SlideShare a Scribd company logo
1 of 45
Elastic Buckling Behavior of Beams
CE579 - Structural Stability and Design
ELASTIC BUCKLING OF BEAMS
• Going back to the original three second-order differential
equations:
( ) ( )
( ) ( )
0
0
0
0
,
( ) ( ( ) )
( ( ) ) ( ) ( ) 0
x BY TY BY BX TX BX
y BX TY BY BY TX BX
w T BX BX TX
BY BY TY TY BY TX BX
Therefore
z z
E I v P v P x M M M M M M
L L
z z
E I u P u P y M M M M M M
L L
z
E I G K K u M M M P y
L
z v u
v M M M P x M M M M
L L L
φ
φ
φ φ
 
′′+ − + − + = − + ÷
 
 ′′+ − − + − + = − + + ÷
 
′′′ ′ ′− + + − − + +
′− + + + − + − + =
1
2
3
(MTX+MBX) (MTY+MBY)
ELASTIC BUCKLING OF BEAMS
• Consider the case of a beam subjected to uniaxial bending only:
 because most steel structures have beams in uniaxial bending
 Beams under biaxial bending do not undergo elastic buckling
• P=0; MTY=MBY=0
• The three equations simplify to:
• Equation (1) is an uncoupled differential equation describing in-plane
bending behavior caused by MTX and MBX
( )
( )
( ) ( ) ( ) 0
x BX TX BX
y BX TX BX
w T BX BX TX TX BX
z
E I v M M M
L
z
E I u M M M
L
z u
E I G K K u M M M M M
L L
φ
φ φ
′′ = − +
′′− = +
 
′′′ ′ ′− + + − − + − + = ÷
 
1
2
3
(−φ)
ELASTIC BUCKLING OF BEAMS
• Equations (2) and (3) are coupled equations in u and φ – that
describe the lateral bending and torsional behavior of the beam. In
fact they define the lateral torsional buckling of the beam.
• The beam must satisfy all three equations (1, 2, and 3). Hence,
beam in-plane bending will occur UNTIL the lateral torsional
buckling moment is reached, when it will take over.
• Consider the case of uniform moment (Mo) causing compression in
the top flange. This will mean that
 -MBX = MTX = Mo
Uniform Moment Case
• For this case, the differential equations (2 and 3) will become:
( )
2
2 2
2 2 2 2
0 0
0
( ) 0
:
'
,
( ) ( )
2 2
y o
w T o
A
o
x
o
o o
xA
o
o o
x
E I u M
E I G K K u M
where
K Wagner s effect due to warping caused by torsion
K a dA
M
But y neglecting higher order terms
I
M
K y x x y y dA
I
M
K y x x xx y y yy dA
I
φ
φ φ
σ
σ
′′+ =
′′′ ′ ′− + + =
=
=
= ⇒
 ∴ = − + − 
 ∴ = + − + + − 
∫
∫
2 2 2 2 2
0 2 2
A
o
o o o
x A A A A A
M
K x y dA y x y dA x xy dA y y dA y y dA
I
 
 ∴ = + + − + −  
 
∫
∫ ∫ ∫ ∫ ∫
ELASTIC BUCKLING OF BEAMS
2 2
2 2
2 2
2
2
, 2
sec
o
o x
x A
A
o o
x
A
o x x o
x
x
M
K y x y dA y I
I
y x y dA
K M y
I
y x y dA
K M where y
I
is a new tional property
β β
β
 
 ∴ = + −  
 
  +  
∴ = − 
 
 
 + 
∴ = ⇒ = −
∫
∫
∫
( )
:
(2) 0
(3) ( ) 0
y o
w T o x o
The beam buckling differential equations become
E I u M
E I G K M u M
φ
φ β φ
′′+ =
′′′ ′ ′− + + =
ELASTIC BUCKLING OF BEAMS
2
2
2
2
1 2 2
1 2
(2)
(2) (3) :
( ) 0
sec : 0
0
,
0
o
y
iv o
w T o x
y
x
iv oT
w y w
oT
w y w
iv
M
Equation gives u
E I
Substituting u from Equation in gives
M
E I G K M
E I
For doubly symmetric tion
MG K
E I E I I
MG K
Let and
E I E I I
φ
φ β φ φ
β
φ φ φ
λ λ
φ λ φ λ φ
′′ = −
′′
′′− + − =
=
′′∴ − − =
= =
′′∴ − − = ⇒ . .becomes the combined d e of LTB
ELASTIC BUCKLING OF BEAMS
( )
1 1 2 2
4 2
1 2
4 2
1 2
2 2
1 1 2 1 2 12
2 2
1 1 2 1 1 2
1 2
1 2 3 4
0
0
4 4
,
2 2
4 4
,
2 2
, ,
z
z
z z i z i z
Assume solution is of the form e
e
i
Let and i
Above are the four roots for
C e C e C e C e
collect
λ
λ
α α α α
φ
λ λ λ λ
λ λ λ λ
λ λ λ λ λ λ
λ
λ λ λ λ λ λ
λ
λ α α
λ
φ − −
=
∴ − − =
∴ − − =
+ + + −
∴ = −
+ + + +
∴ = ± ±
∴ = ± ±
∴ = + + +
∴
1 1 2 1 3 2 4 2cosh( ) sinh( ) sin( ) cos( )
ing real and imaginary terms
G z G z G z G zφ α α α α∴ = + + +
ELASTIC BUCKLING OF BEAMS
• Assume simply supported boundary conditions for the beam:
1
2 2
1 2 2
1 1 2 2 3
2 2 2 2
41 1 1 1 2 2 2 2
(0) (0) ( ) ( ) 0
. .
1 0 0 1
0 0
0
cosh( ) sinh( ) sin( ) cos( )
cosh( ) sinh( ) sin( ) cos( )
L L
Solution for must satisfy all four b c
G
G
L L L L G
GL L L L
For buckl
φ φ φ φ
φ
α α
α α α α
α α α α α α α α
′′ ′′∴ = = = =
   
