SlideShare a Scribd company logo
1 of 33
Download to read offline
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Block A.
Stress in frame systems.
Step by step problem.
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
 Study the following structural system and the corresponding cross-sections of its bars (z-axis is perpendicular to the plane of the screen).
Then, answer:
1. Moment of inertia (cm4) and first moment of area of half cross-section (cm3) (both related to the z-axis) of both members, CD and DE.
2. Maximum normal stress, positive, in segment DE (kN/cm2). State section and y-coordinate where it takes place.
3. Maximum normal stress, negative, in segment DE (kN/cm2). State section and y-coordinate where it takes place.
4. Maximum shear stress in segment CD (kN/cm2), stating section and y-coordinate where it takes place.
5. Normal stress in section B, in the superior part of the cross-section (kN/cm2)
6. Equivalent stress (Von Mises) in section A, in the top web-flange joint, (kN/cm2)
7. Yield stress in section B (Von Mises) (kN/cm2)
(+)
(+)
Postitive sign convention:
y
z
G
y
z G
Cross-section for
members CD y DE
Cross-section for
member AD
1 cm
1 cm
25 cm
25 cm
1 cm
1 cm
25 cm
25 cm
1 cm1 cm
C
A
B
D E
2,5 m1 m
1,5 m
1,5 m
50 kN
10 kN/m
20 kN/m
50 kNm
50 kN
10 kN/m
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
 Study the following structural system and the corresponding cross-sections of its bars (z-axis is perpendicular to the plane of the screen).
Then, answer:
1. Moment of inertia (cm4) and first moment of area of half cross-section (cm3) (both related to the z-axis) of both members, CD and DE.
First we find the “y” coordinate of the centroid (as we already know that it has to be located on the symmetry axis of the cross-section.


    
  
  
1
· 25 1 24,5 24 1 12
18,38
25 1 24 1
i n
i i
G
i i
A d
y cm
A
y
G
Cross-section for
members CD y DE
1 cm
1 cm
25 cm
25 cm


      2
1
25 1 24 1 49
i n
i
i
A A cm
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
 Study the following structural system and the corresponding cross-sections of its bars (z-axis is perpendicular to the plane of the screen).
Then, answer:
1. Moment of inertia (cm4) and first moment of area of half cross-section (cm3) (both related to the z-axis) of both members, CD and DE.
First we find the “y” coordinate of the centroid (as we already know that it has to be located on the symmetry axis of the
cross-section.


    
  
  
1
· 25 1 24,5 24 1 12
18,38
25 1 24 1
i n
i i
G
i i
A d
y cm
A
18,38 cm
y
z
G
Cross-section for
members CD y DE
1 cm
1 cm
25 cm
25 cm


      2
1
25 1 24 1 49
i n
i
i
A A cm
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
 Study the following structural system and the corresponding cross-sections of its bars (z-axis is perpendicular to the plane of the screen).
Then, answer:
1. Moment of inertia (cm4) and first moment of area of half cross-section (cm3) (both related to the z-axis) of both members, CD and DE.
First we find the “y” coordinate of the centroid (as we already know that it has to be located on the symmetry axis of the cross-section.
Once we know where the centroid is located, we can obtain the moment of inertia using Steiner’s Theorem:
And the first moment of area.


    
  
  
1
· 25 1 24,5 24 1 12
18,38
25 1 24 1
i n
i i
G
i i
A d
y cm
A
18,38 cm
y
z
G
Cross-section for
members CD y DE
1 cm
1 cm
25 cm
25 cm 


 
          
3 3
22 2 4
1
25 1 1 24
( · ) 25 1 6,12 24 1 6,38 3067,35
12 12
i n
z i i i
i
I I A d cm
1
sec
32
1
5,62
· 25 1 6,12 5,62 1 168,8
2
i n
z i i
i
S A d cm


       


      2
1
25 1 24 1 49
i n
i
i
A A cm
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
 Study the following structural system and the corresponding cross-sections of its bars (z-axis is perpendicular to the plane of the screen).
Then, answer:
1. Moment of inertia (cm4) and first moment of area of half cross-section (cm3) (both related to the z-axis) of both members, CD and DE.
First we find the “y” coordinate of the centroid (as we already know that it has to be located on the symmetry axis of the cross-section.
Once we know where the centroid is located, we can obtain the moment of inertia using Steiner’s Theorem:
And the first moment of area.


    
  
  
1
· 25 1 24,5 24 1 12
18,38
25 1 24 1
i n
i i
G
i i
A d
y cm
A
18,38 cm
y
z
G
Cross-section for
members CD y DE
1 cm
1 cm
25 cm
25 cm 


 
          
3 3
22 2 4
1
25 1 1 24
( · ) 25 1 6,12 24 1 6,38 3067,35
12 12
i n
z i i i
i
I I A d cm
1
sec
32
1
5,62
· 25 1 6,12 5,62 1 168,8
2
i n
z i i
i
S A d cm


       


      2
1
25 1 24 1 49
i n
i
i
A A cm
Remember that if the centroid has been
correctly obtained, the first moment of area
will be the same no matter if you choose the
superior or the inferior half of the cross-
section. You can use it as a way to check if
you did it right.
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
 Study the following structural system and the corresponding cross-sections of its bars (z-axis is perpendicular to the plane of the screen).
Then, answer:
1. Moment of inertia (cm4) and first moment of area of half cross-section (cm3) (both related to the z-axis) of both members, CD and DE.
First we find the “y” coordinate of the centroid (as we already know that it has to be located on the symmetry axis of the cross-section.
Once we know where the centroid is located, we can obtain the moment of inertia using Steiner’s Theorem:
And the first moment of area.
Same procedure for the second cross-section:


    
  
  
1
· 25 1 24,5 24 1 12
18,38
25 1 24 1
i n
i i
G
i i
A d
y cm
A
18,38 cm
y
z
G
Cross-section for
members CD y DE
1 cm
1 cm
25 cm
25 cm 


 
          
3 3
22 2 4
1
25 1 1 24
( · ) 25 1 6,12 24 1 6,38 3067,35
12 12
i n
z i i i
i
I I A d cm
1
sec
32
1
5,62
· 25 1 6,12 5,62 1 168,8
2
i n
z i i
i
S A d cm


       


      2
1
25 1 24 1 49
i n
i
i
A A cm


    
4 4
2 4
1
25 23
( · ) 9232
12 12
i n
z i i i
i
I I A d cm
 


       
1
sec
32
1
· 25 12 11,5 0,5 11,5 2 432,25
i n
z i i
i
S A d cm


    2 2 2
1
25 23 96
i n
i
i
A A cm
y
z G
1 cm
1 cm
25 cm
25 cm
1 cm1 cm
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
2. Maximum normal stress, positive, in segment DE (kN/cm2). State section and y-coordinate where it takes place.
As stress values depend on the values of the internal forces, first thing to do is to draw the axial force, shear force and bending moment diagrams.
-50 kN
+50 kN
-60 kN
-50 kN
10 kN
-100 kN
-115 kN
50 kNm
12,5 kNm5 kNm
7,5 kNm
157,5 kNm
318,75 kNm
Axial force Shear force Bending moment
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
2. Maximum normal stress, positive, in segment DE (kN/cm2). State section and y-coordinate where it takes place.
As stress values depend on the values of the internal forces, first thing to do is to draw the axial force, shear force and bending moment diagrams.
Once the values have been obtained, we can obtain the maximum normal stress, positive, in segment DE.
-50 kN
+50 kN
-60 kN
-50 kN
10 kN
-100 kN
-115 kN
50 kNm
12,5 kNm5 kNm
7,5 kNm
157,5 kNm
318,75 kNm
Axial force Shear force Bending moment
 
  ,
max
DE
z
N M
y
A I
As studied during classes, normal stress depends on the value of the axial force, the area of the cross-section, the
value of the bending moment, the moment of inertia and the distance from the centroid where the normal stress is
obtained.
Thus each combination of these factors must be studied to find the greatest value of the normal stress, positive, in
this segment.
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
2. Maximum normal stress, positive, in segment DE (kN/cm2). State section and y-coordinate where it takes place (cont.)
Let’s find the possible combinations that provide positive values of normal stress in segment DE:
-50 kN
+50 kN
-60 kN
50 kNm
12,5 kNm5 kNm
7,5 kNm
157,5 kNm
318,75 kNm
Axial
force
Bending moment
y
z
G
1 cm
25 cm
18,38 cm
6,62 cm
 
  ,
max
DE
z
N M
y
A I
2
49Área cm
4
3067,35zI cm
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
2. Maximum normal stress, positive, in segment DE (kN/cm2). State section and y-coordinate where it takes place (cont.)
Let’s find the possible combinations that provide positive values of normal stress in segment DE:
-50 kN
+50 kN
-60 kN
50 kNm
12,5 kNm5 kNm
7,5 kNm
157,5 kNm
318,75 kNm
Axial
force
Bending moment
y
z
G
1 cm
25 cm
6,62 cm
 
  ,
max
DE
z
N M
y
A I
2
49Área cm
4
3067,35zI cm
  
 

    ,
22 4
12,5 100
50
6,62 3,72
49 3067,35
DE
D
cm
kNm
kN m kNcm
cmcm cm
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
2. Maximum normal stress, positive, in segment DE (kN/cm2). State section and y-coordinate where it takes place (cont.)
Let’s find the possible combinations that provide positive values of normal stress in segment DE:
-50 kN
+50 kN
-60 kN
50 kNm
12,5 kNm5 kNm
7,5 kNm
157,5 kNm
318,75 kNm
Axial
force
Bending moment
y
z
G
1 cm
25 cm
18,38 cm
 
  ,
max
DE
z
N M
y
A I
2
49Área cm
4
3067,35zI cm
  
 

