SlideShare a Scribd company logo
1 of 58
Download to read offline
1
Lecture 5
Plane Stress
Transformation Equations
Stress elements and plane stress.
Stresses on inclined sections.
Transformation equations.
Principal stresses, angles, and planes.
Maximum shear stress.
2
Normal and shear stresses on inclined sections
To obtain a complete picture of the stresses in a bar, we must
consider the stresses acting on an “inclined” (as opposed to a
“normal”) section through the bar.
P
P
Normal section
Inclined section
Because the stresses are the same throughout the entire bar, the
stresses on the sections are uniformly distributed.
P Inclined
section
P Normal
section
3
P
V
N
P
θ
x
y
The force P can be resolved into components:
Normal force N perpendicular to the inclined plane, N = P cos θ
Shear force V tangential to the inclined plane V = P sin θ
If we know the areas on which the forces act, we can calculate
the associated stresses.
x
y
area
A
area A
( / cos )
θ
σθ
x
y
τθ
area
A
area A
( / cos )
θ
4
( )
2
cos
1
2
cos
cos
cos
cos
2
x
2
θ
σ
θ
σ
σ
θ
θ
θ
σ
θ
θ
+
=
=
=
=
=
=
x
A
P
A
P
Area
N
Area
Force
/
( )
2
sin
2
cos
sin
cos
sin
cos
sin
x θ
σ
θ
θ
σ
τ
θ
θ
θ
θ
τ
θ
θ
x
A
P
A
P
Area
V
Area
Force
−
=
−
=
−
=
−
=
−
=
=
/
x
y
τθ
σθ
θ
σmax = σx occurs when θ = 0°
τmax = ± σx/2 occurs when θ = -/+ 45°
5
Introduction to stress elements
Stress elements are a useful way to represent stresses acting at some
point on a body. Isolate a small element and show stresses acting on all
faces. Dimensions are “infinitesimal”, but are drawn to a large scale.
x
y
z
σ =
x P A
/
σx
x
y
σx
σ =
x P A
/
P σx = A
P /
x
y
Area A
6
Maximum stresses on a bar in tension
P
P
a
σx = σmax = P / A
σx
a
Maximum normal stress,
Zero shear stress
7
P
P
a
b
Maximum stresses on a bar in tension
b
σx/2
σx/2
τmax = σx/2
θ = 45°
Maximum shear stress,
Non-zero normal stress
8
Stress Elements and Plane Stress
When working with stress elements, keep in mind that only
one intrinsic state of stress exists at a point in a stressed
body, regardless of the orientation of the element used to
portray the state of stress.
We are really just rotating axes to represent stresses in a
new coordinate system.
x
y
σx σx
θ
y1
x1
9
y
z
x
Normal stresses σx, σy, σz
(tension is positive)
σx
σx
σy
σy
σz
τxy
τyx
τxz
τzx
τzy
τyz
Shear stresses τxy = τyx,
τxz = τzx, τyz = τzy
Sign convention for τab
Subscript a indicates the “face” on which the stress acts
(positive x “face” is perpendicular to the positive x direction)
Subscript b indicates the direction in which the stress acts
Strictly σx = σxx, σy = σyy, σz = σzz
10
When an element is in plane stress in the xy plane, only the x and
y faces are subjected to stresses (σz = 0 and τzx = τxz = τzy = τyz = 0).
Such an element could be located on the free surface of a body (no
stresses acting on the free surface).
σx σx
σy
σy
τxy
τyx
τxy
τyx
x
y
Plane stress element in 2D
σx, σy
τxy = τyx
σz = 0
11
Stresses on Inclined Sections
σx σx
σy
τxy
τyx
τxy
τyx
x
y
x
y
σx1
θ
y1
x1
σx1
σy1
σy1
τx y
1 1
τy x
1 1
τx y
1 1
τy x
1 1
The stress system is known in terms of coordinate system xy.
We want to find the stresses in terms of the rotated coordinate
system x1y1.
Why? A material may yield or fail at the maximum value of σ or τ. This
value may occur at some angle other than θ = 0. (Remember that for uni-
axial tension the maximum shear stress occurred when θ = 45 degrees. )
12
Transformation Equations
y
σx1
x
θ
y1
x1
σx
σy
τx y
1 1
τxy
τyx
θ
Stresses
y
σ θ
x1 A sec
x
θ
y1
x1
σxA
σ θ
y A tan
τ θ
x y
1 1 A sec
τxy A
τ θ
yx A tan
θ
Forces
Left face has area A.
Bottom face has area A tan θ.
Inclined face has area A sec θ.
Forces can be found from stresses if
the area on which the stresses act is
known. Force components can then
be summed.
13
y
σ θ
x1 A sec
x
θ
y1
x1
σxA
σ θ
y A tan
τ θ
x y
1 1 A sec
τxy A
τ θ
yx A tan
θ
( ) ( ) ( ) ( ) 0
cos
tan
sin
tan
sin
cos
sec
:
direction
in the
forces
Sum
1
1
=
−
−
−
− θ
θ
τ
θ
θ
σ
θ
τ
θ
σ
θ A
A
A
A
A
σ
x
yx
y
xy
x
x
( ) ( ) ( ) ( ) 0
sin
tan
cos
tan
cos
sin
sec
:
direction
in the
forces
Sum
1
1
1
=
−
−
−
+ θ
θ
τ
θ
θ
σ
θ
τ
θ
σ
θ
τ A
A
A
A
A
y
yx
y
xy
x
y
x
( ) ( )
θ
θ
τ
θ
θ
σ
σ
τ
θ
θ
τ
θ
σ
θ
σ
σ
τ
τ
2
2
1
1
2
2
1
sin
cos
cos
sin
cos
sin
2
sin
cos
:
gives
g
simplifyin
and
Using
−
+
−
−
=
+
+
=
=
xy
y
x
y
x
xy
y
x
x
yx
xy
14
2
2
sin
cos
sin
2
2
cos
1
sin
2
2
cos
1
cos
identities
tric
trigonome
following
the
Using
2
2 θ
θ
θ
θ
θ
θ
θ =
−
=
+
=
θ
τ
θ
σ
σ
σ
σ
σ
θ
θ
2
sin
2
cos
2
2
:
for
90
substitute
face,
on the
stresses
For
1
1
xy
y
x
y
x
y
y
−
−
−
+
=
+ °
y
x
y
x
y
x
σ
σ
σ
σ +
=
+ 1
1
1
1 :
gives
and
for
s
expression
the
Summing
( ) θ
τ
θ
σ
σ
τ
θ
τ
θ
σ
σ
σ
σ
σ
2
cos
2
sin
2
2
sin
2
cos
2
2
:
stress
plane
for
equations
ation
transform
the
gives
1
1
1
xy
y
x
y
x
xy
y
x
y
x
x
+
−
−
=
+
−
+
+
=
Can be used to find σy1, instead of eqn above.
15
Example: The state of plane stress at a point is represented by the
stress element below. Determine the stresses acting on an element
oriented 30° clockwise with respect to the original element.
80 MPa 80 MPa
50 MPa
x
y
50 MPa
25 MPa
Define the stresses in terms of the
established sign convention:
σx = -80 MPa σy = 50 MPa
τxy = -25 MPa
We need to find σx1, σy1, and
τx1y1 when θ = -30°.
Substitute numerical values into the transformation equations:
( ) ( ) ( ) MPa
9
.
25
30
2
sin
25
30
2
cos
2
50
80
2
50
80
2
sin
2
cos
2
2
1
1
−
=
°
−
−
+
°
−
−
−
+
+
−
=
+
−
+
+
=
x
xy
y
x
y
x
x
σ
θ
τ
θ
σ
σ
σ
σ
σ
16
( )
( ) ( ) ( ) ( ) MPa
8
.
68
30
2
cos
25
30
2
sin
2
50
80
2
cos
2
sin
2
1
1
1
1
−
=
°
−
−
+
°
−
−
−
−
=
+
−
−
=
y
x
xy
y
x
y
x
τ
θ
τ
θ
σ
σ
τ
( ) ( ) ( ) MPa
15
.
4
30
2
sin
25
30
2
cos
2
50
80
2
50
80
2
sin
2
cos
2
2
1
1
−
=
°
−
−
−
°
−
−
−
−
+
−
=
−
−
−
+
=
y
xy
y
x
y
x
y
σ
θ
τ
θ
σ
σ
σ
σ
σ
Note that σy1 could also be obtained
(a) by substituting +60° into the
equation for σx1 or (b) by using the
equation σx + σy = σx1 + σy1
+60°
25.8 MPa
25.8 MPa
4.15 MPa
x
y
4.15 MPa
68.8 MPa
x1
y1
-30
o
(from Hibbeler, Ex. 15.2)
17
Principal Stresses
The maximum and minimum normal stresses (σ1 and σ2) are
known as the principal stresses. To find the principal stresses,
we must differentiate the transformation equations.
( ) ( )
( )
y
x
xy
p
xy
y
x
x
xy
y
x
x
xy
y
x
y
x
x
d
d
d
d
σ
σ
τ
θ
θ
τ
θ
σ
σ
θ
σ
θ
τ
θ
σ
σ
θ
σ
θ
τ
θ
σ
σ
σ
σ
σ
−
=
=
+
−
−
=
=
+
−
−
=
+
−
+
+
=
2
2
tan
0
2
cos
2
2
sin
0
2
cos
2
2
sin
2
2
2
sin
2
cos
2
2
1
1
1
θp are principal angles associated with
the principal stresses
There are two values of 2θp in the range 0-360°, with values differing by 180°.
There are two values of θp in the range 0-180°, with values differing by 90°.
So, the planes on which the principal stresses act are mutually perpendicular.
18
θ
τ
θ
σ
σ
σ
σ
σ
σ
σ
τ
θ
2
sin
2
cos
2
2
2
2
tan
1 xy
y
x
y
x
x
y
x
xy
p
+
−
+
+
=
−
=
We can now solve for the principal stresses by substituting for θp
in the stress transformation equation for σx1. This tells us which
principal stress is associated with which principal angle.
2θp
τxy
(σx – σy) / 2
R
R
R
R
xy
p
y
x
p
xy
y
x
τ
θ
σ
σ
θ
τ
σ
σ
=
−
=
+
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
=
2
sin
2
2
cos
2
2
2
2
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
−
+
+
=
R
R
xy
xy
y
x
y
x
y
x τ
τ
σ
σ
σ
σ
σ
σ
σ
2
2
2
1
19
Substituting for R and re-arranging gives the larger of the two
principal stresses:
2
2
1
2
2
xy
y
x
y
x
τ
σ
σ
σ
σ
σ +
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
+
+
=
To find the smaller principal stress, use σ1 + σ2 = σx + σy.
2
2
1
2
2
2
xy
y
x
y
x
y
x τ
σ
σ
σ
σ
σ
σ
σ
σ +
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
−
+
=
−
+
=
These equations can be combined to give:
2
2
2
,
1
2
2
xy
y
x
y
x
τ
σ
σ
σ
σ
σ +
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
±
+
=
Principal stresses
To find out which principal stress goes with which principal angle,
we could use the equations for sin θp and cos θp or for σx1.
20
The planes on which the principal stresses act are called the
principal planes. What shear stresses act on the principal planes?
Solving either equation gives the same expression for tan 2θp
Hence, the shear stresses are zero on the principal planes.
( )
( )
( ) 0
2
cos
2
2
sin
0
2
cos
2
2
sin
0
2
cos
2
sin
2
0
and
0
for
equations
the
Compare
1
1
1
1
1
1
=
+
−
−
=
=
+
−
−
=
+
−
−
=
=
=
θ
τ
θ
σ
σ
θ
σ
θ
τ
θ
σ
σ
θ
τ
θ
σ
σ
τ
θ
σ
τ
xy
y
x
x
xy
y
x
xy
y
x
y
x
x
y
x
d
d
d
d
21
Principal Stresses
2
2
2
,
1
2
2
xy
y
x
y
x
τ
σ
σ
σ
σ
σ +
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
±
+
=
y
x
xy
p
σ
σ
τ
θ
−
=
2
2
tan
Principal Angles defining the Principal Planes
x
y
σ1
θp1
σ1
σ2
σ2
θp2
σy
σx σx
σy
τxy
τyx
τxy
τyx
x
y
22
Example: The state of plane stress at a point is represented by the
stress element below. Determine the principal stresses and draw the
corresponding stress element.
80 MPa 80 MPa
50 MPa
x
y
50 MPa
25 MPa
Define the stresses in terms of the
established sign convention:
σx = -80 MPa σy = 50 MPa
τxy = -25 MPa
( )
MPa
6
.
84
MPa
6
.
54
6
.
69
15
25
2
50
80
2
50
80
2
2
2
1
2
2
2
,
1
2
2
2
,
1
−
=
=
±
−
=
−
+
⎟
⎠
⎞
⎜
⎝
⎛ −
−
±
+
−
=
+
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
±
+
=
σ
σ
σ
τ
σ
σ
σ
σ
σ xy
y
x
y
x
23
( )
°
°
=
°
+
°
=
=
−
−
−
=
−
=
5
.
100
,
5
.
10
180
21.0
and
0
.
21
2
3846
.
0
50
80
25
2
2
tan
2
2
tan
p
p
p
y
x
xy
p
θ
θ
θ
σ
σ
τ
θ
( ) ( ) ( ) MPa
6
.
84
5
.
10
2
sin
25
5
.
10
2
cos
2
50
80
2
50
80
2
sin
2
cos
2
2
1
1
−
=
°
−
+
°
−
−
+
+
−
=
+
−
+
+
=
x
xy
y
x
y
x
x
σ
θ
τ
θ
σ
σ
σ
σ
σ
But we must check which angle goes with which principal stress.
σ1 = 54.6 MPa with θp1 = 100.5°
σ2 = -84.6 MPa with θp2 = 10.5°
84.6 MPa
84.6 MPa
54.6 MPa
x
y
54.6 MPa
10.5
o
100.5
o
24
The two principal stresses determined so far are the principal
stresses in the xy plane. But … remember that the stress element
is 3D, so there are always three principal stresses.
y
x
σx
σx
σy
σy
τ
τ
τ
τ
σx, σy, τxy = τyx = τ
yp
zp
xp
σ1
σ1
σ2
σ2
σ3 = 0
σ1, σ2, σ3 = 0
Usually we take σ1 > σ2 > σ3. Since principal stresses can be com-
pressive as well as tensile, σ3 could be a negative (compressive)
stress, rather than the zero stress.
25
Maximum Shear Stress
( )
( )
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
−
=
=
−
−
−
=
+
−
−
=
xy
y
x
s
xy
y
x
y
x
xy
y
x
y
x
d
d
τ
σ
σ
θ
θ
τ
θ
σ
σ
θ
τ
θ
τ
θ
σ
σ
τ
2
2
tan
0
2
sin
2
2
cos
2
cos
2
sin
2
1
1
1
1
To find the maximum shear stress, we must differentiate the trans-
formation equation for shear.
There are two values of 2θs in the range 0-360°, with values differing by 180°.
There are two values of θs in the range 0-180°, with values differing by 90°.