   −  
 × = 
   
   − −   
( )2 2
1 2 1 2
2
2
sin :
det min 0
sinh( ) sinh( ) 0
:
sinh( ) 0
ing coefficient matrix must be gular
er ant of matrix
L L
Of these
only L
L n
α α α α
α
α π
∴ =
∴ + × × =
=
∴ =
ELASTIC BUCKLING OF BEAMS
( )
2
2
1 2 1
2
2
1 2 1 2
22 2 2
2
1 1 12 2 2
2
2 2
2 12 2
2 2 2
2 2 2 2
2 2
2
2 2
4
2
2
4
2 2 2
2
4 4
o T
y w w
T
o y w
w
n
L
L
L
L L L
L L
M G K
E I I L E I L
G K
M E I I
L E I L
π
α
λ λ λ π
π
λ λ λ
π π π
λ λ λ
λ
π π
λ λ
π π
λ
π π
∴ =
+ −
∴ =
∴ + − =
    
+ − + ÷  ÷ ÷
    ∴ = =
  
∴ = + ÷ ÷
  
  
∴ = = + ÷ ÷
  
  
∴ = + ÷ ÷
  
2 2
2 2
y w
o T
E I E I
M G K
L L
π π 
∴ = + ÷
 
Uniform Moment Case
• The critical moment for the uniform moment case is given by
the simple equations shown below.
• The AISC code massages these equations into different
forms, which just look different. Fundamentally the equations
are the same.
 The critical moment for a span with distance Lb between lateral -
torsional braces.
 Py is the column buckling load about the minor axis.
 Pφ is the column buckling load about the torsional z- axis.
Mcr
o
=
π2
EIy
L2
×
π2
EIw
L2
+GKT






Mcr
o
= Py ×Pφ ×ro
2
Non-uniform moment
• The only case for which the differential equations can be
solved analytically is the uniform moment.
• For almost all other cases, we will have to resort to numerical
methods to solve the differential equations.
• Of course, you can also solve the uniform moment case
using numerical methods
( )
( )
( ) ( ) ( ) 0
x BX TX BX
y BX TX BX
w T BX BX TX TX BX
z
E I v M M M
L
z
E I u M M M
L
z u
E I G K K u M M M M M
L L
φ
φ φ
′′ = − +
′′− = +
 
