subjected to an eccentric axial load If P where zero there wouldn’t be any problem to be solved, therefore the value to be found verifies this: We also know that P is on line a-a’, therefore the ey value can be obtained with the geometrical relationship between them:               0 ( 10)1 8198,67 0 7.067 116 24318,67 8198,67 1160 y z z e e e cm 1 ; 14,13 2 z y ye e e cm     2 4 4 116 24318,67 8198,67 z y A cm I cm I cm
  • 10. Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla Normal stress in a member subjected to an eccentric axial load If P where zero there wouldn’t be any problem to be solved, therefore the value to be found verifies this: We also know that P is on line a-a’, therefore the ey value can be obtained with the geometrical relationship between them: This is the point where the load has been applied:               0 ( 10)1 8198,67 0 7.067 116 24318,67 8198,67 1160 y z z e e e cm 1 ; 14,13 2 z y ye e e cm     2 4 4 116 24318,67 8198,67 z y A cm I cm I cm
  • 11. Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla Normal stress in a member subjected to an eccentric axial load 2. Obtain the point where the neutral line intersects the Y axis. Represent the neutral line on the figure (cm). Once the eccentricities have been obtained, we just have to substitute the “z” coordinate with zero in the formula (because we are looking for a point that belongs to the neutral line). The only unknown left will be the “y” coordinate we are looking for.    2 4 4 116 24318,67 8198,67 z y A cm I cm I cm
  • 12. Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla Normal stress in a member subjected to an eccentric axial load 2. Obtain the point where the neutral line intersects the Y axis. Represent the neutral line on the figure (cm). Once the eccentricities have been obtained, we just have to substitute the “z” coordinate with zero in the formula (because we are looking for a point that belongs to the neutral line). The only unknown left will be the “y” coordinate we are looking for.    2 4 4 116 24318,67 8198,67 z y A cm I cm I cm ( ,0) 1 14,3 7,067 (0) 0 ; 14.86 116 24318,67 8198,67 EN y y P y cm            
  • 13. Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla Normal stress in a member subjected to an eccentric axial load 2. Obtain the point where the neutral line intersects the Y axis. Represent the neutral line on the figure (cm). Once the eccentricities have been obtained, we just have to substitute the “z” coordinate with zero in the formula (because we are looking for a point that belongs to the neutral line). The only unknown left will be the “y” coordinate we are looking for.    2 4 4 116 24318,67 8198,67 z y A cm I cm I cm ( ,0) 1 14,3 7,067 (0) 0 ; 14.86 116 24318,67 8198,67 EN y y P y cm             Notice that the position of the neutral line doesn’t depend on the value nor the sign of the axial load, just .
  • 14. Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla Normal stress in a member subjected to an eccentric axial load 3. Normal stress on the centroid is 25 N/mm2. Find the value of the axial load (kN). In the general formula, let’s substitute all known values: eccentricity, coordinates of the centroid (where normal stress is 25 N/mm2) and the normal stress itself and I’ll be able to obtain “P”. 1 y z x z y e y e z P A I I           
  • 15. Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla Normal stress in a member subjected to an eccentric axial load 3. Normal stress on the centroid is 25 N/mm2. Find the value of the axial load (kN). In the general formula, let’s substitute all known values: eccentricity, coordinates of the centroid (where normal stress is 25 N/mm2) and the normal stress itself and I’ll be able to obtain “P”. 1 y z x z y e y e z P A I I                            2(0,0) 2 4 4 3 1 14,3 0 7,067 0 2500 116 24318,67 8198,67 290 10 290 G cm cmN P cm cm cm cm P N kN
  • 16. Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla Normal stress in a member subjected to an eccentric axial load 3. Normal stress on the centroid is 25 N/mm2. Find the value of the axial load (kN). In the general formula, let’s substitute all known values: eccentricity, coordinates of the centroid (where normal stress is 25 N/mm2) and the normal stress itself and I’ll be able to obtain “P”. 1 y z x z y e y e z P A I I                            2(0,0) 2 4 4 3 1 14,3 0 7,067 0 2500 116 24318,67 8198,67 290 10 290 G cm cmN P cm cm cm cm P N kN 4. Find the value and the point where the maximum positive normal stress will appear (kN/cm2). The maximum positive normal stress (tensile) will take place in the furthest point from the neutral line in, the tension zone of the cross section (shaded in blue) thus coordinates (+20,+10)
  • 17. Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla Normal stress in a member subjected to an eccentric axial load 3. Normal stress on the centroid is 25 N/mm2. Find the value of the axial load (kN). In the general formula, let’s substitute all known values: eccentricity, coordinates of the centroid (where normal stress is 25 N/mm2) and the normal stress itself and I’ll be able to obtain “P”. 1 y z x z y e y e z P A I I                            2(0,0) 2 4 4 3 1 14,3 0 7,067 0 2500 116 24318,67 8198,67 290 10 290 G cm cmN P cm cm cm cm P N kN 4. Find the value and the point where the maximum positive normal stress will appear (kN/cm2). The maximum positive normal stress (tensile) will take place in the furthest point from the neutral line in, the tension zone of the cross section (shaded in blue) thus coordinates (+20,+10)              2 (20,10) 2 4 4 1 14,3 ( 20 ) 7,067 ( 10 ) 290 8,360 / 116 24318,67 8198,67 G cm cm cm cm kN kN cm cm cm cm
  • 18. Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla Normal stress in a member subjected to an eccentric axial load 5, Normal stress on the centroid is 25 N/mm2. Find the value of the axial load (kN). The maximum negative normal stress (compression) will take place in the furthest point from the neutral line in, the compressed zone of the cross section (shaded in red) thus coordinates (-20,-10)                    ( 20, 10) 2 4 4 2 ( 20, 10) 1 14,3 ( 20 ) 7,067 ( 10 ) 290 116 24318,67 8198,67 3,365 / G G cm cm cm cm kN cm cm cm kN cm
  • 19. Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla Normal stress in a member subjected to an eccentric axial load 6. The member is fix supported to the ground and free at the other end. Represent on the 3D schematic the neutral line, the area of the cross section subjected to tension, the one subjected to compression, the expected deformation and the point where the maximum normal stress as an absolute value appears.
  • 20. Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla Normal stress in a member subjected to an eccentric axial load 6. The member is fix supported to the ground and free at the other end. Represent on the 3D schematic the neutral line, the area of the cross section subjected to tension, the one subjected to compression, the expected deformation and the point where the maximum normal stress as an absolute value appears.
  • 21. Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla Normal stress in a member subjected to an eccentric axial load The edge with the greatest normal stress as an absolute value 6. The member is fix supported to the ground and free at the other end. Represent on the 3D schematic the neutral line, the area of the cross section subjected to tension, the one subjected to compression, the expected deformation and the point where the maximum normal stress as an absolute value appears.
  • 22. Structural Systems – Academic Year 2016/2017 Instructor: Maribel Castilla Heredia @maribelcastilla Block A. How to obtain normal stress due to eccentric axial loading Step by step example.