So, the planes on which the maximum shear stresses act are mutually
perpendicular.
Because shear stresses on perpendicular planes have equal magnitudes,
the maximum positive and negative shear stresses differ only in sign.
26
2θs
τxy
(σ
x
–
σ
y
)
/
2
R
( ) θ
τ
θ
σ
σ
τ
τ
σ
σ
θ
2
cos
2
sin
2
2
2
tan
1
1 xy
y
x
y
x
xy
y
x
s
+
−
−
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
−
=
We can now solve for the maximum shear stress by substituting for
θs in the stress transformation equation for τx1y1.
R
R
R
y
x
s
xy
s
xy
y
x
2
2
sin
2
cos
2
2
2
2
σ
σ
θ
τ
θ
τ
σ
σ
−
−
=
=
+
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
=
max
min
2
2
max
2
τ
τ
τ
σ
σ
τ −
=
+
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
= xy
y
x
27
Use equations for sin θs and cos θs or τx1y1 to find out which face
has the positive shear stress and which the negative.
What normal stresses act on the planes with maximum shear stress?
Substitute for θs in the equations for σx1 and σy1 to get
s
y
x
y
x σ
σ
σ
σ
σ =
+
=
=
2
1
1
x
y
σs
θs
σs
σs
σs
τmax
τmax
τmax
τmax
σy
σx σx
σy
τxy
τyx
τxy
τyx
x
y
28
Example: The state of plane stress at a point is represented by the
stress element below. Determine the maximum shear stresses and
draw the corresponding stress element.
80 MPa 80 MPa
50 MPa
x
y
50 MPa
25 MPa
Define the stresses in terms of the
established sign convention:
σx = -80 MPa σy = 50 MPa
τxy = -25 MPa
( ) MPa
6
.
69
25
2
50
80
2
2
2
max
2
2
max
=
−
+
⎟
⎠
⎞
⎜
⎝
⎛ −
−
=
+
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
=
τ
τ
σ
σ
τ xy
y
x
MPa
15
2
50
80
2
−
=
+
−
=
+
=
s
y
x
s
σ
σ
σ
σ
29
( )
°
°
−
=
°
+
−
°
−
=
−
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
−
−
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
−
=
5
.
55
,
5
.
34
180
0
.
69
and
0
.
69
2
6
.
2
25
2
50
80
2
2
tan
s
s
xy
y
x
s
θ
θ
τ
σ
σ
θ
( )
( ) ( ) ( ) ( ) MPa
6
.
69
5
.
34
2
cos
25
5
.
34
2
sin
2
50
80
2
cos
2
sin
2
1
1
1
1
−
=
−
−
+
−
−
−
−
=
+
−
−
=
y
x
xy
y
x
y
x
τ
θ
τ
θ
σ
σ
τ
But we must check which angle goes
with which shear stress.
τmax = 69.6 MPa with θsmax = 55.5°
τmin = -69.6 MPa with θsmin = -34.5°
15 MPa
15 MPa
15 MPa
x
y
15 MPa
69.6 MPa
-34.5o
55.5
o
30
Finally, we can ask how the principal stresses and maximum shear
stresses are related and how the principal angles and maximum
shear angles are related.
2
2
2
2
2
2
2
1
max
max
2
1
2
2
2
1
2
2
2
,
1
σ
σ
τ
τ
σ
σ
τ
σ
σ
σ
σ
τ
σ
σ
σ
σ
σ
−
=
=
−
+
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
=
−
+
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
±
+
=
xy
y
x
xy
y
x
y
x
p
p
s
y
x
xy
p
xy
y
x
s
θ
θ
θ
σ
σ
τ
θ
τ
σ
σ
θ
2
cot
2
tan
1
2
tan
2
2
tan
2
2
tan
−
=
−
=
−
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
−
=
31
( )
°
±
=
°
±
=
−
°
±
=
−
=
−
=
+
=
+
=
+
45
45
90
2
2
0
2
2
cos
0
2
cos
2
cos
2
sin
2
sin
0
2
sin
2
cos
2
cos
2
sin
0
2
cot
2
tan
p
s
p
s
p
s
p
s
p
s
p
s
p
p
s
s
p
s
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
θ
So, the planes of maximum shear stress (θs) occur at 45° to
the principal planes (θp).
32
80 MPa 80 MPa
50 MPa
x
y
50 MPa
25 MPa
Original Problem
σx = -80, σy = 50, τxy = 25
84.6 MPa
84.6 MPa
54.6 MPa
x
y
54.6 MPa
10.5
o
100.5
o
Principal Stresses
σ1 = 54.6, σ2 = 0, σ3 = -84.6
15 MPa
15 MPa
15 MPa
x
y
15 MPa
69.6 MPa
-34.5o
55.5o
Maximum Shear
τmax = 69.6, σs = -15
°
°
−
=
°
±
°
=
°
±
=
5
.
55
,
5
.
34
45
5
.
10
45
s
s
p
s
θ
θ
θ
θ
( )
MPa
6
.
69
2
6
.
84
6
.
54
2
max
max
2
1
max
=
−
−
=
−
=
τ
τ
σ
σ
τ
1
Mohr’s Circle for Plane Stress
Transformation equations for plane stress.
Procedure for constructing Mohr’s circle.
Stresses on an inclined element.
Principal stresses and maximum shear stresses.
Introduction to the stress tensor.
2
Stress Transformation Equations
σx σx
σy
τxy
τyx
τxy
τyx
x
y
x
y
σx1
θ
y1
x1
σx1
σy1
σy1
τx y
1 1
τy x
1 1
τx y
1 1
τy x
1 1
( ) θ
τ
θ
σ
σ
τ
θ
τ
θ
σ
σ
σ
σ
σ
2
cos
2
sin
2
2
sin
2
cos
2
2
1
1
1
xy
y
x
y
x
xy
y
x
y
x
x
+
−
−
=
+
−
+
+
=
If we vary θ from 0° to 360°, we will get all possible values of σx1 and τx1y1
for a given stress state. It would be useful to represent σx1 and τx1y1 as
functions of θ in graphical form.
3
To do this, we must re-write the transformation equations.
( ) θ
τ
θ
σ
σ
τ
θ
τ
θ
σ
σ
σ
σ
σ
2
cos
2
sin
2
2
sin
2
cos
2
2
1
1
1
xy
y
x
y
x
xy
y
x
y
x
x
+
−
−
=
+
−
=
+
−
Eliminate θ by squaring both sides of each equation and adding
the two equations together.
2
2
2
1
1
2
1
2
2
xy
y
x
y
x
y
x
x τ
σ
σ
τ
σ
σ
σ +
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
=
+
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ +
−
Define σavg and R
2
2
2
2
xy
y
x
y
x
avg R τ
σ
σ
σ
σ
σ +
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
=
+
=
4
Substitue for σavg and R to get
( ) 2
2
1
1
2
1 R
y
x
avg
x =
+
− τ
σ
σ
which is the equation for a circle with centre (σavg,0) and radius R.
This circle is usually referred to as
Mohr’s circle, after the German civil
engineer Otto Mohr (1835-1918). He
developed the graphical technique for
drawing the circle in 1882.
The construction of Mohr’s circle is
one of the few graphical techniques
still used in engineering. It provides
a simple and clear picture of an
otherwise complicated analysis.
5
Sign Convention for Mohr’s Circle
x
y
σx1
θ
y1
x1
σx1
σy1
σy1
τx y
1 1
τy x
1 1
τx y
1 1
τy x
1 1
( ) 2
2
1
1
2
1 R
y
x
avg
x =
+
− τ