′′′ ′ ′− + + − − + − + = ÷
 
φ
What numerical method to use
• What we have is a problem where the governing differential equations are
known.
 The solution and some of its derivatives are known at the boundary.
 This is an ordinary differential equation and a boundary value
problem.
• We will solve it using the finite difference method.
 The FDM converts the differential equation into algebraic equations.
 Develop an FDM mesh or grid (as it is more correctly called) in the
structure.
 Write the algebraic form of the d.e. at each point within the grid.
 Write the algebraic form of the boundary conditions.
 Solve all the algebraic equations simultaneously.
Finite Difference Method
f(x+h)= f(x)+h ′f (x)+
h2
2!
′′f (x)+
h3
3!
′′′f (x)+
h4
4!
f iv
(x)+K
∴ ′f (x)=
f(x+h)− f(x)
h
+
h
2!
′′f (x)+
h2
3!
′′′f (x)+
h3
4!
f iv
(x)+K
∴ ′f (x)=
f(x+h)− f(x)
h
+O(h) ⇒Forwarddifferenceequation
h h
f(x)f(x-h)
f
x
f’(x)
Forward difference
Backward difference
Central difference
f(x+h)
Finite Difference Method
f (x+h) = f (x)+h ′f (x)+
h2
2!
′′f (x)+
h3
3!
′′′f (x)+
h4
4!
f iv
(x)+K
f (x−h) = f (x)−h ′f (x)+
h2
2!
′′f (x)−
h3
3!
′′′f (x)+
h4
4!
f iv
(x)+K
∴ ′f (x) =
f (x+h)− f (x−h)
2h
+
2h2
3!
′′′f (x)+K
∴ ′f (x) =
f (x+h)− f (x−h)
2h
+O(h2
) ⇒Central differenceequation
f(x−h)= f(x)−h ′f (x)+
h2
2!
′′f (x)−
h3
3!
′′′f (x)+
h4
4!
f iv
(x)+K
∴ ′f (x)=
f(x)− f(x−h)
h
+
h
2!
′′f (x)−
h2
3!
′′′f (x)+
h3
4!
f iv
(x)+K
∴ ′f (x)=
f(x)− f(x−h)
h
+O(h) ⇒Backwarddifferenceequation
Finite Difference Method
• The central difference equations are better than the forward
or backward difference because the error will be of the order
of h-square rather than h.
• Similar equations can be derived for higher order derivatives
of the function f(x).
• If the domain x is divided into several equal parts, each of
length h.
• At each of the ‘nodes’ or ‘section points’ or ‘domain points’
the differential equations are still valid.
1 2 3 i-2 i-1 i i+1 i+2 n
h
Finite Difference Method
• Central difference approximations for higher order
derivatives: Notation
y = f (x)
yi = f (x =i)
yi
′ = ′f (x =i)
yi
′′ = ′′f (x =i) and soonL
yi
′ =
1
2h
yi+1 − yi−1( )
yi
′′ =
1
h2
yi+1 −2yi + yi−1( )
yi
′′′ =
1
2h3
yi+2 −2yi+1 +2yi−1 − yi−2( )
yi
iv
=
1
h4
yi+2 −4yi+1 +6yi −4yi−1 + yi−2( )
FDM - Beam on Elastic Foundation
• Consider an interesting problemn --> beam on elastic
foundation
• Convert the problem into a finite difference problem.
Fixed end Pin support
x L
w(x)=w
K=elastic fdn.
EIyiv
+ky(x)=w(x)
1 2 3 4 5 6
h =0.2 l
EIyi
iv
+kyi=w
Discrete form of differential equation
FDM - Beam on Elastic Foundation
EIyi
iv
+kyi =w
∴
EI
h4
yi−2 −4yi−1+6yi −4yi+1+yi+2( )+kyi =w
write4equations fori=2,3,4,5
1 2 3 4 5 6
h =0.2 l
70
Need two imaginary nodes that lie within the boundary
Hmm…. These are needed to only solve the problem
They don’t mean anything.
FDM - Beam on Elastic Foundation
• Lets consider the boundary conditions:
At i =2:
625EI
L4
y0 −4y1 +6y2 −4y3 + y4( )+ky2 =w
At i =3:
625EI
L4
y1 −4y2 +6y3 −4y4 + y5( )+ky3 =w
At i =4:
625EI
L4
y2 −4y3 +6y4 −4y5 + y6( )+ky4 =w
At i =5:
625EI
L4
y3 −4y41 +6y5 −4y6 + y7( )+ky5 =w
1
6
(0) 0 0 (1)
( ) 0 0 (2)
( ) 0 (3)
(0) 0 (0) 0 (4)
y y
y L y
M L
yθ
= ⇒ =
= ⇒ =
=
′= ⇒ =
FDM - Beam on Elastic Foundation
( )
( )
1
6
6
6 5 6 72
7 5
1 2 0
2 0
(0) 0 0 (1)
( ) 0 0 (2)
( ) 0 (3)
( ) 0 0
1
2 0
(3 )
(0) 0 (0) 0 (4)
1
0
2
(4 )
y y
y L y
M L
EI y L y
y y y y
h
y y
y
y y y
h
y y
θ
= ⇒ =
= ⇒ =
=
′′ ′′∴ = ⇒ =
′′∴ = − + =
∴ = − +
′= ⇒ =
′∴ = − =
∴ = +
FDM - Beam on Elastic Foundation
• Substituting the boundary conditions:
Let a = kl4
/625EI
At i =2: 7y2 −4y3 + y4( )+
kL4
625EI
y2 =
wL4
625EI
At i = 3: −4y2 +6y3 −4y4 + y5( )+
kL4
625EI
y3 =
wL4
625EI
At i = 4: y2 −4y3 +6y4 −4y5( )+
kL4
625EI
y4 =
wL4
625EI
At i =5: y3 −4y1 +5y5( )+
kL4
625EI
y5 =
wL4
625EI
7+a −4 1 0
−4 6+a −4 1
1 −4 6+a −4
0 1 −4 5+a












y2
y3
y4
y5














=
1
1
1
1














wL4
625EI
FDM - Column Euler Buckling
P
w
x
L
Buckling problem: Find axial load
P for which the nontrivial
Solution exists.
OrdinaryDifferentialEquation
yiv
(x)+
P
EI
′′y(x)=
w
EI
Finite difference solution. Consider case
Where w=0, and there are 5 stations
P
x
0 1 2 3 4 5 6
h=0.25L
FDM - Euler Column Buckling
( ) ( )
( )
2 1 1 2 1 14 2
1
5
1
2 0
0 2
5
5
6 5 4
6 4
0
2, 3, 4
1 1
4 6 4 2 0
0 (1)
0 (2)
0
1
0
2
(3)
0
0
( 2 ) 0
(4)
iv
i i
i i i i i i i i
Finite difference method
P
y y
EI
At stations i
P
y y y y y y y y
h EI h
Boundary conditions
y
y
y
y y
h
y y
M
EI y
y y y
y y
− − + + − +
′′+ =
=
− + − + + • − + =
=
=
′ =
∴ − =
∴ =
=
′′∴ • =
∴ − + =
∴ = −
FDM - Column Euler Buckling
• Final Equations
1
h4
7y2 − 4y3 + y4( )+
P
EI
•
1
h2
(−2y2 + y3 ) = 0
1
h4
−4y2 + 6y3 − 4y4( )+
P
EI
•
1
h2
(y2 −2y3 + y4 ) = 0
1
h4
(y2 − 4y3 + 5y4 )+
P
EI
•
1
h2
(y3 −2y4 ) = 0
∴Matrix Form
7 −4 1
−4 6 −4
1 −4 5










y2
y3
y4










+
PL2
16EI
−2 1 0
1 −2 1
0 1 −2










y2
y3
y4










=
0
0
0










FDM - Euler Buckling Problem
• [A]{y}+λ[B]{y}={0}
 How to find P? Solve the eigenvalue problem.
• Standard Eigenvalue Problem
 [A]{y}=λ{y}
 Where, λ = eigenvalue and {y} = eigenvector
 Can be simplified to [A-λI]{y}={0}
 Nontrivial solution for {y} exists if and only if
| A-λI|=0
 One way to solve the problem is to obtain the characteristic
polynomial from expanding | A-λI|=0
 Solving the polynomial will give the value of λ
 Substitute the value of λ to get the eigenvector {y}
 This is not the best way to solve the problem, and will not work
for more than 4or 5th order polynomial
FDM - Euler Buckling Problem
• For solving Buckling Eigenvalue Problem
• [A]{y} + λ[B]{y}={0}
• [A+ λ B]{y}={0}
• Therefore, det |A+ λ B|=0 can be used to solve for λ
A =
7 −4 1
−4 6 −4
1 −4 5