    ,
22 4
12,5 100
50
6,62 3,72
49 3067,35
DE
D
cm
kNm
kN m kNcm
cmcm cm
  
 

    ,
22 4
50 100
50
18,38 30,99
49 3067,35
DE
E
cm
kNm
kN m kNcm
cmcm cm
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
2. Maximum normal stress, positive, in segment DE (kN/cm2). State section and y-coordinate where it takes place (cont.)
Let’s find the possible combinations that provide positive values of normal stress in segment DE:
-50 kN
+50 kN
-60 kN
50 kNm
12,5 kNm5 kNm
7,5 kNm
157,5 kNm
318,75 kNm
Axial
force
Bending moment
y
z
G
1 cm
25 cm
18,38 cm
 
  ,
max
DE
z
N M
y
A I
2
49Área cm
4
3067,35zI cm
  
 

    ,
22 4
12,5 100
50
6,62 3,72
49 3067,35
DE
D
cm
kNm
kN m kNcm
cmcm cm
  
 

    ,
22 4
50 100
50
18,38 30,99
49 3067,35
DE
E
cm
kNm
kN m kNcm
cmcm cm
Thus, the maximum tensile stress in segment DE
happens on section E, in the inferior part of the cross
section (y=-18,38cm) and the value is 30.99 kN/cm2
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
3. Maximum normal stress, positive, in segment DE (kN/cm2). State section and y-coordinate where it takes place (cont.)
Let’s find the possible combinations that provide negative values of normal stress in segment DE:
  
 

     ,
22 4
12,5 100
50
18,38 6,47
49 3067,35
DE
D
cm
kNm
kN m kNcm
cmcm cm
-50 kN
+50 kN
-60 kN
50 kNm
12,5 kNm5 kNm
7,5 kNm
157,5 kNm
318,75 kNm
Axial
force
Bending moment
 
  ,
max
DE
z
N M
y
A I
2
49Área cm
4
3067,35zI cm
y
z
G
1 cm
25 cm
18,38 cm
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
3. Maximum normal stress, positive, in segment DE (kN/cm2). State section and y-coordinate where it takes place (cont.)
Let’s find the possible combinations that provide negative values of normal stress in segment DE:
  
 

     ,
22 4
12,5 100
50
18,38 6,47
49 3067,35
DE
D
cm
kNm
kN m kNcm
cmcm cm
-50 kN
+50 kN
-60 kN
50 kNm
12,5 kNm5 kNm
7,5 kNm
157,5 kNm
318,75 kNm
Axial
force
Bending moment
 
  ,
max
DE
z
N M
y
A I
2
49Área cm
4
3067,35zI cm
y
z
G
1 cm
25 cm
  
 

     ,
22 4
50 100
50
6,62 9,77
49 3067,35
DE
E
cm
kNm
kN m kNcm
cmcm cm
6,62 cm
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
3. Maximum normal stress, positive, in segment DE (kN/cm2). State section and y-coordinate where it takes place (cont.)
Let’s find the possible combinations that provide negative values of normal stress in segment DE:
  
 

     ,
22 4
12,5 100
50
18,38 6,47
49 3067,35
DE
D
cm
kNm
kN m kNcm
cmcm cm
-50 kN
+50 kN
-60 kN
50 kNm
12,5 kNm5 kNm
7,5 kNm
157,5 kNm
318,75 kNm
Axial
force
Bending moment
 
  ,
max
DE
z
N M
y
A I
2
49Área cm
4
3067,35zI cm
y
z
G
1 cm
25 cm
  
 

     ,
22 4
50 100
50
6,62 9,77
49 3067,35
DE
E
cm
kNm
kN m kNcm
cmcm cm
6,62 cm
Thus, the maximum compressive stress in segment
DE happens on section E, in the superior part of the
cross section (y=+6,62cm) and the value is -9,77
kN/cm2
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
y
z
G
1 cm
25 cm
Problem 1
4. Maximum shear stress in segment CD (kN/cm2), stating section and y-coordinate where it takes place.
4
3067,35zI cmShear stress
1
sec
32
280,76zS cm
Shear stress depends on the value of the shear, on the first moment of area and the moment of inertia of
the cross section, and on the thickness of the cross section at the point where the shear stress is being
obtained.
max
fibra
zCD
z
V S
I b




1 cm18,38 cm
6,62 cm
-50 kN
10 kN
-100 kN
-115 kN
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
y
z
G
1 cm
25 cm
Problem 1
4. Maximum shear stress in segment CD (kN/cm2), stating section and y-coordinate where it takes place.
4
3067,35zI cmShear stress
1
sec
32
280,76zS cm
Shear stress depends on the value of the shear, on the first moment of area and the moment of inertia of
the cross section, and on the thickness of the cross section at the point where the shear stress is being
obtained.
max
fibra
zCD
z
V S
I b




1 cm18,38 cm
6,62 cm
-50 kN
10 kN
-100 kN
-115 kN
In a rectangular cross section, the distribution of shear stress is parabollic and the máximum value happens at the centroid.
Thus the first moment of área that has to be used is the máximum (the one that corresponds to half cross-section).


 

3
2max 4
10 168,8
0,55
3067,35 1
CD kN cm kN
cmcm cm
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
y
z
G
1 cm
25 cm
Problem 1
4. Maximum shear stress in segment CD (kN/cm2), stating section and y-coordinate where it takes place.
4
3067,35zI cmShear stress
1
sec
32
280,76zS cm
Shear stress depends on the value of the shear, on the first moment of area and the moment of inertia of
the cross section, and on the thickness of the cross section at the point where the shear stress is being
obtained.
max
fibra
zCD
z
V S
I b




1 cm18,38 cm
6,62 cm
-50 kN
10 kN
-100 kN
-115 kN
In a rectangular cross section, the distribution of shear stress is parabollic and the máximum value happens at the centroid.
Thus the first moment of área that has to be used is the máximum (the one that corresponds to half cross-section).
The maximum shear stress in segment CD appears in section
D, at the y=0 coordinate and the value is 0,55 kN/cm2

 

3
2max 4
10 168,8
0,55
3067,35 1
CD kN cm kN
cmcm cm
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
5. Normal stress in section B, in the superior part of the cross-section (kN/cm2)
To answer this question, take into account that segment AD is made with a different cross-section:
-50 kN
+50 kN
-60 kN
50 kNm
12,5 kNm5 kNm
7,5 kNm
157,5 kNm
318,75 kNm
Axial
force
Bending moment
   sup
B
z
N M
y
A I
2
96Área cm
4
9232zI cm
25 cm
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
5. Normal stress in section B, in the superior part of the cross-section (kN/cm2)
To answer this question, take into account that segment AD is made with a different cross-section:
-50 kN
+50 kN
-60 kN
50 kNm
12,5 kNm5 kNm
7,5 kNm
157,5 kNm
318,75 kNm
Axial
force
Bending moment
   sup
B
z
N M
y
A I
2
96Área cm
4
9232zI cm
25 cm
 
 

      2sup 2 4
157,5 100
60
12,5 20,70
96 9232
B
cm
kNm
kN m kNcm
cmcm cm
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
6. Equivalent stress (following Von Mises’ criterion) in section A, in the top web-flange joint, (kN/cm2)
The equivalent stress in a determinate y-coordinate provides the value of the combined effect of normal and shear stress in a specific point of the
cross-section:
-50 kN
+50 kN
-60 kN
50 kNm
12,5 kNm5 kNm
7,5 kNm
157,5 kNm
318,75 kNm
Axial
force
Bending moment
2
96Área cm
4
9232zI cm
25 cm
Shear force
     
 
22
3ALA ALMA ALA ALMA ALA ALMA
co
Before finding the equivalent stress, we must obtain the values of the normal and
shear stress in that specific y-coordinate of the cross-section.
A A A
-50 kN
10 kN
-100 kN
-115 kN
Web-flange
sup.
eq
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
6. Equivalent stress (following Von Mises’ criterion) in section A, in the top web-flange joint, (kN/cm2)
The equivalent stress in a determinate y-coordinate provides the value of the combined effect of normal and shear stress in a specific point of the
cross-section:
-50 kN
+50 kN
-60 kN
50 kNm
12,5 kNm5 kNm
7,5 kNm
157,5 kNm
318,75 kNm
Axial
force
Bending moment
2
96Área cm
4
9232zI cm
25 cm
Shear force
     
 
22
3ALA ALMA ALA ALMA ALA ALMA
co
Before finding the equivalent stress, we must obtain the values of the normal and
shear stress in that specific y-coordinate of the cross-section.
A A A
-50 kN
10 kN
-100 kN
-115 kN
Web-flange
sup.
eq
1. Normal stress in the superior web-flange joint of the cross-section in section A of the structure
  
 

      2sup 2 4
318,75 100
60
11,5 39,08
96 9232
A
ALA ALMA
cm
kNm
kN m kNcm
cmcm cmWeb-flange
sup.
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
6. Equivalent stress (following Von Mises’ criterion) in section A, in the top web-flange joint, (kN/cm2)
The equivalent stress in a determinate y-coordinate provides the value of the combined effect of normal and shear stress in a specific point of the
cross-section:
-50 kN
+50 kN
-60 kN
50 kNm
12,5 kNm5 kNm
7,5 kNm
157,5 kNm
318,75 kNm
Axial
force
Bending moment
2
96Área cm
4
9232zI cm
25 cm
Shear force
     
 
22
3ALA ALMA ALA ALMA ALA ALMA
co
Before finding the equivalent stress, we must obtain the values of the normal and
shear stress in that specific y-coordinate of the cross-section.
A A A
-50 kN
10 kN
-100 kN
-115 kN
Web-flange
sup.
eq
1. Normal stress in the superior web-flange joint of the cross-section in section A of the structure
  