σ
σ
σx1
τx1y1
R
2θ
σavg
Notice that shear stress is plotted as positive downward.
The reason for doing this is that 2θ is then positive counterclockwise,
which agrees with the direction of 2θ used in the derivation of the
tranformation equations and the direction of θ on the stress element.
Notice that although 2θ appears in Mohr’s circle, θ appears on the
stress element.
6
Procedure for Constructing Mohr’s Circle
1. Draw a set of coordinate axes with σx1 as abscissa (positive to the
right) and τx1y1 as ordinate (positive downward).
2. Locate the centre of the circle c at the point having coordinates σx1
= σavg and τx1y1 = 0.
3. Locate point A, representing the stress conditions on the x face of
the element by plotting its coordinates σx1 = σx and τx1y1 = τxy. Note
that point A on the circle corresponds to θ = 0°.
4. Locate point B, representing the stress conditions on the y face of
the element by plotting its coordinates σx1 = σy and τx1y1 = −τxy.
Note that point B on the circle corresponds to θ = 90°.
5. Draw a line from point A to point B, a diameter of the circle passing
through point c. Points A and B (representing stresses on planes
at 90° to each other) are at opposite ends of the diameter (and
therefore 180° apart on the circle).
6. Using point c as the centre, draw Mohr’s circle through points A
and B. This circle has radius R.
(based on Gere)
7
σx σx
σy
τxy
τyx
τxy
τyx
x
y
σx1
τx1y1
σavg
c
R
A (θ=0)
σx
τxy
A
B (θ=90)
σy
-τxy
B
8
Stresses on an Inclined Element
1. On Mohr’s circle, measure an angle 2θ counterclockwise from
radius cA, because point A corresponds to θ = 0 and hence is
the reference point from which angles are measured.
2. The angle 2θ locates the point D on the circle, which has
coordinates σx1 and τx1y1. Point D represents the stresses on the
x1 face of the inclined element.
3. Point E, which is diametrically opposite point D on the circle, is
located at an angle 2θ + 180° from cA (and 180° from cD). Thus
point E gives the stress on the y1 face of the inclined element.
4. So, as we rotate the x1y1 axes counterclockwise by an angle θ,
the point on Mohr’s circle corresponding to the x1 face moves
counterclockwise through an angle 2θ.
(based on Gere)
9
σx σx
σy
τxy
τyx
τxy
τyx
x
y
A (θ=0)
σx1
τx1y1
c
R
B (θ=90)
A
B
x
y
σx1
θ
y1
x1
σx1
σy1
σy1
τx y
1 1
τy x
1 1
τx y
1 1
τy x
1 1
2θ
D
D (θ)
σx1
τx1y1
σy1
-τx1y1
2θ+180
E (θ+90)
E
10
Principal Stresses
σx σx
σy
τxy
τyx
τxy
τyx
x
y
A (θ=0)
σx1
τx1y1
c
R
B (θ=90)
A
B
x
y
σ1
θp1
σ1
σ2
σ2
θp2
P1
2θp1
P2
2θp2
σ1
σ2
11
Maximum Shear Stress
σx σx
σy
τxy
τyx
τxy
τyx
x
y
A (θ=0)
σx1
τx1y1
c
R
B (θ=90)
A
B
2θs
σs
τmax
τmin
x
y
σs
θs
σs
σs
σs
τmax
τmax
τmax
τmax
Note carefully the
directions of the
shear forces.
12
Example: The state of plane stress at a point is represented by the stress
element below. Draw the Mohr’s circle, determine the principal stresses and
the maximum shear stresses, and draw the corresponding stress elements.
80 MPa 80 MPa
50 MPa
x
y
50 MPa
25 MPa
σ
τ
15
2
50
80
2
−
=
+
−
=
+
=
=
y
x
avg
c
σ
σ
σ
c
A (θ=0)
A
B (θ=90)
B
( )
( ) ( )
6
.
69
25
65
25
15
50
2
2
2
2
=
+
=
+
−
−
=
R
R
R
σ1
σ2
MPa
6
.
84
MPa
6
.
54
6
.
69
15
2
1
2
,
1
2
,
1
−
=
=
±
−
=
±
=
σ
σ
σ
σ R
c
τmax
MPa
15
MPa
6
.
69
s
max
−
=
=
=
=
c
R
σ
τ
13
84.6 MPa
84.6 MPa
54.6 MPa
x
y
54.6 MPa
10.5o
100.5
o
σ
τ
c
A (θ=0)
B (θ=90)
R
80 MPa 80 MPa
50 MPa
x
y
50 MPa
25 MPa
σ1
σ2
2θ2
2θ1
°
=
°
=
°
=
°
+
=
°
=
=
−
=
5
.
10
5
.
100
201
180
0
.
21
2
0
.
21
2
3846
.
0
15
80
25
2
tan
2
1
1
2
2
θ
θ
θ
θ
θ
2θ
14
σ
τ
c
A (θ=0)
B (θ=90)
R
80 MPa 80 MPa
50 MPa
x
y
50 MPa
25 MPa
2θ2
2θ
15 MPa
15 MPa
15 MPa
x
y
15 MPa
69.6 MPa
-34.5o
55.5
o
2θsmax
°
=
°
=
°
+
=
°
=
5
.
55
0
.
111
90
0
.
21
2
0
.
21
2
max
max
2
s
s
θ
θ
θ
2θsmin
taking sign convention into
account
°
−
=
°
−
=
−
−
=
°
=
5
.
34
0
.
69
)
0
.
21
90
(
2
0
.
21
2
min
min
2
s
s
θ
θ
θ
τmax
τmin
15
80 MPa 80 MPa
50 MPa
x
y
50 MPa
25 MPa
A (θ=0)
σ
τ
B (θ=90)
25.8 MPa
25.8 MPa
4.15 MPa
x
y
4.15 MPa
68.8 MPa
x1
y1
-30
o
Example: The state of plane stress at a point is represented by the stress
element below. Find the stresses on an element inclined at 30° clockwise
and draw the corresponding stress elements.
-60°
-60+180°
C (θ = -30°)
C
D (θ = -30+90°)
D
2θ2
σx1 = c – R cos(2θ2+60)
σy1 = c + R cos(2θ2+60)
τx1y1= -R sin (2θ2+60)
σx1 = -26
σy1 = -4
τx1y1= -69
2θ
θ = -30°
2θ = -60°
16
σ
τ
A (θ=0)
B (θ=90)
Principal Stresses σ1 = 54.6 MPa, σ2 = -84.6 MPa
But we have forgotten about the third principal stress!
Since the element is in plane stress (σz = 0),
the third principal stress is zero.
σ1 = 54.6 MPa
σ2 = 0 MPa
σ3 = -84.6 MPa
σ1
σ2
σ3
This means three
Mohr’s circles can
be drawn, each
based on two
principal stresses:
σ1 and σ3
σ1 and σ2
σ2 and σ3
17
σ1
σ3
σ1
σ3
σ
τ
σ1
σ2
σ3
σ1
σ3
σ1
σ3
σ1
σ1
σ3
σ3
18
σx σx
σy
τxy
τyx
τxy
τyx
x
y
The stress element shown is in plane stress.
What is the maximum shear stress?
A
B
σx1
τx1y1
A
B
σ3 σ1
σ2
2
2
1
3
1
)
3
,
1
max(
σ
σ
σ
τ =
−
=
2
2
1
)
2
,
1
max(
σ
σ
τ
−
=
2
2
2
3
2
)
3
,
2
max(
σ
σ
σ
τ =
−
=
overall maximum
19
⎟
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎜
⎝
⎛
zz
zy
zx
yz
yy
yx
xz
xy
xx
σ
τ
τ
τ
σ
τ
τ
τ
σ
y
z
x
σxx
σxx
σyy
σyy
σzz
τxy
τyx
τxz
τzx
τzy
τyz
Introduction to the Stress Tensor
Normal stresses on the diagonal