B =
−2 1 0
1 −2 1
0 1 −2










and λ =
PL2
16EI
7−2λ −4 + λ 1
−4 + λ 6−2λ −4 + λ
1 −4 + λ 5−2λ
= 0
∴λ =1.11075
∴
PL2
16EI
=1.11075
∴Pcr =17.772
EI
L2
Exact solution is20.14
EI
L2
FDM - Euler Buckling Problem
• 11% error in solution from FDM
• {y}= {0.4184 1.0 0.8896}T
P
x
0 1 2 3 4 5 6
FDM Euler Buckling Problem
• Inverse Power Method: Numerical Technique to Find Least
Dominant Eigenvalue and its Eigenvector
 Based on an initial guess for eigenvector and iterations
• Algorithm
 1) Compute [E]=-[A]-1
[B]
 2) Assume initial eigenvector guess {y}0
 3) Set iteration counter i=0
 4) Solve for new eigenvector {y}i+1
=[E]{y}i
 5) Normalize new eigenvector {y}i+1
={y}i+1
/max(yj
i+1
)
 6) Calculate eigenvalue = 1/max(yj
i+1
)
 7) Evaluate convergence: λi+1
-λi
< tol
 8) If no convergence, then go to step 4
 9) If yes convergence, then λ= λi+1
and {y}= {y}i+1
Inverse Iteration Method
Different Boundary Conditions
Beams with Non-Uniform Loading
• Let Mo
cr
be the lateral-torsional buckling moment for the case
of uniform moment.
• If the applied moments are non-uniform (but varying linearly,
i.e., there are no loads along the length)
 Numerically solve the differential equation using FDM and the
Inverse Iteration process for eigenvalues
 Alternately, researchers have already done these numerical
solution for a variety of linear moment diagrams
 The results from the numerical analyses were used to develop
a simple equation that was calibrated to give reasonable
results.
Beams with Non-uniform Loading
• Salvadori in the 1970s developed the equation below based
on the regression analysis of numerical results with a simple
equation
 Mcr
= Cb Mo
cr
 Critical moment for non-uniform loading = Cb x critical moment
for uniform moment.
Beams with Non-uniform Loading
Beams with Non-uniform Loading
Beams with Non-Uniform Loading
• In case that the moment diagram is not linear over the length
of the beam, i.e., there are transverse loads producing a non-
linear moment diagram
 The value of Cb is a little more involved
Beams with non-simple end conditions
• Mo
cr
= (Py Pφ ro
2
)0.5
 PY with Kb
 Pφ with Kt
Beam Inelastic Buckling Behavior
• Uniform moment case
Beam Inelastic Buckling Behavior
• Non-uniform moment
Beam In-plane Behavior
• Section capacity Mp
• Section M-φ behavior
Beam Design Provisions
CHAPTER F in AISC Specifications

More Related Content

What's hot

Buckling Analysis of Plate
Buckling Analysis of PlateBuckling Analysis of Plate
Buckling Analysis of Plate
Payal Jain
 

What's hot (20)

Buckling Analysis of Plate
Buckling Analysis of PlateBuckling Analysis of Plate
Buckling Analysis of Plate
 
5 beams- Mechanics of Materials - 4th - Beer
5 beams- Mechanics of Materials - 4th - Beer5 beams- Mechanics of Materials - 4th - Beer
5 beams- Mechanics of Materials - 4th - Beer
 
Buckling and tension field beam for aerospace structures
Buckling and tension field beam for aerospace structuresBuckling and tension field beam for aerospace structures
Buckling and tension field beam for aerospace structures
 
Energy methods
Energy methodsEnergy methods
Energy methods
 
'12 ME 341 chapter 5
                       '12    ME 341 chapter 5                       '12    ME 341 chapter 5
'12 ME 341 chapter 5
 
Plastic Analysis
Plastic AnalysisPlastic Analysis
Plastic Analysis
 
Buckling of Columns
 Buckling of Columns Buckling of Columns
Buckling of Columns
 
Lec8 buckling v2_1
Lec8 buckling v2_1Lec8 buckling v2_1
Lec8 buckling v2_1
 
Bef 2
Bef 2Bef 2
Bef 2
 
composite beam problems.pdf
composite beam problems.pdfcomposite beam problems.pdf
composite beam problems.pdf
 
Theory of Plates and Shells
Theory of Plates and ShellsTheory of Plates and Shells
Theory of Plates and Shells
 
Analysis of Thin Plates
Analysis of  Thin PlatesAnalysis of  Thin Plates
Analysis of Thin Plates
 
2-D formulation Plane theory of elasticity Att 6672
2-D formulation Plane theory of elasticity Att 66722-D formulation Plane theory of elasticity Att 6672
2-D formulation Plane theory of elasticity Att 6672
 
Koppolu abishek prying action
Koppolu abishek   prying actionKoppolu abishek   prying action
Koppolu abishek prying action
 
CE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
CE72.52 - Lecture 3b - Section Behavior - Shear and TorsionCE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
CE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
 