 

      2sup 2 4
318,75 100
60
11,5 39,08
96 9232
A
ALA ALMA
cm
kNm
kN m kNcm
cmcm cmWeb-flange
sup.
11,5 cm
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
6. Equivalent stress (following Von Mises’ criterion) in section A, in the top web-flange joint, (kN/cm2)
The equivalent stress in a determinate y-coordinate provides the value of the combined effect of normal and shear stress in a specific point of the
cross-section:
-50 kN
+50 kN
-60 kN
50 kNm
12,5 kNm5 kNm
7,5 kNm
157,5 kNm
318,75 kNm
Axial
force
Bending moment
2
96Área cm
4
9232zI cm
25 cm
Shear force
     
 
22
3ALA ALMA ALA ALMA ALA ALMA
co
Before finding the equivalent stress, we must obtain the values of the normal and
shear stress in that specific y-coordinate of the cross-section.
A A A
-50 kN
10 kN
-100 kN
-115 kN
Web-flange
sup.
eq
1. Normal stress in the superior web-flange joint of the cross-section in section A of the structure
11,5 cm
2. Shear stress in the superior web-flange joint of the cross-section in section A
The first moment of area to be used is the one that
corresponds only to the superior flange of the cross-
section, because that’s the y-coordinate where the
shear stress has to be found:
y
z G
12 cm
25 cm
1 cm

     3
1
· 25 12 1 300
i n
ALA
z i i
i
S A d cm
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
6. Equivalent stress (following Von Mises’ criterion) in section A, in the top web-flange joint, (kN/cm2)
The equivalent stress in a determinate y-coordinate provides the value of the combined effect of normal and shear stress in a specific point of the
cross-section:
-50 kN
+50 kN
-60 kN
50 kNm
12,5 kNm5 kNm
7,5 kNm
157,5 kNm
318,75 kNm
Axial
force
Bending moment
2
96Área cm
4
9232zI cm
25 cm
Shear force
     
 
22
3ALA ALMA ALA ALMA ALA ALMA
co
Before finding the equivalent stress, we must obtain the values of the normal and
shear stress in that specific y-coordinate of the cross-section.
A A A
-50 kN
10 kN
-100 kN
-115 kN
Web-flange
sup.
eq
1. Normal stress in the superior web-flange joint of the cross-section in section A of the structure
11,5 cm
2. Shear stress in the superior web-flange joint of the cross-section in section A
  
 

3
24
115 300
1,86
9232 2
ALA ALMA
A
kN cm kN
cmcm cm
y
z G
12 cm
25 cm
1 cm

     3
1
· 25 12 1 300
i n
ALA
z i i
i
S A d cm
The thickness of the cross section at the point where the flange
meets the web is 2 cm (1 cm for each of the webs). Thus, the
final result of the shear stress is:
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
6. Equivalent stress (following Von Mises’ criterion) in section A, in the top web-flange joint, (kN/cm2)
The equivalent stress in a determinate y-coordinate provides the value of the combined effect of normal and shear stress in a specific point of the
cross-section:
-50 kN
+50 kN
-60 kN
50 kNm
12,5 kNm5 kNm
7,5 kNm
157,5 kNm
318,75 kNm
Axial
force
Bending moment
2
96Área cm
4
9232zI cm
25 cm
Shear force
     
 
22
3ALA ALMA ALA ALMA ALA ALMA
co
Before finding the equivalent stress, we must obtain the values of the normal and
shear stress in that specific y-coordinate of the cross-section.
A A A
-50 kN
10 kN
-100 kN
-115 kN
Web-flange
sup.
eq
1. Normal stress in the superior web-flange joint of the cross-section in section A of the structure
11,5 cm
2. Shear stress in the superior web-flange joint of the cross-section in section A
The last step left is combining both values of stress using Von Mises’ criterion:
 
   2 2
2, 39,08 3 1,86 39,21ALA ALMA
co A
kN
cm
Web-flange
sup.
eq
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
7. Yield stress (using Von Mises’ criterion) in section B (kN/cm2)
The equivalent stress has a physical meaning because it is obtained on a specific point of the cross-section. On the contrary, the yield stress will
combine the maximum value of both, normal and shear stresses. During the lectures we have already studied that the maximum of both stresses
can’t coincide on the same point of the cross-section.
-50 kN
+50 kN
-60 kN
50 kNm
12,5 kNm5 kNm
7,5 kNm
157,5 kNm
318,75 kNm
Axial
force
Bending moment
2
96Área cm
4
9232zI cm
25 cm
Shear force
    
2 2
, max, max,3env B B B
1. Maximum normal stress in point B (as an absolute value)
B B B
1
sec
32
432,25zS cm
   max,B
z
N M
y
A I
-50 kN
10 kN
-100 kN
-115 kN
yield
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
7. Yield stress (using Von Mises’ criterion) in section B (kN/cm2)
The equivalent stress has a physical meaning because it is obtained on a specific point of the cross-section. On the contrary, the yield stress will
combine the maximum value of both, normal and shear stresses. During the lectures we have already studied that the maximum of both stresses
can’t coincide on the same point of the cross-section.
-50 kN
+50 kN
-60 kN
50 kNm
12,5 kNm5 kNm
7,5 kNm
157,5 kNm
318,75 kNm
Axial
force
Bending moment
2
96Área cm
4
9232zI cm
25 cm
Shear force
    
2 2
, max, max,3env B B B
1. Maximum normal stress in point B (as an absolute value)
B B B
1
sec
32
432,25zS cm
   max,B
z
N M
y
A I
 


      2sup 2 4
157,5 100
60
12,5 20,70
96 9232
B
cm
kNm
kN m kNcm
cmcm cm
-50 kN
10 kN
-100 kN
-115 kN
yield
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
7. Yield stress (using Von Mises’ criterion) in section B (kN/cm2)
The equivalent stress has a physical meaning because it is obtained on a specific point of the cross-section. On the contrary, the yield stress will
combine the maximum value of both, normal and shear stresses. During the lectures we have already studied that the maximum of both stresses
can’t coincide on the same point of the cross-section.
-50 kN
+50 kN
-60 kN
50 kNm
12,5 kNm5 kNm
7,5 kNm
157,5 kNm
318,75 kNm
Axial
force
Bending moment
2
96Área cm
4
9232zI cm
25 cm
Shear force
    
2 2
, max, max,3env B B B
1. Maximum normal stress in point B (as an absolute value)
B B B
1
sec
32
432,25zS cm
   max,B
z
N M
y
A I
 


      2sup 2 4
157,5 100
60
12,5 20,70
96 9232
B
cm
kNm
kN m kNcm
cmcm cm
-50 kN
10 kN
-100 kN
-115 kN
 
 

      2inf 2 4
157,5 100
60
12,5 21,95
96 9232
B
cm
kNm
kN m kNcm
cmcm cm
yield
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
7. Yield stress (using Von Mises’ criterion) in section B (kN/cm2)
The equivalent stress has a physical meaning because it is obtained on a specific point of the cross-section. On the contrary, the yield stress will
combine the maximum value of both, normal and shear stresses. During the lectures we have already studied that the maximum of both stresses
can’t coincide on the same point of the cross-section.
-50 kN
+50 kN
-60 kN
50 kNm
12,5 kNm5 kNm
7,5 kNm
157,5 kNm
318,75 kNm
Axial
force
Bending moment
2
96Área cm
4
9232zI cm
25 cm
Shear force
    
2 2
, max, max,3env B B B
1. Maximum normal stress in point B (as an absolute value)
2. Maximum shear stress in point B
B B B
1
sec
32
432,25zS cm
-50 kN
10 kN
-100 kN
-115 kN


 

3
24
100 432,25
2,34
9232 2
kN cm kN
cmcm cm
yield
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Problem 1
7. Yield stress (using Von Mises’ criterion) in section B (kN/cm2)
The equivalent stress has a physical meaning because it is obtained on a specific point of the cross-section. On the contrary, the yield stress will
combine the maximum value of both, normal and shear stresses. During the lectures we have already studied that the maximum of both stresses
can’t coincide on the same point of the cross-section.
-50 kN
+50 kN
-60 kN
50 kNm
12,5 kNm5 kNm
7,5 kNm
157,5 kNm
318,75 kNm
Axial
force
Bending moment
2
96Área cm
4
9232zI cm
25 cm
Shear force
    
2 2
, max, max,3env B B B
1. Maximum normal stress in point B (as an absolute value)
2. Maximum shear stress in point B
B B B
1
sec
32
432,25zS cm
-50 kN
10 kN
-100 kN
-115 kN


 

3
24
100 432,25
2,34
9232 2
kN cm kN
cmcm cm
     
2 2
2, 21,95 3 2,34 22,32env B
kN
cm
yield
Yield
,B
Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla
Block A.
Stress in frame systems.
Step by step problem.