Shear stresses off diagaonal
τxy = τyx, τxz = τzx, τyz = τzy
The normal and shear stresses on a stress element in 3D can be
assembled into a 3x3 matrix known as the stress tensor.
20
From our analyses so far, we know that for a given stress system,
it is possible to find a set of three principal stresses. We also know
that if the principal stresses are acting, the shear stresses must be
zero. In terms of the stress tensor,
⎟
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎜
⎝
⎛
zz
zy
zx
yz
yy
yx
xz
xy
xx
σ
τ
τ
τ
σ
τ
τ
τ
σ
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎝
⎛
3
2
1
0
0
0
0
0
0
σ
σ
σ
In mathematical terms, this is the process of matrix diagonaliza-
tion in which the eigenvalues of the original matrix are just the
principal stresses.
21
80 MPa 80 MPa
50 MPa
x
y
50 MPa
25 MPa
Example: The state of plane stress at a point is represented by the
stress element below. Find the principal stresses.
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
−
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
50
25
25
80
y
yx
xy
x
M
σ
τ
τ
σ
We must find the eigenvalues of
this matrix.
Remember the general idea of eigenvalues. We are looking
for values of λ such that:
Ar = λr where r is a vector, and A is a matrix.
Ar – λr = 0 or (A – λI) r = 0 where I is the identity matrix.
For this equation to be true, either r = 0 or det (A – λI) = 0.
Solving the latter equation (the “characteristic equation”)
gives us the eigenvalues λ1 and λ2.
22
6
.
54
,
6
.
84
0
4625
30
0
)
25
)(
25
(
)
50
)(
80
(
0
50
25
25
80
det
2
−
=
=
−
+
=
−
−
−
−
−
−
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
−
−
−
λ
λ
λ
λ
λ
λ
λ
So, the principal stresses are –84.6 MPa and
54.6 MPa, as before.
Knowing the eigenvalues, we can find the eigenvectors. These can be
used to find the angles at which the principal stresses act. To find the
eigenvectors, we substitute the eigenvalues into the equation (A – λI ) r
= 0 one at a time and solve for r.
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
−
−
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
−
−
−
0
0
6
.
54
50
25
25
6
.
54
80
0
0
50
25
25
80
y
x
y
x
λ
λ
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛−
−
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
−
−
1
186
.
0
186
.
0
0
0
64
.
4
25
25
6
.
134
y
x
y
x
is one eigenvector.
23
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
−
−
−
−
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
−
−
−
0
0
)
6
.
84
(
50
25
25
)
6
.
84
(
80
0
0
50
25
25
80
y
x
y
x
λ
λ
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
1
388
.
5
388
.
5
0
0
6
.
134
25
25
6
.
4
y
x
y
x
is the other eigenvector.
Before finding the angles at which the principal stresses act, we can
check to see if the eigenvectors are correct.
C
M
C
D
M
C
D
1
50
25
25
80
1
1
388
.
5
186
.
0
6
.
84
0
0
6
.
54
−
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
−
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛−
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛−
=
=
=
−
−
033
.
0
179
.
0
967
.
0
179
.
0
factors
-
co
of
matrix
where
det
1
1
1
C
A
A
C
C T
24
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛−
=
6
.
84
0
0
6
.
54
1
1
388
.
5
186
.
0
50
25
25
80
033
.
0
179
.
0
967
.
0
179
.
0
D
To find the angles, we must calculate the unit eigenvectors:
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
→
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛−
→
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛−
183
.
0
938
.
0
1
388
.
5
983
.
0
183
.
0
1
186
.
0
And then assemble them into a rotation matrix R so that det R = +1.
1
)
183
.
0
)(
183
.
0
(
)
983
.
0
)(
983
.
0
(
det
983
.
0
183
.
0
183
.
0
983
.
0
=
−
−
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
= R
R
R
M
R
D
R T
=
′
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
=
θ
θ
θ
θ
cos
sin
sin
cos
The rotation matrix has the form
So θ = 10.5°, as we found earlier for one of the principal angles.
25
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛−
=
′
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
=
′
=
′
6
.
54
0
0
6
.
84
983
.
0
183
.
0
183
.
0
983
.
0
50
25
25
80
983
.
0
183
.
0
183
.
0
983
.
0
D
D
R
M
R
D T
Using the rotation angle of 10.5°, the matrix M (representing the
original stress state of the element) can be transformed to matrix
D’ (representing the principal stress state).
84.6 MPa
84.6 MPa
54.6 MPa
x
y
54.6 MPa
10.5o
100.5
o
So, the transformation equations,
Mohr’s circle, and eigenvectors all
give the same result for the principal
stress element.
26
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
−
−
=
′
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
−
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
=
′
=
′
1
1
15
.
4
8
.
68
8
.
68
8
.
25
866
.
0
5
.
0
5
.
0
866
.
0
50
25
25
80
866
.
0
5
.
0
5
.
0
866
.
0
y
yx
xy
x
T
M
M
R
M
R
M
σ
τ
τ
σ
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
°
−
°
−
°
−
−
°
−
=
866
.
0
5
.
0
5
.
0
866
.
0
)
30
cos(
)
30
sin(
)
30
sin(
)
30
cos(
R
25.8 MPa
25.8 MPa
4.15 MPa
x
y
4.15 MPa
68.8 MPa
x1
y1
-30
o
Finally, we can use the rotation matrix approach to find the stresses
on an inclined element with θ = -30°.
Again, the transformation equations,
Mohr’s circle, and the stress tensor
approach all give the same result.