SFD BMD
SFD BMDSFD BMD
SFD BMD
 
Finite Element analysis -Plate ,shell skew plate
Finite Element analysis -Plate ,shell skew plate Finite Element analysis -Plate ,shell skew plate
Finite Element analysis -Plate ,shell skew plate
 
Beam Deflection Formulae
Beam Deflection FormulaeBeam Deflection Formulae
Beam Deflection Formulae
 
Galerkin method
Galerkin methodGalerkin method
Galerkin method
 
Deflection
DeflectionDeflection
Deflection
 

Similar to Beam buckling

2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion
rro7560
 
Automatic Calibration 3 D
Automatic Calibration 3 DAutomatic Calibration 3 D
Automatic Calibration 3 D
rajsodhi
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
amnahnura
 
Trigo Sheet Cheat :D
Trigo Sheet Cheat :DTrigo Sheet Cheat :D
Trigo Sheet Cheat :D
Quimm Lee
 

Similar to Beam buckling (20)

stress strain dispalcement.pdf
stress strain dispalcement.pdfstress strain dispalcement.pdf
stress strain dispalcement.pdf
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion
 
Principle stresses and planes
Principle stresses and planesPrinciple stresses and planes
Principle stresses and planes
 
Bending-Deflection.pdf
Bending-Deflection.pdfBending-Deflection.pdf
Bending-Deflection.pdf
 
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdfSolucao_Marion_Thornton_Dinamica_Classic (1).pdf
Solucao_Marion_Thornton_Dinamica_Classic (1).pdf
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like Masses
 
The lattice Boltzmann equation: background and boundary conditions
The lattice Boltzmann equation: background and boundary conditionsThe lattice Boltzmann equation: background and boundary conditions
The lattice Boltzmann equation: background and boundary conditions
 
Automatic Calibration 3 D
Automatic Calibration 3 DAutomatic Calibration 3 D
Automatic Calibration 3 D
 
Direct integration method
Direct integration methodDirect integration method
Direct integration method
 
Hidden gates in universe: Wormholes UCEN 2017 by Dr. Ali Övgün
Hidden gates in universe: Wormholes UCEN 2017 by Dr. Ali ÖvgünHidden gates in universe: Wormholes UCEN 2017 by Dr. Ali Övgün
Hidden gates in universe: Wormholes UCEN 2017 by Dr. Ali Övgün
 
Mit2 092 f09_lec06
Mit2 092 f09_lec06Mit2 092 f09_lec06
Mit2 092 f09_lec06
 
19_Class_ThinAirfoilTheory.pdf
19_Class_ThinAirfoilTheory.pdf19_Class_ThinAirfoilTheory.pdf
19_Class_ThinAirfoilTheory.pdf
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
 
Mit2 092 f09_lec07
Mit2 092 f09_lec07Mit2 092 f09_lec07
Mit2 092 f09_lec07
 
Trigo Sheet Cheat :D
Trigo Sheet Cheat :DTrigo Sheet Cheat :D
Trigo Sheet Cheat :D
 
Laplace equation
Laplace equationLaplace equation
Laplace equation
 
finite element method for waveguide
finite element method for waveguidefinite element method for waveguide
finite element method for waveguide
 
Anuj 10mar2016
Anuj 10mar2016Anuj 10mar2016
Anuj 10mar2016
 

Recently uploaded

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Recently uploaded (20)