More Related Content

What's hot

1 static failure theories ductile r1
1 static failure theories ductile r11 static failure theories ductile r1
1 static failure theories ductile r1Himanshu Keshri
 
CE 72.52 - Lecture 5 - Column Design
CE 72.52 - Lecture 5 - Column DesignCE 72.52 - Lecture 5 - Column Design
CE 72.52 - Lecture 5 - Column DesignFawad Najam
 
8 beam deflection
8 beam deflection8 beam deflection
8 beam deflectionLisa Benson
 
FE Analysis of Bolted Connections for Wind Turbine Towers by Yadneshwar S. Joshi
FE Analysis of Bolted Connections for Wind Turbine Towers by Yadneshwar S. JoshiFE Analysis of Bolted Connections for Wind Turbine Towers by Yadneshwar S. Joshi
FE Analysis of Bolted Connections for Wind Turbine Towers by Yadneshwar S. JoshiYadneshwar Joshi
 
Buckling and tension field beam for aerospace structures
Buckling and tension field beam for aerospace structuresBuckling and tension field beam for aerospace structures
Buckling and tension field beam for aerospace structuresMahdi Damghani
 
Lecture 5 castigliono's theorem
Lecture 5 castigliono's theoremLecture 5 castigliono's theorem
Lecture 5 castigliono's theoremDeepak Agarwal
 
Design of column base plates anchor bolt
Design of column base plates anchor boltDesign of column base plates anchor bolt
Design of column base plates anchor boltKhaled Eid
 
CE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
CE72.52 - Lecture 3b - Section Behavior - Shear and TorsionCE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
CE72.52 - Lecture 3b - Section Behavior - Shear and TorsionFawad Najam
 
deflection of beam
deflection of beamdeflection of beam
deflection of beamKaran Patel
 
Approximate Methods
Approximate MethodsApproximate Methods
Approximate MethodsTeja Ande
 
Unit 5 - deflection of beams and columns
Unit  5 - deflection of beams and columnsUnit  5 - deflection of beams and columns
Unit 5 - deflection of beams and columnskarthi keyan
 
Lec4 shear of thin walled beams
Lec4 shear of thin walled beamsLec4 shear of thin walled beams
Lec4 shear of thin walled beamsMahdi Damghani
 
CE 72.52 - Lecture 7 - Strut and Tie Models
CE 72.52 - Lecture 7 - Strut and Tie ModelsCE 72.52 - Lecture 7 - Strut and Tie Models
CE 72.52 - Lecture 7 - Strut and Tie ModelsFawad Najam
 
L5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shapeL5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shapeSam Alalimi
 
Ppt on ecdcentric loading of short column
Ppt on ecdcentric loading of short columnPpt on ecdcentric loading of short column
Ppt on ecdcentric loading of short columnjagadeesh jagadeesh
 
Failure of slender and stocky columns (2nd year)
Failure of slender and stocky columns (2nd year)Failure of slender and stocky columns (2nd year)
Failure of slender and stocky columns (2nd year)Alessandro Palmeri
 

What's hot (20)

1 static failure theories ductile r1
1 static failure theories ductile r11 static failure theories ductile r1
1 static failure theories ductile r1
 
Thin and thick cylinders
Thin and thick cylindersThin and thick cylinders
Thin and thick cylinders
 
CE 72.52 - Lecture 5 - Column Design
CE 72.52 - Lecture 5 - Column DesignCE 72.52 - Lecture 5 - Column Design
CE 72.52 - Lecture 5 - Column Design
 
8 beam deflection
8 beam deflection8 beam deflection
8 beam deflection
 
Deflection
DeflectionDeflection
Deflection
 
FE Analysis of Bolted Connections for Wind Turbine Towers by Yadneshwar S. Joshi
FE Analysis of Bolted Connections for Wind Turbine Towers by Yadneshwar S. JoshiFE Analysis of Bolted Connections for Wind Turbine Towers by Yadneshwar S. Joshi
FE Analysis of Bolted Connections for Wind Turbine Towers by Yadneshwar S. Joshi
 
Buckling and tension field beam for aerospace structures
Buckling and tension field beam for aerospace structuresBuckling and tension field beam for aerospace structures
Buckling and tension field beam for aerospace structures
 
Lecture 5 castigliono's theorem
Lecture 5 castigliono's theoremLecture 5 castigliono's theorem
Lecture 5 castigliono's theorem
 
Design of column base plates anchor bolt
Design of column base plates anchor boltDesign of column base plates anchor bolt
Design of column base plates anchor bolt
 
CE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
CE72.52 - Lecture 3b - Section Behavior - Shear and TorsionCE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
CE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
 
deflection of beam
deflection of beamdeflection of beam
deflection of beam
 
Approximate Methods
Approximate MethodsApproximate Methods
Approximate Methods
 
Plate with a hole
Plate with a holePlate with a hole
Plate with a hole
 
Unit 5 - deflection of beams and columns
Unit  5 - deflection of beams and columnsUnit  5 - deflection of beams and columns
Unit 5 - deflection of beams and columns
 
Lec4 shear of thin walled beams
Lec4 shear of thin walled beamsLec4 shear of thin walled beams
Lec4 shear of thin walled beams
 
Shear stresses in beams
Shear stresses in beamsShear stresses in beams
Shear stresses in beams
 
CE 72.52 - Lecture 7 - Strut and Tie Models
CE 72.52 - Lecture 7 - Strut and Tie ModelsCE 72.52 - Lecture 7 - Strut and Tie Models
CE 72.52 - Lecture 7 - Strut and Tie Models
 
L5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shapeL5 determination of natural frequency & mode shape
L5 determination of natural frequency & mode shape
 
Ppt on ecdcentric loading of short column
Ppt on ecdcentric loading of short columnPpt on ecdcentric loading of short column
Ppt on ecdcentric loading of short column
 
Failure of slender and stocky columns (2nd year)
Failure of slender and stocky columns (2nd year)Failure of slender and stocky columns (2nd year)
Failure of slender and stocky columns (2nd year)
 

Similar to Stress in frame systems. Step by step problem.

STRESS ANALYSIS OF TRACTOR’S FRONT-END BUCKET USING MOHR'S CIRCLE
STRESS ANALYSIS OF TRACTOR’S FRONT-END BUCKET  USING MOHR'S CIRCLESTRESS ANALYSIS OF TRACTOR’S FRONT-END BUCKET  USING MOHR'S CIRCLE
STRESS ANALYSIS OF TRACTOR’S FRONT-END BUCKET USING MOHR'S CIRCLEWahid Dino Samo
 
Unit_6_WAVE_FORCE_ON_SMALL_DIAMETER_MEMB.pdf
Unit_6_WAVE_FORCE_ON_SMALL_DIAMETER_MEMB.pdfUnit_6_WAVE_FORCE_ON_SMALL_DIAMETER_MEMB.pdf
Unit_6_WAVE_FORCE_ON_SMALL_DIAMETER_MEMB.pdfSuntoyoSuntoyo1
 
Mechanics of structures - module3
Mechanics of structures - module3Mechanics of structures - module3
Mechanics of structures - module3SHAMJITH KM
 
SES - Block A - Eccentric loading. Step by step example
SES - Block A - Eccentric loading. Step by step exampleSES - Block A - Eccentric loading. Step by step example
SES - Block A - Eccentric loading. Step by step exampleMaribel Castilla Heredia
 
A closed form solution for stress concentration around a circular hole in a l
A closed form solution for stress concentration around a circular hole in a lA closed form solution for stress concentration around a circular hole in a l
A closed form solution for stress concentration around a circular hole in a lIAEME Publication
 
A closed form solution for stress concentration around a circular hole in a l
A closed form solution for stress concentration around a circular hole in a lA closed form solution for stress concentration around a circular hole in a l
A closed form solution for stress concentration around a circular hole in a lIAEME Publication
 
ME 205- Chapter 6 - Pure Bending of Beams.pdf
ME 205- Chapter 6 - Pure Bending of Beams.pdfME 205- Chapter 6 - Pure Bending of Beams.pdf
ME 205- Chapter 6 - Pure Bending of Beams.pdfaae4149584
 
Module4 rajesh sir
Module4 rajesh sirModule4 rajesh sir
Module4 rajesh sirSHAMJITH KM
 
Module4 plastic theory- rajesh sir
Module4 plastic theory- rajesh sirModule4 plastic theory- rajesh sir
Module4 plastic theory- rajesh sirSHAMJITH KM
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirSHAMJITH KM
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirSHAMJITH KM
 
Torsional and bending stresses in machine parts
Torsional and bending stresses in machine partsTorsional and bending stresses in machine parts
Torsional and bending stresses in machine partsMohamed Mohamed El-Sayed
 
G10 Math Q2- Week 6- Proves theorems on secant and tangent.pptx
G10 Math Q2- Week 6- Proves theorems on secant and tangent.pptxG10 Math Q2- Week 6- Proves theorems on secant and tangent.pptx
G10 Math Q2- Week 6- Proves theorems on secant and tangent.pptxRegina Jordan
 
Lesson 12 centroid of an area
Lesson 12 centroid of an areaLesson 12 centroid of an area
Lesson 12 centroid of an areaLawrence De Vera
 
Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)Alessandro Palmeri
 
CEE 213—Deformable Solids© Keith D. Hjelmstad 2014CP 2.docx
CEE 213—Deformable Solids© Keith D. Hjelmstad 2014CP 2.docxCEE 213—Deformable Solids© Keith D. Hjelmstad 2014CP 2.docx
CEE 213—Deformable Solids© Keith D. Hjelmstad 2014CP 2.docxcravennichole326
 

Similar to Stress in frame systems. Step by step problem. (20)

STRESS ANALYSIS OF TRACTOR’S FRONT-END BUCKET USING MOHR'S CIRCLE
STRESS ANALYSIS OF TRACTOR’S FRONT-END BUCKET  USING MOHR'S CIRCLESTRESS ANALYSIS OF TRACTOR’S FRONT-END BUCKET  USING MOHR'S CIRCLE
STRESS ANALYSIS OF TRACTOR’S FRONT-END BUCKET USING MOHR'S CIRCLE
 
Unit_6_WAVE_FORCE_ON_SMALL_DIAMETER_MEMB.pdf
Unit_6_WAVE_FORCE_ON_SMALL_DIAMETER_MEMB.pdfUnit_6_WAVE_FORCE_ON_SMALL_DIAMETER_MEMB.pdf
Unit_6_WAVE_FORCE_ON_SMALL_DIAMETER_MEMB.pdf
 