More Related Content

What's hot

Lecture 10 bending stresses in beams
Lecture 10 bending stresses in beamsLecture 10 bending stresses in beams
Lecture 10 bending stresses in beams
Deepak Agarwal
 
Fluid mechanics lectur notes
Fluid mechanics lectur notesFluid mechanics lectur notes
Fluid mechanics lectur notes
isminci
 

What's hot (20)

6.7 airy
6.7 airy6.7 airy
6.7 airy
 
Strength of materials by A.Vinoth Jebaraj
Strength of materials by A.Vinoth JebarajStrength of materials by A.Vinoth Jebaraj
Strength of materials by A.Vinoth Jebaraj
 
5 octahedral shear stress theory
5 octahedral shear stress theory5 octahedral shear stress theory
5 octahedral shear stress theory
 
Stresses and its components - Theory of Elasticity and Plasticity
Stresses and its components - Theory of Elasticity and PlasticityStresses and its components - Theory of Elasticity and Plasticity
Stresses and its components - Theory of Elasticity and Plasticity
 
Lecture 10 bending stresses in beams
Lecture 10 bending stresses in beamsLecture 10 bending stresses in beams
Lecture 10 bending stresses in beams
 
Fluid mechanics lectur notes
Fluid mechanics lectur notesFluid mechanics lectur notes
Fluid mechanics lectur notes
 
Mohr circle
Mohr circleMohr circle
Mohr circle
 
A presentation on shear stress (10.01.03.139)
A presentation on shear stress (10.01.03.139)A presentation on shear stress (10.01.03.139)
A presentation on shear stress (10.01.03.139)
 
FLEXURAL STRESSES AND SHEAR STRESSES
FLEXURAL STRESSES AND SHEAR STRESSESFLEXURAL STRESSES AND SHEAR STRESSES
FLEXURAL STRESSES AND SHEAR STRESSES
 
Lec 2 stress strain diagram (lec 2)
Lec 2 stress strain diagram (lec 2)Lec 2 stress strain diagram (lec 2)
Lec 2 stress strain diagram (lec 2)
 
Prof.N.B.HUI Lecture of solid mechanics
Prof.N.B.HUI Lecture of solid mechanicsProf.N.B.HUI Lecture of solid mechanics
Prof.N.B.HUI Lecture of solid mechanics
 
Plane Stress Transformation.pptx
Plane Stress Transformation.pptxPlane Stress Transformation.pptx
Plane Stress Transformation.pptx
 
Ground Response Analysis - Geotechnical Earthquake engineering
Ground Response Analysis - Geotechnical Earthquake engineeringGround Response Analysis - Geotechnical Earthquake engineering
Ground Response Analysis - Geotechnical Earthquake engineering
 
Analysis of Thin Plates
Analysis of  Thin PlatesAnalysis of  Thin Plates
Analysis of Thin Plates
 
Chapter 3: Generalized Hooke's Law, Pressure Vessels, and Thick-Walled Cylinders
Chapter 3: Generalized Hooke's Law, Pressure Vessels, and Thick-Walled CylindersChapter 3: Generalized Hooke's Law, Pressure Vessels, and Thick-Walled Cylinders
Chapter 3: Generalized Hooke's Law, Pressure Vessels, and Thick-Walled Cylinders
 
Introduction to the theory of plates
Introduction to the theory of platesIntroduction to the theory of plates
Introduction to the theory of plates
 
10 columns
10 columns10 columns
10 columns
 
L20
L20L20
L20
 
Principle stresses and planes
Principle stresses and planesPrinciple stresses and planes
Principle stresses and planes
 
Moh'r circle2
Moh'r circle2Moh'r circle2
Moh'r circle2
 

Similar to UDA 5 - P.pdf

Similar to UDA 5 - P.pdf (20)

Stress5_ht08.pdf
Stress5_ht08.pdfStress5_ht08.pdf
Stress5_ht08.pdf
 
ED7008 AMFT_notes
ED7008 AMFT_notesED7008 AMFT_notes
ED7008 AMFT_notes
 
Complex stresses
Complex stressesComplex stresses
Complex stresses
 
Solution manual for introduction to finite element analysis and design nam ...
Solution manual for introduction to finite element analysis and design   nam ...Solution manual for introduction to finite element analysis and design   nam ...
Solution manual for introduction to finite element analysis and design nam ...
 
Chapter one.pptx
Chapter one.pptxChapter one.pptx
Chapter one.pptx
 
Mohr circle (Complete Soil Mech. Undestanding Pakage: ABHAY)
Mohr circle (Complete Soil Mech. Undestanding Pakage: ABHAY)Mohr circle (Complete Soil Mech. Undestanding Pakage: ABHAY)
Mohr circle (Complete Soil Mech. Undestanding Pakage: ABHAY)
 
Chapter nine.pptx
Chapter nine.pptxChapter nine.pptx
Chapter nine.pptx
 
Shear
ShearShear
Shear
 
Lecture10 mohr's circle
Lecture10 mohr's circleLecture10 mohr's circle
Lecture10 mohr's circle
 
Theory of elasticity and plasticity (Equations sheet part 01) Att 8676
Theory of elasticity and plasticity (Equations sheet part 01) Att 8676Theory of elasticity and plasticity (Equations sheet part 01) Att 8676
Theory of elasticity and plasticity (Equations sheet part 01) Att 8676
 
Mohr circle
Mohr circleMohr circle
Mohr circle
 
STRENGTH OF MATERIALS for beginners
STRENGTH OF MATERIALS for  beginnersSTRENGTH OF MATERIALS for  beginners
STRENGTH OF MATERIALS for beginners
 
stress strain dispalcement.pdf
stress strain dispalcement.pdfstress strain dispalcement.pdf
stress strain dispalcement.pdf
 
Mohrs circle
Mohrs circleMohrs circle
Mohrs circle
 
Mohr_Circle.pdf
Mohr_Circle.pdfMohr_Circle.pdf
Mohr_Circle.pdf
 
Tensor 1
Tensor  1Tensor  1
Tensor 1
 
Formula Bank and Important tips for Mechanical Engineering Students for Compe...
Formula Bank and Important tips for Mechanical Engineering Students for Compe...Formula Bank and Important tips for Mechanical Engineering Students for Compe...
Formula Bank and Important tips for Mechanical Engineering Students for Compe...
 