2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 

Beam buckling

  • 1. Elastic Buckling Behavior of Beams CE579 - Structural Stability and Design
  • 2. ELASTIC BUCKLING OF BEAMS • Going back to the original three second-order differential equations: ( ) ( ) ( ) ( ) 0 0 0 0 , ( ) ( ( ) ) ( ( ) ) ( ) ( ) 0 x BY TY BY BX TX BX y BX TY BY BY TX BX w T BX BX TX BY BY TY TY BY TX BX Therefore z z E I v P v P x M M M M M M L L z z E I u P u P y M M M M M M L L z E I G K K u M M M P y L z v u v M M M P x M M M M L L L φ φ φ φ   ′′+ − + − + = − + ÷    ′′+ − − + − + = − + + ÷   ′′′ ′ ′− + + − − + + ′− + + + − + − + = 1 2 3 (MTX+MBX) (MTY+MBY)
  • 3. ELASTIC BUCKLING OF BEAMS • Consider the case of a beam subjected to uniaxial bending only:  because most steel structures have beams in uniaxial bending  Beams under biaxial bending do not undergo elastic buckling • P=0; MTY=MBY=0 • The three equations simplify to: • Equation (1) is an uncoupled differential equation describing in-plane bending behavior caused by MTX and MBX ( ) ( ) ( ) ( ) ( ) 0 x BX TX BX y BX TX BX w T BX BX TX TX BX z E I v M M M L z E I u M M M L z u E I G K K u M M M M M L L φ φ φ ′′ = − + ′′− = +   ′′′ ′ ′− + + − − + − + = ÷   1 2 3 (−φ)
  • 4. ELASTIC BUCKLING OF BEAMS • Equations (2) and (3) are coupled equations in u and φ – that describe the lateral bending and torsional behavior of the beam. In fact they define the lateral torsional buckling of the beam. • The beam must satisfy all three equations (1, 2, and 3). Hence, beam in-plane bending will occur UNTIL the lateral torsional buckling moment is reached, when it will take over. • Consider the case of uniform moment (Mo) causing compression in the top flange. This will mean that  -MBX = MTX = Mo
  • 5. Uniform Moment Case • For this case, the differential equations (2 and 3) will become: ( ) 2 2 2 2 2 2 2 0 0 0 ( ) 0 : ' , ( ) ( ) 2 2 y o w T o A o x o o o xA o o o x E I u M E I G K K u M where K Wagner s effect due to warping caused by torsion K a dA M But y neglecting higher order terms I M K y x x y y dA I M K y x x xx y y yy dA I φ φ φ σ σ ′′+ = ′′′ ′ ′− + + = = = = ⇒  ∴ = − + −   ∴ = + − + + −  ∫ ∫ 2 2 2 2 2 0 2 2 A o o o o x A A A A A M K x y dA y x y dA x xy dA y y dA y y dA I    ∴ = + + − + −     ∫ ∫ ∫ ∫ ∫ ∫
  • 6. ELASTIC BUCKLING OF BEAMS 2 2 2 2 2 2 2 2 , 2 sec o o x x A A o o x A o x x o x x M K y x y dA y I I y x y dA K M y I y x y dA K M where y I is a new tional property β β β    ∴ = + −       +   ∴ = −       +  ∴ = ⇒ = − ∫ ∫ ∫ ( ) : (2) 0 (3) ( ) 0 y o w T o x o The beam buckling differential equations become E I u M E I G K M u M φ φ β φ ′′+ = ′′′ ′ ′− + + =
  • 7. ELASTIC BUCKLING OF BEAMS 2 2 2 2 1 2 2 1 2 (2) (2) (3) : ( ) 0 sec : 0 0 , 0 o y iv o w T o x y x iv oT w y w oT w y w iv M Equation gives u E I Substituting u from Equation in gives M E I G K M E I For doubly symmetric tion MG K E I E I I MG K Let and E I E I I φ φ β φ φ β φ φ φ λ λ φ λ φ λ φ ′′ = − ′′ ′′− + − = = ′′∴ − − = = = ′′∴ − − = ⇒ . .becomes the combined d e of LTB
  • 8. ELASTIC BUCKLING OF BEAMS ( ) 1 1 2 2 4 2 1 2 4 2 1 2 2 2 1 1 2 1 2 12 2 2 1 1 2 1 1 2 1 2 1 2 3 4 0 0 4 4 , 2 2 4 4 , 2 2 , , z z z z i z i z Assume solution is of the form e e i Let and i Above are the four roots for C e C e C e C e collect λ λ α α α α φ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ α α λ φ − − = ∴ − − = ∴ − − = + + + − ∴ = − + + + + ∴ = ± ± ∴ = ± ± ∴ = + + + ∴ 1 1 2 1 3 2 4 2cosh( ) sinh( ) sin( ) cos( ) ing real and imaginary terms G z G z G z G zφ α α α α∴ = + + +
  • 9. ELASTIC BUCKLING OF BEAMS • Assume simply supported boundary conditions for the beam: 1 2 2 1 2 2 1 1 2 2 3 2 2 2 2 41 1 1 1 2 2 2 2 (0) (0) ( ) ( ) 0 . . 1 0 0 1 0 0 0 cosh( ) sinh( ) sin( ) cos( ) cosh( ) sinh( ) sin( ) cos( ) L L Solution for must satisfy all four b c G G L L L L G GL L L L For buckl φ φ φ φ φ α α α α α α α α α α α α α α ′′ ′′∴ = = = =        −    × =         − −    ( )2 2 1 2 1 2 2 2 sin : det min 0 sinh( ) sinh( ) 0 : sinh( ) 0 ing coefficient matrix must be gular er ant of matrix L L Of these only L L n α α α α α α π ∴ = ∴ + × × = = ∴ =
  • 10. ELASTIC BUCKLING OF BEAMS ( ) 2 2 1 2 1 2 2 1 2 1 2 22 2 2 2 1 1 12 2 2 2 2 2 2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 2 4 2 2 2 2 4 4 o T y w w T o y w w n L L L L L L L L M G K E I I L E I L G K M E I I L E I L π α λ λ λ π π λ λ λ π π π λ λ λ λ π π λ λ π π λ π π ∴ = + − ∴ = ∴ + − =      + − + ÷  ÷ ÷     ∴ = =    ∴ = + ÷ ÷       ∴ = = + ÷ ÷       ∴ = + ÷ ÷    2 2 2 2 y w o T E I E I M G K L L π π  ∴ = + ÷  