Mechanics of structures - module3
Mechanics of structures - module3Mechanics of structures - module3
Mechanics of structures - module3
 
SES - Block A - Eccentric loading. Step by step example
SES - Block A - Eccentric loading. Step by step exampleSES - Block A - Eccentric loading. Step by step example
SES - Block A - Eccentric loading. Step by step example
 
A closed form solution for stress concentration around a circular hole in a l
A closed form solution for stress concentration around a circular hole in a lA closed form solution for stress concentration around a circular hole in a l
A closed form solution for stress concentration around a circular hole in a l
 
A closed form solution for stress concentration around a circular hole in a l
A closed form solution for stress concentration around a circular hole in a lA closed form solution for stress concentration around a circular hole in a l
A closed form solution for stress concentration around a circular hole in a l
 
ME 205- Chapter 6 - Pure Bending of Beams.pdf
ME 205- Chapter 6 - Pure Bending of Beams.pdfME 205- Chapter 6 - Pure Bending of Beams.pdf
ME 205- Chapter 6 - Pure Bending of Beams.pdf
 
T2
T2T2
T2
 
Module4 rajesh sir
Module4 rajesh sirModule4 rajesh sir
Module4 rajesh sir
 
Module4 plastic theory- rajesh sir
Module4 plastic theory- rajesh sirModule4 plastic theory- rajesh sir
Module4 plastic theory- rajesh sir
 
Trigonometry Functions
Trigonometry FunctionsTrigonometry Functions
Trigonometry Functions
 
First moment of area
First moment of areaFirst moment of area
First moment of area
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sir
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sir
 
CRAMER’S RULE
CRAMER’S RULECRAMER’S RULE
CRAMER’S RULE
 
Torsional and bending stresses in machine parts
Torsional and bending stresses in machine partsTorsional and bending stresses in machine parts
Torsional and bending stresses in machine parts
 
G10 Math Q2- Week 6- Proves theorems on secant and tangent.pptx
G10 Math Q2- Week 6- Proves theorems on secant and tangent.pptxG10 Math Q2- Week 6- Proves theorems on secant and tangent.pptx
G10 Math Q2- Week 6- Proves theorems on secant and tangent.pptx
 
Lesson 12 centroid of an area
Lesson 12 centroid of an areaLesson 12 centroid of an area
Lesson 12 centroid of an area
 
Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)Unsymmetrical bending (2nd year)
Unsymmetrical bending (2nd year)
 
CEE 213—Deformable Solids© Keith D. Hjelmstad 2014CP 2.docx
CEE 213—Deformable Solids© Keith D. Hjelmstad 2014CP 2.docxCEE 213—Deformable Solids© Keith D. Hjelmstad 2014CP 2.docx
CEE 213—Deformable Solids© Keith D. Hjelmstad 2014CP 2.docx
 

More from Maribel Castilla Heredia

Sizing trusses for spaghetti truss competition
Sizing trusses for spaghetti truss competitionSizing trusses for spaghetti truss competition
Sizing trusses for spaghetti truss competitionMaribel Castilla Heredia
 
Solid Mechanics. Reactions and internal forces. Step by step example . Part 2
Solid Mechanics. Reactions and internal forces. Step by step example . Part 2Solid Mechanics. Reactions and internal forces. Step by step example . Part 2
Solid Mechanics. Reactions and internal forces. Step by step example . Part 2Maribel Castilla Heredia
 
Solid Mechanics. Reactions and internal force diagrams. Step by step example....
Solid Mechanics. Reactions and internal force diagrams. Step by step example....Solid Mechanics. Reactions and internal force diagrams. Step by step example....
Solid Mechanics. Reactions and internal force diagrams. Step by step example....Maribel Castilla Heredia
 
Sistemas estructurales - Obtención de deformaciones en estructuras reticulada...
Sistemas estructurales - Obtención de deformaciones en estructuras reticulada...Sistemas estructurales - Obtención de deformaciones en estructuras reticulada...
Sistemas estructurales - Obtención de deformaciones en estructuras reticulada...Maribel Castilla Heredia
 
Dimensionado cerchas concurso espaguetis 2014 Sistemas Estructurales - Grado ...
Dimensionado cerchas concurso espaguetis 2014 Sistemas Estructurales - Grado ...Dimensionado cerchas concurso espaguetis 2014 Sistemas Estructurales - Grado ...
Dimensionado cerchas concurso espaguetis 2014 Sistemas Estructurales - Grado ...Maribel Castilla Heredia
 
Apuntes y ejemplos de estructuras trianguladas
Apuntes y ejemplos de estructuras trianguladasApuntes y ejemplos de estructuras trianguladas
Apuntes y ejemplos de estructuras trianguladasMaribel Castilla Heredia
 
Dimensionado de Estructuras de Edificación - Arriostramientos en naves indust...
Dimensionado de Estructuras de Edificación - Arriostramientos en naves indust...Dimensionado de Estructuras de Edificación - Arriostramientos en naves indust...
Dimensionado de Estructuras de Edificación - Arriostramientos en naves indust...Maribel Castilla Heredia
 
Ejercicio flexión esviada compuesta debida a axil excéntrico - Sistemas Estru...
Ejercicio flexión esviada compuesta debida a axil excéntrico - Sistemas Estru...Ejercicio flexión esviada compuesta debida a axil excéntrico - Sistemas Estru...
Ejercicio flexión esviada compuesta debida a axil excéntrico - Sistemas Estru...Maribel Castilla Heredia
 
Ejercicio de obtención de tensiones paso a paso - Sistemas Estructurales - Gr...
Ejercicio de obtención de tensiones paso a paso - Sistemas Estructurales - Gr...Ejercicio de obtención de tensiones paso a paso - Sistemas Estructurales - Gr...
Ejercicio de obtención de tensiones paso a paso - Sistemas Estructurales - Gr...Maribel Castilla Heredia
 
Mecánica de Sólidos - Bloque B - Detección de barras sin esfuerzo axil en est...
Mecánica de Sólidos - Bloque B - Detección de barras sin esfuerzo axil en est...Mecánica de Sólidos - Bloque B - Detección de barras sin esfuerzo axil en est...
Mecánica de Sólidos - Bloque B - Detección de barras sin esfuerzo axil en est...Maribel Castilla Heredia
 
Mecánica de sólidos - Bloque B - Cálculo de esfuerzo axil en estructuras arti...
Mecánica de sólidos - Bloque B - Cálculo de esfuerzo axil en estructuras arti...Mecánica de sólidos - Bloque B - Cálculo de esfuerzo axil en estructuras arti...
Mecánica de sólidos - Bloque B - Cálculo de esfuerzo axil en estructuras arti...Maribel Castilla Heredia
 
Bloque A - Teoría de representación de diagramas de esfuerzos - Mecánica de s...
Bloque A - Teoría de representación de diagramas de esfuerzos - Mecánica de s...Bloque A - Teoría de representación de diagramas de esfuerzos - Mecánica de s...
Bloque A - Teoría de representación de diagramas de esfuerzos - Mecánica de s...Maribel Castilla Heredia
 
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Primera parte: Reacci...
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Primera parte: Reacci...Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Primera parte: Reacci...
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Primera parte: Reacci...Maribel Castilla Heredia
 
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Segunda parte: Esfuer...
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Segunda parte: Esfuer...Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Segunda parte: Esfuer...
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Segunda parte: Esfuer...Maribel Castilla Heredia
 

More from Maribel Castilla Heredia (17)

Sizing trusses for spaghetti truss competition
Sizing trusses for spaghetti truss competitionSizing trusses for spaghetti truss competition
Sizing trusses for spaghetti truss competition
 
Solid Mechanics. Reactions and internal forces. Step by step example . Part 2
Solid Mechanics. Reactions and internal forces. Step by step example . Part 2Solid Mechanics. Reactions and internal forces. Step by step example . Part 2
Solid Mechanics. Reactions and internal forces. Step by step example . Part 2
 
Solid Mechanics. Reactions and internal force diagrams. Step by step example....
Solid Mechanics. Reactions and internal force diagrams. Step by step example....Solid Mechanics. Reactions and internal force diagrams. Step by step example....
Solid Mechanics. Reactions and internal force diagrams. Step by step example....
 
Bending moment, shear and normal diagrams
Bending moment, shear and normal diagramsBending moment, shear and normal diagrams
Bending moment, shear and normal diagrams
 
Sistemas estructurales - Obtención de deformaciones en estructuras reticulada...
Sistemas estructurales - Obtención de deformaciones en estructuras reticulada...Sistemas estructurales - Obtención de deformaciones en estructuras reticulada...
Sistemas estructurales - Obtención de deformaciones en estructuras reticulada...
 
Dimensionado cerchas concurso espaguetis 2014 Sistemas Estructurales - Grado ...
Dimensionado cerchas concurso espaguetis 2014 Sistemas Estructurales - Grado ...Dimensionado cerchas concurso espaguetis 2014 Sistemas Estructurales - Grado ...
Dimensionado cerchas concurso espaguetis 2014 Sistemas Estructurales - Grado ...
 
Apuntes y ejemplos de estructuras trianguladas
Apuntes y ejemplos de estructuras trianguladasApuntes y ejemplos de estructuras trianguladas
Apuntes y ejemplos de estructuras trianguladas
 
Videotutoriales cype
Videotutoriales cypeVideotutoriales cype
Videotutoriales cype
 
Dimensionado de Estructuras de Edificación - Arriostramientos en naves indust...
Dimensionado de Estructuras de Edificación - Arriostramientos en naves indust...Dimensionado de Estructuras de Edificación - Arriostramientos en naves indust...
Dimensionado de Estructuras de Edificación - Arriostramientos en naves indust...
 