ESA Module 3 Part-B ME832. by Dr. Mohammed Imran
ESA Module 3 Part-B ME832. by Dr. Mohammed ImranESA Module 3 Part-B ME832. by Dr. Mohammed Imran
ESA Module 3 Part-B ME832. by Dr. Mohammed Imran
 
Solution manual for introduction to nonlinear finite element analysis nam-h...
Solution manual for introduction to nonlinear finite element analysis   nam-h...Solution manual for introduction to nonlinear finite element analysis   nam-h...
Solution manual for introduction to nonlinear finite element analysis nam-h...
 
Ch07 5
Ch07 5Ch07 5
Ch07 5
 

More from Charitha Ranwala ,CSWP (8)

Curriculum vita and interview help for doctors and en
Curriculum vita and interview help for doctors and enCurriculum vita and interview help for doctors and en
Curriculum vita and interview help for doctors and en
 
PressureVesselsreviewMAE322.pdf
PressureVesselsreviewMAE322.pdfPressureVesselsreviewMAE322.pdf
PressureVesselsreviewMAE322.pdf
 
j.addma.2020.101130.pdf
j.addma.2020.101130.pdfj.addma.2020.101130.pdf
j.addma.2020.101130.pdf
 
indentationsize.pdf
indentationsize.pdfindentationsize.pdf
indentationsize.pdf
 
j.ijrmhm.2020.105280.pdf
j.ijrmhm.2020.105280.pdfj.ijrmhm.2020.105280.pdf
j.ijrmhm.2020.105280.pdf
 
Standard_Test_Method_for_Microindentatio.pdf
Standard_Test_Method_for_Microindentatio.pdfStandard_Test_Method_for_Microindentatio.pdf
Standard_Test_Method_for_Microindentatio.pdf
 
When how-isolate
When how-isolateWhen how-isolate
When how-isolate
 
my presentation
my presentationmy presentation
my presentation
 

Recently uploaded

Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
Kamal Acharya
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
pritamlangde
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 

Recently uploaded (20)

Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Signal Processing and Linear System Analysis
Signal Processing and Linear System AnalysisSignal Processing and Linear System Analysis
Signal Processing and Linear System Analysis
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptx
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Ghuma $ Russian Call Girls Ahmedabad ₹7.5k Pick Up & Drop With Cash Payment 8...
Ghuma $ Russian Call Girls Ahmedabad ₹7.5k Pick Up & Drop With Cash Payment 8...Ghuma $ Russian Call Girls Ahmedabad ₹7.5k Pick Up & Drop With Cash Payment 8...
Ghuma $ Russian Call Girls Ahmedabad ₹7.5k Pick Up & Drop With Cash Payment 8...
 