  • 11. Uniform Moment Case • The critical moment for the uniform moment case is given by the simple equations shown below. • The AISC code massages these equations into different forms, which just look different. Fundamentally the equations are the same.  The critical moment for a span with distance Lb between lateral - torsional braces.  Py is the column buckling load about the minor axis.  Pφ is the column buckling load about the torsional z- axis. Mcr o = π2 EIy L2 × π2 EIw L2 +GKT       Mcr o = Py ×Pφ ×ro 2
  • 12. Non-uniform moment • The only case for which the differential equations can be solved analytically is the uniform moment. • For almost all other cases, we will have to resort to numerical methods to solve the differential equations. • Of course, you can also solve the uniform moment case using numerical methods ( ) ( ) ( ) ( ) ( ) 0 x BX TX BX y BX TX BX w T BX BX TX TX BX z E I v M M M L z E I u M M M L z u E I G K K u M M M M M L L φ φ φ ′′ = − + ′′− = +   ′′′ ′ ′− + + − − + − + = ÷   φ
  • 13. What numerical method to use • What we have is a problem where the governing differential equations are known.  The solution and some of its derivatives are known at the boundary.  This is an ordinary differential equation and a boundary value problem. • We will solve it using the finite difference method.  The FDM converts the differential equation into algebraic equations.  Develop an FDM mesh or grid (as it is more correctly called) in the structure.  Write the algebraic form of the d.e. at each point within the grid.  Write the algebraic form of the boundary conditions.  Solve all the algebraic equations simultaneously.
  • 14. Finite Difference Method f(x+h)= f(x)+h ′f (x)+ h2 2! ′′f (x)+ h3 3! ′′′f (x)+ h4 4! f iv (x)+K ∴ ′f (x)= f(x+h)− f(x) h + h 2! ′′f (x)+ h2 3! ′′′f (x)+ h3 4! f iv (x)+K ∴ ′f (x)= f(x+h)− f(x) h +O(h) ⇒Forwarddifferenceequation h h f(x)f(x-h) f x f’(x) Forward difference Backward difference Central difference f(x+h)
  • 15. Finite Difference Method f (x+h) = f (x)+h ′f (x)+ h2 2! ′′f (x)+ h3 3! ′′′f (x)+ h4 4! f iv (x)+K f (x−h) = f (x)−h ′f (x)+ h2 2! ′′f (x)− h3 3! ′′′f (x)+ h4 4! f iv (x)+K ∴ ′f (x) = f (x+h)− f (x−h) 2h + 2h2 3! ′′′f (x)+K ∴ ′f (x) = f (x+h)− f (x−h) 2h +O(h2 ) ⇒Central differenceequation f(x−h)= f(x)−h ′f (x)+ h2 2! ′′f (x)− h3 3! ′′′f (x)+ h4 4! f iv (x)+K ∴ ′f (x)= f(x)− f(x−h) h + h 2! ′′f (x)− h2 3! ′′′f (x)+ h3 4! f iv (x)+K ∴ ′f (x)= f(x)− f(x−h) h +O(h) ⇒Backwarddifferenceequation
  • 16. Finite Difference Method • The central difference equations are better than the forward or backward difference because the error will be of the order of h-square rather than h. • Similar equations can be derived for higher order derivatives of the function f(x). • If the domain x is divided into several equal parts, each of length h. • At each of the ‘nodes’ or ‘section points’ or ‘domain points’ the differential equations are still valid. 1 2 3 i-2 i-1 i i+1 i+2 n h
  • 17. Finite Difference Method • Central difference approximations for higher order derivatives: Notation y = f (x) yi = f (x =i) yi ′ = ′f (x =i) yi ′′ = ′′f (x =i) and soonL yi ′ = 1 2h yi+1 − yi−1( ) yi ′′ = 1 h2 yi+1 −2yi + yi−1( ) yi ′′′ = 1 2h3 yi+2 −2yi+1 +2yi−1 − yi−2( ) yi iv = 1 h4 yi+2 −4yi+1 +6yi −4yi−1 + yi−2( )
  • 18. FDM - Beam on Elastic Foundation • Consider an interesting problemn --> beam on elastic foundation • Convert the problem into a finite difference problem. Fixed end Pin support x L w(x)=w K=elastic fdn. EIyiv +ky(x)=w(x) 1 2 3 4 5 6 h =0.2 l EIyi iv +kyi=w Discrete form of differential equation
  • 19. FDM - Beam on Elastic Foundation EIyi iv +kyi =w ∴ EI h4 yi−2 −4yi−1+6yi −4yi+1+yi+2( )+kyi =w write4equations fori=2,3,4,5 1 2 3 4 5 6 h =0.2 l 70 Need two imaginary nodes that lie within the boundary Hmm…. These are needed to only solve the problem They don’t mean anything.
  • 20. FDM - Beam on Elastic Foundation • Lets consider the boundary conditions: At i =2: 625EI L4 y0 −4y1 +6y2 −4y3 + y4( )+ky2 =w At i =3: 625EI L4 y1 −4y2 +6y3 −4y4 + y5( )+ky3 =w At i =4: 625EI L4 y2 −4y3 +6y4 −4y5 + y6( )+ky4 =w At i =5: 625EI L4 y3 −4y41 +6y5 −4y6 + y7( )+ky5 =w 1 6 (0) 0 0 (1) ( ) 0 0 (2) ( ) 0 (3) (0) 0 (0) 0 (4) y y y L y M L yθ = ⇒ = = ⇒ = = ′= ⇒ =
  • 21. FDM - Beam on Elastic Foundation ( ) ( ) 1 6 6 6 5 6 72 7 5 1 2 0 2 0 (0) 0 0 (1) ( ) 0 0 (2) ( ) 0 (3) ( ) 0 0 1 2 0 (3 ) (0) 0 (0) 0 (4) 1 0 2 (4 ) y y y L y M L EI y L y y y y y h y y y y y y h y y θ = ⇒ = = ⇒ = = ′′ ′′∴ = ⇒ = ′′∴ = − + = ∴ = − + ′= ⇒ = ′∴ = − = ∴ = +