Ejercicio flexión esviada compuesta debida a axil excéntrico - Sistemas Estru...
Ejercicio flexión esviada compuesta debida a axil excéntrico - Sistemas Estru...Ejercicio flexión esviada compuesta debida a axil excéntrico - Sistemas Estru...
Ejercicio flexión esviada compuesta debida a axil excéntrico - Sistemas Estru...
 
Ejercicio de obtención de tensiones paso a paso - Sistemas Estructurales - Gr...
Ejercicio de obtención de tensiones paso a paso - Sistemas Estructurales - Gr...Ejercicio de obtención de tensiones paso a paso - Sistemas Estructurales - Gr...
Ejercicio de obtención de tensiones paso a paso - Sistemas Estructurales - Gr...
 
Procedimientos útiles en Nuevo Metal 3D
Procedimientos útiles en Nuevo Metal 3DProcedimientos útiles en Nuevo Metal 3D
Procedimientos útiles en Nuevo Metal 3D
 
Mecánica de Sólidos - Bloque B - Detección de barras sin esfuerzo axil en est...
Mecánica de Sólidos - Bloque B - Detección de barras sin esfuerzo axil en est...Mecánica de Sólidos - Bloque B - Detección de barras sin esfuerzo axil en est...
Mecánica de Sólidos - Bloque B - Detección de barras sin esfuerzo axil en est...
 
Mecánica de sólidos - Bloque B - Cálculo de esfuerzo axil en estructuras arti...
Mecánica de sólidos - Bloque B - Cálculo de esfuerzo axil en estructuras arti...Mecánica de sólidos - Bloque B - Cálculo de esfuerzo axil en estructuras arti...
Mecánica de sólidos - Bloque B - Cálculo de esfuerzo axil en estructuras arti...
 
Bloque A - Teoría de representación de diagramas de esfuerzos - Mecánica de s...
Bloque A - Teoría de representación de diagramas de esfuerzos - Mecánica de s...Bloque A - Teoría de representación de diagramas de esfuerzos - Mecánica de s...
Bloque A - Teoría de representación de diagramas de esfuerzos - Mecánica de s...
 
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Primera parte: Reacci...
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Primera parte: Reacci...Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Primera parte: Reacci...
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Primera parte: Reacci...
 
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Segunda parte: Esfuer...
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Segunda parte: Esfuer...Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Segunda parte: Esfuer...
Mecánica de Sólidos. Bloque A. Ejercicio paso a paso 1. Segunda parte: Esfuer...
 

Recently uploaded

“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 

Recently uploaded (20)

9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 

Stress in frame systems. Step by step problem.

  • 1. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Block A. Stress in frame systems. Step by step problem.
  • 2. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1  Study the following structural system and the corresponding cross-sections of its bars (z-axis is perpendicular to the plane of the screen). Then, answer: 1. Moment of inertia (cm4) and first moment of area of half cross-section (cm3) (both related to the z-axis) of both members, CD and DE. 2. Maximum normal stress, positive, in segment DE (kN/cm2). State section and y-coordinate where it takes place. 3. Maximum normal stress, negative, in segment DE (kN/cm2). State section and y-coordinate where it takes place. 4. Maximum shear stress in segment CD (kN/cm2), stating section and y-coordinate where it takes place. 5. Normal stress in section B, in the superior part of the cross-section (kN/cm2) 6. Equivalent stress (Von Mises) in section A, in the top web-flange joint, (kN/cm2) 7. Yield stress in section B (Von Mises) (kN/cm2) (+) (+) Postitive sign convention: y z G y z G Cross-section for members CD y DE Cross-section for member AD 1 cm 1 cm 25 cm 25 cm 1 cm 1 cm 25 cm 25 cm 1 cm1 cm C A B D E 2,5 m1 m 1,5 m 1,5 m 50 kN 10 kN/m 20 kN/m 50 kNm 50 kN 10 kN/m
  • 3. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1  Study the following structural system and the corresponding cross-sections of its bars (z-axis is perpendicular to the plane of the screen). Then, answer: 1. Moment of inertia (cm4) and first moment of area of half cross-section (cm3) (both related to the z-axis) of both members, CD and DE. First we find the “y” coordinate of the centroid (as we already know that it has to be located on the symmetry axis of the cross-section.              1 · 25 1 24,5 24 1 12 18,38 25 1 24 1 i n i i G i i A d y cm A y G Cross-section for members CD y DE 1 cm 1 cm 25 cm 25 cm         2 1 25 1 24 1 49 i n i i A A cm
  • 4. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1  Study the following structural system and the corresponding cross-sections of its bars (z-axis is perpendicular to the plane of the screen). Then, answer: 1. Moment of inertia (cm4) and first moment of area of half cross-section (cm3) (both related to the z-axis) of both members, CD and DE. First we find the “y” coordinate of the centroid (as we already know that it has to be located on the symmetry axis of the cross-section.              1 · 25 1 24,5 24 1 12 18,38 25 1 24 1 i n i i G i i A d y cm A 18,38 cm y z G Cross-section for members CD y DE 1 cm 1 cm 25 cm 25 cm         2 1 25 1 24 1 49 i n i i A A cm
  • 5. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1  Study the following structural system and the corresponding cross-sections of its bars (z-axis is perpendicular to the plane of the screen). Then, answer: 1. Moment of inertia (cm4) and first moment of area of half cross-section (cm3) (both related to the z-axis) of both members, CD and DE. First we find the “y” coordinate of the centroid (as we already know that it has to be located on the symmetry axis of the cross-section. Once we know where the centroid is located, we can obtain the moment of inertia using Steiner’s Theorem: And the first moment of area.              1 · 25 1 24,5 24 1 12 18,38 25 1 24 1 i n i i G i i A d y cm A 18,38 cm y z G Cross-section for members CD y DE 1 cm 1 cm 25 cm 25 cm                 3 3 22 2 4 1 25 1 1 24 ( · ) 25 1 6,12 24 1 6,38 3067,35 12 12 i n z i i i i I I A d cm 1 sec 32 1 5,62 · 25 1 6,12 5,62 1 168,8 2 i n z i i i S A d cm                   2 1 25 1 24 1 49 i n i i A A cm
  • 6. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1  Study the following structural system and the corresponding cross-sections of its bars (z-axis is perpendicular to the plane of the screen). Then, answer: 1. Moment of inertia (cm4) and first moment of area of half cross-section (cm3) (both related to the z-axis) of both members, CD and DE. First we find the “y” coordinate of the centroid (as we already know that it has to be located on the symmetry axis of the cross-section. Once we know where the centroid is located, we can obtain the moment of inertia using Steiner’s Theorem: And the first moment of area.              1 · 25 1 24,5 24 1 12 18,38 25 1 24 1 i n i i G i i A d y cm A 18,38 cm y z G Cross-section for members CD y DE 1 cm 1 cm 25 cm 25 cm                 3 3 22 2 4 1 25 1 1 24 ( · ) 25 1 6,12 24 1 6,38 3067,35 12 12 i n z i i i i I I A d cm 1 sec 32 1 5,62 · 25 1 6,12 5,62 1 168,8 2 i n z i i i S A d cm                   2 1 25 1 24 1 49 i n i i A A cm Remember that if the centroid has been correctly obtained, the first moment of area will be the same no matter if you choose the superior or the inferior half of the cross- section. You can use it as a way to check if you did it right.
  • 7. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1  Study the following structural system and the corresponding cross-sections of its bars (z-axis is perpendicular to the plane of the screen). Then, answer: 1. Moment of inertia (cm4) and first moment of area of half cross-section (cm3) (both related to the z-axis) of both members, CD and DE. First we find the “y” coordinate of the centroid (as we already know that it has to be located on the symmetry axis of the cross-section. Once we know where the centroid is located, we can obtain the moment of inertia using Steiner’s Theorem: And the first moment of area. Same procedure for the second cross-section:              1 · 25 1 24,5 24 1 12 18,38 25 1 24 1 i n i i G i i A d y cm A 18,38 cm y z G Cross-section for members CD y DE 1 cm 1 cm 25 cm 25 cm                 3 3 22 2 4 1 25 1 1 24 ( · ) 25 1 6,12 24 1 6,38 3067,35 12 12 i n z i i i i I I A d cm 1 sec 32 1 5,62 · 25 1 6,12 5,62 1 168,8 2 i n z i i i S A d cm                   2 1 25 1 24 1 49 i n i i A A cm        4 4 2 4 1 25 23 ( · ) 9232 12 12 i n z i i i i I I A d cm             1 sec 32 1 · 25 12 11,5 0,5 11,5 2 432,25 i n z i i i S A d cm       2 2 2 1 25 23 96 i n i i A A cm y z G 1 cm 1 cm 25 cm 25 cm 1 cm1 cm
  • 8. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1 2. Maximum normal stress, positive, in segment DE (kN/cm2). State section and y-coordinate where it takes place. As stress values depend on the values of the internal forces, first thing to do is to draw the axial force, shear force and bending moment diagrams. -50 kN +50 kN -60 kN -50 kN 10 kN -100 kN -115 kN 50 kNm 12,5 kNm5 kNm 7,5 kNm 157,5 kNm 318,75 kNm Axial force Shear force Bending moment
  • 9. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1 2. Maximum normal stress, positive, in segment DE (kN/cm2). State section and y-coordinate where it takes place. As stress values depend on the values of the internal forces, first thing to do is to draw the axial force, shear force and bending moment diagrams. Once the values have been obtained, we can obtain the maximum normal stress, positive, in segment DE. -50 kN +50 kN -60 kN -50 kN 10 kN -100 kN -115 kN 50 kNm 12,5 kNm5 kNm 7,5 kNm 157,5 kNm 318,75 kNm Axial force Shear force Bending moment     , max DE z N M y A I As studied during classes, normal stress depends on the value of the axial force, the area of the cross-section, the value of the bending moment, the moment of inertia and the distance from the centroid where the normal stress is obtained. Thus each combination of these factors must be studied to find the greatest value of the normal stress, positive, in this segment.
  • 10. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1 2. Maximum normal stress, positive, in segment DE (kN/cm2). State section and y-coordinate where it takes place (cont.) Let’s find the possible combinations that provide positive values of normal stress in segment DE: -50 kN +50 kN -60 kN 50 kNm 12,5 kNm5 kNm 7,5 kNm 157,5 kNm 318,75 kNm Axial force Bending moment y z G 1 cm 25 cm 18,38 cm 6,62 cm     , max DE z N M y A I 2 49Área cm 4 3067,35zI cm
  • 11. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1 2. Maximum normal stress, positive, in segment DE (kN/cm2). State section and y-coordinate where it takes place (cont.) Let’s find the possible combinations that provide positive values of normal stress in segment DE: -50 kN +50 kN -60 kN 50 kNm 12,5 kNm5 kNm 7,5 kNm 157,5 kNm 318,75 kNm Axial force Bending moment y z G 1 cm 25 cm 6,62 cm     , max DE z N M y A I 2 49Área cm 4 3067,35zI cm           , 22 4 12,5 100 50 6,62 3,72 49 3067,35 DE D cm kNm kN m kNcm cmcm cm
  • 12. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1 2. Maximum normal stress, positive, in segment DE (kN/cm2). State section and y-coordinate where it takes place (cont.) Let’s find the possible combinations that provide positive values of normal stress in segment DE: -50 kN +50 kN -60 kN 50 kNm 12,5 kNm5 kNm 7,5 kNm 157,5 kNm 318,75 kNm Axial force Bending moment y z G 1 cm 25 cm 18,38 cm     , max DE z N M y A I 2 49Área cm 4 3067,35zI cm           , 22 4 12,5 100 50 6,62 3,72 49 3067,35 DE D cm kNm kN m kNcm cmcm cm           , 22 4 50 100 50 18,38 30,99 49 3067,35 DE E cm kNm kN m kNcm cmcm cm
  • 13. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1 2. Maximum normal stress, positive, in segment DE (kN/cm2). State section and y-coordinate where it takes place (cont.) Let’s find the possible combinations that provide positive values of normal stress in segment DE: -50 kN +50 kN -60 kN 50 kNm 12,5 kNm5 kNm 7,5 kNm 157,5 kNm 318,75 kNm Axial force Bending moment y z G 1 cm 25 cm 18,38 cm     , max DE z N M y A I 2 49Área cm 4 3067,35zI cm           , 22 4 12,5 100 50 6,62 3,72 49 3067,35 DE D cm kNm kN m kNcm cmcm cm           , 22 4 50 100 50 18,38 30,99 49 3067,35 DE E cm kNm kN m kNcm cmcm cm Thus, the maximum tensile stress in segment DE happens on section E, in the inferior part of the cross section (y=-18,38cm) and the value is 30.99 kN/cm2
  • 14. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1 3. Maximum normal stress, positive, in segment DE (kN/cm2). State section and y-coordinate where it takes place (cont.) Let’s find the possible combinations that provide negative values of normal stress in segment DE:            , 22 4 12,5 100 50 18,38 6,47 49 3067,35 DE D cm kNm kN m kNcm cmcm cm -50 kN +50 kN -60 kN 50 kNm 12,5 kNm5 kNm 7,5 kNm 157,5 kNm 318,75 kNm Axial force Bending moment     , max DE z N M y A I 2 49Área cm 4 3067,35zI cm y z G 1 cm 25 cm 18,38 cm
  • 15. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1 3. Maximum normal stress, positive, in segment DE (kN/cm2). State section and y-coordinate where it takes place (cont.) Let’s find the possible combinations that provide negative values of normal stress in segment DE:            , 22 4 12,5 100 50 18,38 6,47 49 3067,35 DE D cm kNm kN m kNcm cmcm cm -50 kN +50 kN -60 kN 50 kNm 12,5 kNm5 kNm 7,5 kNm 157,5 kNm 318,75 kNm Axial force Bending moment     , max DE z N M y A I 2 49Área cm 4 3067,35zI cm y z G 1 cm 25 cm            , 22 4 50 100 50 6,62 9,77 49 3067,35 DE E cm kNm kN m kNcm cmcm cm 6,62 cm
  • 16. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1 3. Maximum normal stress, positive, in segment DE (kN/cm2). State section and y-coordinate where it takes place (cont.) Let’s find the possible combinations that provide negative values of normal stress in segment DE:            , 22 4 12,5 100 50 18,38 6,47 49 3067,35 DE D cm kNm kN m kNcm cmcm cm -50 kN +50 kN -60 kN 50 kNm 12,5 kNm5 kNm 7,5 kNm 157,5 kNm 318,75 kNm Axial force Bending moment     , max DE z N M y A I 2 49Área cm 4 3067,35zI cm y z G 1 cm 25 cm            , 22 4 50 100 50 6,62 9,77 49 3067,35 DE E cm kNm kN m kNcm cmcm cm 6,62 cm Thus, the maximum compressive stress in segment DE happens on section E, in the superior part of the cross section (y=+6,62cm) and the value is -9,77 kN/cm2
  • 17. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla y z G 1 cm 25 cm Problem 1 4. Maximum shear stress in segment CD (kN/cm2), stating section and y-coordinate where it takes place. 4 3067,35zI cmShear stress 1 sec 32 280,76zS cm Shear stress depends on the value of the shear, on the first moment of area and the moment of inertia of the cross section, and on the thickness of the cross section at the point where the shear stress is being obtained. max fibra zCD z V S I b     1 cm18,38 cm 6,62 cm -50 kN 10 kN -100 kN -115 kN