  • 22. FDM - Beam on Elastic Foundation • Substituting the boundary conditions: Let a = kl4 /625EI At i =2: 7y2 −4y3 + y4( )+ kL4 625EI y2 = wL4 625EI At i = 3: −4y2 +6y3 −4y4 + y5( )+ kL4 625EI y3 = wL4 625EI At i = 4: y2 −4y3 +6y4 −4y5( )+ kL4 625EI y4 = wL4 625EI At i =5: y3 −4y1 +5y5( )+ kL4 625EI y5 = wL4 625EI 7+a −4 1 0 −4 6+a −4 1 1 −4 6+a −4 0 1 −4 5+a             y2 y3 y4 y5               = 1 1 1 1               wL4 625EI
  • 23. FDM - Column Euler Buckling P w x L Buckling problem: Find axial load P for which the nontrivial Solution exists. OrdinaryDifferentialEquation yiv (x)+ P EI ′′y(x)= w EI Finite difference solution. Consider case Where w=0, and there are 5 stations P x 0 1 2 3 4 5 6 h=0.25L
  • 24. FDM - Euler Column Buckling ( ) ( ) ( ) 2 1 1 2 1 14 2 1 5 1 2 0 0 2 5 5 6 5 4 6 4 0 2, 3, 4 1 1 4 6 4 2 0 0 (1) 0 (2) 0 1 0 2 (3) 0 0 ( 2 ) 0 (4) iv i i i i i i i i i i Finite difference method P y y EI At stations i P y y y y y y y y h EI h Boundary conditions y y y y y h y y M EI y y y y y y − − + + − + ′′+ = = − + − + + • − + = = = ′ = ∴ − = ∴ = = ′′∴ • = ∴ − + = ∴ = −
  • 25. FDM - Column Euler Buckling • Final Equations 1 h4 7y2 − 4y3 + y4( )+ P EI • 1 h2 (−2y2 + y3 ) = 0 1 h4 −4y2 + 6y3 − 4y4( )+ P EI • 1 h2 (y2 −2y3 + y4 ) = 0 1 h4 (y2 − 4y3 + 5y4 )+ P EI • 1 h2 (y3 −2y4 ) = 0 ∴Matrix Form 7 −4 1 −4 6 −4 1 −4 5           y2 y3 y4           + PL2 16EI −2 1 0 1 −2 1 0 1 −2           y2 y3 y4           = 0 0 0          
  • 26. FDM - Euler Buckling Problem • [A]{y}+λ[B]{y}={0}  How to find P? Solve the eigenvalue problem. • Standard Eigenvalue Problem  [A]{y}=λ{y}  Where, λ = eigenvalue and {y} = eigenvector  Can be simplified to [A-λI]{y}={0}  Nontrivial solution for {y} exists if and only if | A-λI|=0  One way to solve the problem is to obtain the characteristic polynomial from expanding | A-λI|=0  Solving the polynomial will give the value of λ  Substitute the value of λ to get the eigenvector {y}  This is not the best way to solve the problem, and will not work for more than 4or 5th order polynomial
  • 27. FDM - Euler Buckling Problem • For solving Buckling Eigenvalue Problem • [A]{y} + λ[B]{y}={0} • [A+ λ B]{y}={0} • Therefore, det |A+ λ B|=0 can be used to solve for λ A = 7 −4 1 −4 6 −4 1 −4 5           B = −2 1 0 1 −2 1 0 1 −2           and λ = PL2 16EI 7−2λ −4 + λ 1 −4 + λ 6−2λ −4 + λ 1 −4 + λ 5−2λ = 0 ∴λ =1.11075 ∴ PL2 16EI =1.11075 ∴Pcr =17.772 EI L2 Exact solution is20.14 EI L2
  • 28. FDM - Euler Buckling Problem • 11% error in solution from FDM • {y}= {0.4184 1.0 0.8896}T P x 0 1 2 3 4 5 6
  • 29. FDM Euler Buckling Problem • Inverse Power Method: Numerical Technique to Find Least Dominant Eigenvalue and its Eigenvector  Based on an initial guess for eigenvector and iterations • Algorithm  1) Compute [E]=-[A]-1 [B]  2) Assume initial eigenvector guess {y}0  3) Set iteration counter i=0  4) Solve for new eigenvector {y}i+1 =[E]{y}i  5) Normalize new eigenvector {y}i+1 ={y}i+1 /max(yj i+1 )  6) Calculate eigenvalue = 1/max(yj i+1 )  7) Evaluate convergence: λi+1 -λi < tol  8) If no convergence, then go to step 4  9) If yes convergence, then λ= λi+1 and {y}= {y}i+1
  • 31.
  • 32.
  • 33.
  • 34.
  • 36. Beams with Non-Uniform Loading • Let Mo cr be the lateral-torsional buckling moment for the case of uniform moment. • If the applied moments are non-uniform (but varying linearly, i.e., there are no loads along the length)  Numerically solve the differential equation using FDM and the Inverse Iteration process for eigenvalues  Alternately, researchers have already done these numerical solution for a variety of linear moment diagrams  The results from the numerical analyses were used to develop a simple equation that was calibrated to give reasonable results.
  • 37. Beams with Non-uniform Loading • Salvadori in the 1970s developed the equation below based on the regression analysis of numerical results with a simple equation  Mcr = Cb Mo cr  Critical moment for non-uniform loading = Cb x critical moment for uniform moment.
  • 40. Beams with Non-Uniform Loading • In case that the moment diagram is not linear over the length of the beam, i.e., there are transverse loads producing a non- linear moment diagram  The value of Cb is a little more involved
  • 41. Beams with non-simple end conditions • Mo cr = (Py Pφ ro 2 )0.5  PY with Kb  Pφ with Kt
  • 42. Beam Inelastic Buckling Behavior • Uniform moment case
  • 43. Beam Inelastic Buckling Behavior • Non-uniform moment
  • 44. Beam In-plane Behavior • Section capacity Mp • Section M-φ behavior
  • 45. Beam Design Provisions CHAPTER F in AISC Specifications