  • 18. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla y z G 1 cm 25 cm Problem 1 4. Maximum shear stress in segment CD (kN/cm2), stating section and y-coordinate where it takes place. 4 3067,35zI cmShear stress 1 sec 32 280,76zS cm Shear stress depends on the value of the shear, on the first moment of area and the moment of inertia of the cross section, and on the thickness of the cross section at the point where the shear stress is being obtained. max fibra zCD z V S I b     1 cm18,38 cm 6,62 cm -50 kN 10 kN -100 kN -115 kN In a rectangular cross section, the distribution of shear stress is parabollic and the máximum value happens at the centroid. Thus the first moment of área that has to be used is the máximum (the one that corresponds to half cross-section).      3 2max 4 10 168,8 0,55 3067,35 1 CD kN cm kN cmcm cm
  • 19. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla y z G 1 cm 25 cm Problem 1 4. Maximum shear stress in segment CD (kN/cm2), stating section and y-coordinate where it takes place. 4 3067,35zI cmShear stress 1 sec 32 280,76zS cm Shear stress depends on the value of the shear, on the first moment of area and the moment of inertia of the cross section, and on the thickness of the cross section at the point where the shear stress is being obtained. max fibra zCD z V S I b     1 cm18,38 cm 6,62 cm -50 kN 10 kN -100 kN -115 kN In a rectangular cross section, the distribution of shear stress is parabollic and the máximum value happens at the centroid. Thus the first moment of área that has to be used is the máximum (the one that corresponds to half cross-section). The maximum shear stress in segment CD appears in section D, at the y=0 coordinate and the value is 0,55 kN/cm2     3 2max 4 10 168,8 0,55 3067,35 1 CD kN cm kN cmcm cm
  • 20. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1 5. Normal stress in section B, in the superior part of the cross-section (kN/cm2) To answer this question, take into account that segment AD is made with a different cross-section: -50 kN +50 kN -60 kN 50 kNm 12,5 kNm5 kNm 7,5 kNm 157,5 kNm 318,75 kNm Axial force Bending moment    sup B z N M y A I 2 96Área cm 4 9232zI cm 25 cm
  • 21. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1 5. Normal stress in section B, in the superior part of the cross-section (kN/cm2) To answer this question, take into account that segment AD is made with a different cross-section: -50 kN +50 kN -60 kN 50 kNm 12,5 kNm5 kNm 7,5 kNm 157,5 kNm 318,75 kNm Axial force Bending moment    sup B z N M y A I 2 96Área cm 4 9232zI cm 25 cm            2sup 2 4 157,5 100 60 12,5 20,70 96 9232 B cm kNm kN m kNcm cmcm cm
  • 22. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1 6. Equivalent stress (following Von Mises’ criterion) in section A, in the top web-flange joint, (kN/cm2) The equivalent stress in a determinate y-coordinate provides the value of the combined effect of normal and shear stress in a specific point of the cross-section: -50 kN +50 kN -60 kN 50 kNm 12,5 kNm5 kNm 7,5 kNm 157,5 kNm 318,75 kNm Axial force Bending moment 2 96Área cm 4 9232zI cm 25 cm Shear force         22 3ALA ALMA ALA ALMA ALA ALMA co Before finding the equivalent stress, we must obtain the values of the normal and shear stress in that specific y-coordinate of the cross-section. A A A -50 kN 10 kN -100 kN -115 kN Web-flange sup. eq
  • 23. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1 6. Equivalent stress (following Von Mises’ criterion) in section A, in the top web-flange joint, (kN/cm2) The equivalent stress in a determinate y-coordinate provides the value of the combined effect of normal and shear stress in a specific point of the cross-section: -50 kN +50 kN -60 kN 50 kNm 12,5 kNm5 kNm 7,5 kNm 157,5 kNm 318,75 kNm Axial force Bending moment 2 96Área cm 4 9232zI cm 25 cm Shear force         22 3ALA ALMA ALA ALMA ALA ALMA co Before finding the equivalent stress, we must obtain the values of the normal and shear stress in that specific y-coordinate of the cross-section. A A A -50 kN 10 kN -100 kN -115 kN Web-flange sup. eq 1. Normal stress in the superior web-flange joint of the cross-section in section A of the structure             2sup 2 4 318,75 100 60 11,5 39,08 96 9232 A ALA ALMA cm kNm kN m kNcm cmcm cmWeb-flange sup.
  • 24. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1 6. Equivalent stress (following Von Mises’ criterion) in section A, in the top web-flange joint, (kN/cm2) The equivalent stress in a determinate y-coordinate provides the value of the combined effect of normal and shear stress in a specific point of the cross-section: -50 kN +50 kN -60 kN 50 kNm 12,5 kNm5 kNm 7,5 kNm 157,5 kNm 318,75 kNm Axial force Bending moment 2 96Área cm 4 9232zI cm 25 cm Shear force         22 3ALA ALMA ALA ALMA ALA ALMA co Before finding the equivalent stress, we must obtain the values of the normal and shear stress in that specific y-coordinate of the cross-section. A A A -50 kN 10 kN -100 kN -115 kN Web-flange sup. eq 1. Normal stress in the superior web-flange joint of the cross-section in section A of the structure             2sup 2 4 318,75 100 60 11,5 39,08 96 9232 A ALA ALMA cm kNm kN m kNcm cmcm cmWeb-flange sup. 11,5 cm
  • 25. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1 6. Equivalent stress (following Von Mises’ criterion) in section A, in the top web-flange joint, (kN/cm2) The equivalent stress in a determinate y-coordinate provides the value of the combined effect of normal and shear stress in a specific point of the cross-section: -50 kN +50 kN -60 kN 50 kNm 12,5 kNm5 kNm 7,5 kNm 157,5 kNm 318,75 kNm Axial force Bending moment 2 96Área cm 4 9232zI cm 25 cm Shear force         22 3ALA ALMA ALA ALMA ALA ALMA co Before finding the equivalent stress, we must obtain the values of the normal and shear stress in that specific y-coordinate of the cross-section. A A A -50 kN 10 kN -100 kN -115 kN Web-flange sup. eq 1. Normal stress in the superior web-flange joint of the cross-section in section A of the structure 11,5 cm 2. Shear stress in the superior web-flange joint of the cross-section in section A The first moment of area to be used is the one that corresponds only to the superior flange of the cross- section, because that’s the y-coordinate where the shear stress has to be found: y z G 12 cm 25 cm 1 cm       3 1 · 25 12 1 300 i n ALA z i i i S A d cm
  • 26. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1 6. Equivalent stress (following Von Mises’ criterion) in section A, in the top web-flange joint, (kN/cm2) The equivalent stress in a determinate y-coordinate provides the value of the combined effect of normal and shear stress in a specific point of the cross-section: -50 kN +50 kN -60 kN 50 kNm 12,5 kNm5 kNm 7,5 kNm 157,5 kNm 318,75 kNm Axial force Bending moment 2 96Área cm 4 9232zI cm 25 cm Shear force         22 3ALA ALMA ALA ALMA ALA ALMA co Before finding the equivalent stress, we must obtain the values of the normal and shear stress in that specific y-coordinate of the cross-section. A A A -50 kN 10 kN -100 kN -115 kN Web-flange sup. eq 1. Normal stress in the superior web-flange joint of the cross-section in section A of the structure 11,5 cm 2. Shear stress in the superior web-flange joint of the cross-section in section A       3 24 115 300 1,86 9232 2 ALA ALMA A kN cm kN cmcm cm y z G 12 cm 25 cm 1 cm       3 1 · 25 12 1 300 i n ALA z i i i S A d cm The thickness of the cross section at the point where the flange meets the web is 2 cm (1 cm for each of the webs). Thus, the final result of the shear stress is:
  • 27. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1 6. Equivalent stress (following Von Mises’ criterion) in section A, in the top web-flange joint, (kN/cm2) The equivalent stress in a determinate y-coordinate provides the value of the combined effect of normal and shear stress in a specific point of the cross-section: -50 kN +50 kN -60 kN 50 kNm 12,5 kNm5 kNm 7,5 kNm 157,5 kNm 318,75 kNm Axial force Bending moment 2 96Área cm 4 9232zI cm 25 cm Shear force         22 3ALA ALMA ALA ALMA ALA ALMA co Before finding the equivalent stress, we must obtain the values of the normal and shear stress in that specific y-coordinate of the cross-section. A A A -50 kN 10 kN -100 kN -115 kN Web-flange sup. eq 1. Normal stress in the superior web-flange joint of the cross-section in section A of the structure 11,5 cm 2. Shear stress in the superior web-flange joint of the cross-section in section A The last step left is combining both values of stress using Von Mises’ criterion:      2 2 2, 39,08 3 1,86 39,21ALA ALMA co A kN cm Web-flange sup. eq
  • 28. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1 7. Yield stress (using Von Mises’ criterion) in section B (kN/cm2) The equivalent stress has a physical meaning because it is obtained on a specific point of the cross-section. On the contrary, the yield stress will combine the maximum value of both, normal and shear stresses. During the lectures we have already studied that the maximum of both stresses can’t coincide on the same point of the cross-section. -50 kN +50 kN -60 kN 50 kNm 12,5 kNm5 kNm 7,5 kNm 157,5 kNm 318,75 kNm Axial force Bending moment 2 96Área cm 4 9232zI cm 25 cm Shear force      2 2 , max, max,3env B B B 1. Maximum normal stress in point B (as an absolute value) B B B 1 sec 32 432,25zS cm    max,B z N M y A I -50 kN 10 kN -100 kN -115 kN yield
  • 29. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1 7. Yield stress (using Von Mises’ criterion) in section B (kN/cm2) The equivalent stress has a physical meaning because it is obtained on a specific point of the cross-section. On the contrary, the yield stress will combine the maximum value of both, normal and shear stresses. During the lectures we have already studied that the maximum of both stresses can’t coincide on the same point of the cross-section. -50 kN +50 kN -60 kN 50 kNm 12,5 kNm5 kNm 7,5 kNm 157,5 kNm 318,75 kNm Axial force Bending moment 2 96Área cm 4 9232zI cm 25 cm Shear force      2 2 , max, max,3env B B B 1. Maximum normal stress in point B (as an absolute value) B B B 1 sec 32 432,25zS cm    max,B z N M y A I           2sup 2 4 157,5 100 60 12,5 20,70 96 9232 B cm kNm kN m kNcm cmcm cm -50 kN 10 kN -100 kN -115 kN yield
  • 30. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1 7. Yield stress (using Von Mises’ criterion) in section B (kN/cm2) The equivalent stress has a physical meaning because it is obtained on a specific point of the cross-section. On the contrary, the yield stress will combine the maximum value of both, normal and shear stresses. During the lectures we have already studied that the maximum of both stresses can’t coincide on the same point of the cross-section. -50 kN +50 kN -60 kN 50 kNm 12,5 kNm5 kNm 7,5 kNm 157,5 kNm 318,75 kNm Axial force Bending moment 2 96Área cm 4 9232zI cm 25 cm Shear force      2 2 , max, max,3env B B B 1. Maximum normal stress in point B (as an absolute value) B B B 1 sec 32 432,25zS cm    max,B z N M y A I           2sup 2 4 157,5 100 60 12,5 20,70 96 9232 B cm kNm kN m kNcm cmcm cm -50 kN 10 kN -100 kN -115 kN            2inf 2 4 157,5 100 60 12,5 21,95 96 9232 B cm kNm kN m kNcm cmcm cm yield
  • 31. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1 7. Yield stress (using Von Mises’ criterion) in section B (kN/cm2) The equivalent stress has a physical meaning because it is obtained on a specific point of the cross-section. On the contrary, the yield stress will combine the maximum value of both, normal and shear stresses. During the lectures we have already studied that the maximum of both stresses can’t coincide on the same point of the cross-section. -50 kN +50 kN -60 kN 50 kNm 12,5 kNm5 kNm 7,5 kNm 157,5 kNm 318,75 kNm Axial force Bending moment 2 96Área cm 4 9232zI cm 25 cm Shear force      2 2 , max, max,3env B B B 1. Maximum normal stress in point B (as an absolute value) 2. Maximum shear stress in point B B B B 1 sec 32 432,25zS cm -50 kN 10 kN -100 kN -115 kN      3 24 100 432,25 2,34 9232 2 kN cm kN cmcm cm yield
  • 32. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Problem 1 7. Yield stress (using Von Mises’ criterion) in section B (kN/cm2) The equivalent stress has a physical meaning because it is obtained on a specific point of the cross-section. On the contrary, the yield stress will combine the maximum value of both, normal and shear stresses. During the lectures we have already studied that the maximum of both stresses can’t coincide on the same point of the cross-section. -50 kN +50 kN -60 kN 50 kNm 12,5 kNm5 kNm 7,5 kNm 157,5 kNm 318,75 kNm Axial force Bending moment 2 96Área cm 4 9232zI cm 25 cm Shear force      2 2 , max, max,3env B B B 1. Maximum normal stress in point B (as an absolute value) 2. Maximum shear stress in point B B B B 1 sec 32 432,25zS cm -50 kN 10 kN -100 kN -115 kN      3 24 100 432,25 2,34 9232 2 kN cm kN cmcm cm       2 2 2, 21,95 3 2,34 22,32env B kN cm yield Yield ,B
  • 33. Structural Systems – Academic Year 2017/18 Instructor: Maribel Castilla Heredia @maribelcastilla Block A. Stress in frame systems. Step by step problem.