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 

UDA 5 - P.pdf

  • 1. 1 Lecture 5 Plane Stress Transformation Equations Stress elements and plane stress. Stresses on inclined sections. Transformation equations. Principal stresses, angles, and planes. Maximum shear stress.
  • 2. 2 Normal and shear stresses on inclined sections To obtain a complete picture of the stresses in a bar, we must consider the stresses acting on an “inclined” (as opposed to a “normal”) section through the bar. P P Normal section Inclined section Because the stresses are the same throughout the entire bar, the stresses on the sections are uniformly distributed. P Inclined section P Normal section
  • 3. 3 P V N P θ x y The force P can be resolved into components: Normal force N perpendicular to the inclined plane, N = P cos θ Shear force V tangential to the inclined plane V = P sin θ If we know the areas on which the forces act, we can calculate the associated stresses. x y area A area A ( / cos ) θ σθ x y τθ area A area A ( / cos ) θ
  • 4. 4 ( ) 2 cos 1 2 cos cos cos cos 2 x 2 θ σ θ σ σ θ θ θ σ θ θ + = = = = = = x A P A P Area N Area Force / ( ) 2 sin 2 cos sin cos sin cos sin x θ σ θ θ σ τ θ θ θ θ τ θ θ x A P A P Area V Area Force − = − = − = − = − = = / x y τθ σθ θ σmax = σx occurs when θ = 0° τmax = ± σx/2 occurs when θ = -/+ 45°
  • 5. 5 Introduction to stress elements Stress elements are a useful way to represent stresses acting at some point on a body. Isolate a small element and show stresses acting on all faces. Dimensions are “infinitesimal”, but are drawn to a large scale. x y z σ = x P A / σx x y σx σ = x P A / P σx = A P / x y Area A
  • 6. 6 Maximum stresses on a bar in tension P P a σx = σmax = P / A σx a Maximum normal stress, Zero shear stress
  • 7. 7 P P a b Maximum stresses on a bar in tension b σx/2 σx/2 τmax = σx/2 θ = 45° Maximum shear stress, Non-zero normal stress
  • 8. 8 Stress Elements and Plane Stress When working with stress elements, keep in mind that only one intrinsic state of stress exists at a point in a stressed body, regardless of the orientation of the element used to portray the state of stress. We are really just rotating axes to represent stresses in a new coordinate system. x y σx σx θ y1 x1
  • 9. 9 y z x Normal stresses σx, σy, σz (tension is positive) σx σx σy σy σz τxy τyx τxz τzx τzy τyz Shear stresses τxy = τyx, τxz = τzx, τyz = τzy Sign convention for τab Subscript a indicates the “face” on which the stress acts (positive x “face” is perpendicular to the positive x direction) Subscript b indicates the direction in which the stress acts Strictly σx = σxx, σy = σyy, σz = σzz
  • 10. 10 When an element is in plane stress in the xy plane, only the x and y faces are subjected to stresses (σz = 0 and τzx = τxz = τzy = τyz = 0). Such an element could be located on the free surface of a body (no stresses acting on the free surface). σx σx σy σy τxy τyx τxy τyx x y Plane stress element in 2D σx, σy τxy = τyx σz = 0
  • 11. 11 Stresses on Inclined Sections σx σx σy τxy τyx τxy τyx x y x y σx1 θ y1 x1 σx1 σy1 σy1 τx y 1 1 τy x 1 1 τx y 1 1 τy x 1 1 The stress system is known in terms of coordinate system xy. We want to find the stresses in terms of the rotated coordinate system x1y1. Why? A material may yield or fail at the maximum value of σ or τ. This value may occur at some angle other than θ = 0. (Remember that for uni- axial tension the maximum shear stress occurred when θ = 45 degrees. )
  • 12. 12 Transformation Equations y σx1 x θ y1 x1 σx σy τx y 1 1 τxy τyx θ Stresses y σ θ x1 A sec x θ y1 x1 σxA σ θ y A tan τ θ x y 1 1 A sec τxy A τ θ yx A tan θ Forces Left face has area A. Bottom face has area A tan θ. Inclined face has area A sec θ. Forces can be found from stresses if the area on which the stresses act is known. Force components can then be summed.
  • 13. 13 y σ θ x1 A sec x θ y1 x1 σxA σ θ y A tan τ θ x y 1 1 A sec τxy A τ θ yx A tan θ ( ) ( ) ( ) ( ) 0 cos tan sin tan sin cos sec : direction in the forces Sum 1 1 = − − − − θ θ τ θ θ σ θ τ θ σ θ A A A A A σ x yx y xy x x ( ) ( ) ( ) ( ) 0 sin tan cos tan cos sin sec : direction in the forces Sum 1 1 1 = − − − + θ θ τ θ θ σ θ τ θ σ θ τ A A A A A y yx y xy x y x ( ) ( ) θ θ τ θ θ σ σ τ θ θ τ θ σ θ σ σ τ τ 2 2 1 1 2 2 1 sin cos cos sin cos sin 2 sin cos : gives g simplifyin and Using − + − − = + + = = xy y x y x xy y x x yx xy
  • 14. 14 2 2 sin cos sin 2 2 cos 1 sin 2 2 cos 1 cos identities tric trigonome following the Using 2 2 θ θ θ θ θ θ θ = − = + = θ τ θ σ σ σ σ σ θ θ 2 sin 2 cos 2 2 : for 90 substitute face, on the stresses For 1 1 xy y x y x y y − − − + = + ° y x y x y x σ σ σ σ + = + 1 1 1 1 : gives and for s expression the Summing ( ) θ τ θ σ σ τ θ τ θ σ σ σ σ σ 2 cos 2 sin 2 2 sin 2 cos 2 2 : stress plane for equations ation transform the gives 1 1 1 xy y x y x xy y x y x x + − − = + − + + = Can be used to find σy1, instead of eqn above.
  • 15. 15 Example: The state of plane stress at a point is represented by the stress element below. Determine the stresses acting on an element oriented 30° clockwise with respect to the original element. 80 MPa 80 MPa 50 MPa x y 50 MPa 25 MPa Define the stresses in terms of the established sign convention: σx = -80 MPa σy = 50 MPa τxy = -25 MPa We need to find σx1, σy1, and τx1y1 when θ = -30°. Substitute numerical values into the transformation equations: ( ) ( ) ( ) MPa 9 . 25 30 2 sin 25 30 2 cos 2 50 80 2 50 80 2 sin 2 cos 2 2 1 1 − = ° − − + ° − − − + + − = + − + + = x xy y x y x x σ θ τ θ σ σ σ σ σ
  • 16. 16 ( ) ( ) ( ) ( ) ( ) MPa 8 . 68 30 2 cos 25 30 2 sin 2 50 80 2 cos 2 sin 2 1 1 1 1 − = ° − − + ° − − − − = + − − = y x xy y x y x τ θ τ θ σ σ τ ( ) ( ) ( ) MPa 15 . 4 30 2 sin 25 30 2 cos 2 50 80 2 50 80 2 sin 2 cos 2 2 1 1 − = ° − − − ° − − − − + − = − − − + = y xy y x y x y σ θ τ θ σ σ σ σ σ Note that σy1 could also be obtained (a) by substituting +60° into the equation for σx1 or (b) by using the equation σx + σy = σx1 + σy1 +60° 25.8 MPa 25.8 MPa 4.15 MPa x y 4.15 MPa 68.8 MPa x1 y1 -30 o (from Hibbeler, Ex. 15.2)
  • 17. 17 Principal Stresses The maximum and minimum normal stresses (σ1 and σ2) are known as the principal stresses. To find the principal stresses, we must differentiate the transformation equations. ( ) ( ) ( ) y x xy p xy y x x xy y x x xy y x y x x d d d d σ σ τ θ θ τ θ σ σ θ σ θ τ θ σ σ θ σ θ τ θ σ σ σ σ σ − = = + − − = = + − − = + − + + = 2 2 tan 0 2 cos 2 2 sin 0 2 cos 2 2 sin 2 2 2 sin 2 cos 2 2 1 1 1 θp are principal angles associated with the principal stresses There are two values of 2θp in the range 0-360°, with values differing by 180°. There are two values of θp in the range 0-180°, with values differing by 90°. So, the planes on which the principal stresses act are mutually perpendicular.
  • 18. 18 θ τ θ σ σ σ σ σ σ σ τ θ 2 sin 2 cos 2 2 2 2 tan 1 xy y x y x x y x xy p + − + + = − = We can now solve for the principal stresses by substituting for θp in the stress transformation equation for σx1. This tells us which principal stress is associated with which principal angle. 2θp τxy (σx – σy) / 2 R R R R xy p y x p xy y x τ θ σ σ θ τ σ σ = − = + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = 2 sin 2 2 cos 2 2 2 2 ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − + + = R R xy xy y x y x y x τ τ σ σ σ σ σ σ σ 2 2 2 1
  • 19. 19 Substituting for R and re-arranging gives the larger of the two principal stresses: 2 2 1 2 2 xy y x y x τ σ σ σ σ σ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − + + = To find the smaller principal stress, use σ1 + σ2 = σx + σy. 2 2 1 2 2 2 xy y x y x y x τ σ σ σ σ σ σ σ σ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − + = − + = These equations can be combined to give: 2 2 2 , 1 2 2 xy y x y x τ σ σ σ σ σ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − ± + = Principal stresses To find out which principal stress goes with which principal angle, we could use the equations for sin θp and cos θp or for σx1.
  • 20. 20 The planes on which the principal stresses act are called the principal planes. What shear stresses act on the principal planes? Solving either equation gives the same expression for tan 2θp Hence, the shear stresses are zero on the principal planes. ( ) ( ) ( ) 0 2 cos 2 2 sin 0 2 cos 2 2 sin 0 2 cos 2 sin 2 0 and 0 for equations the Compare 1 1 1 1 1 1 = + − − = = + − − = + − − = = = θ τ θ σ σ θ σ θ τ θ σ σ θ τ θ σ σ τ θ σ τ xy y x x xy y x xy y x y x x y x d d d d
  • 21. 21 Principal Stresses 2 2 2 , 1 2 2 xy y x y x τ σ σ σ σ σ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − ± + = y x xy p σ σ τ θ − = 2 2 tan Principal Angles defining the Principal Planes x y σ1 θp1 σ1 σ2 σ2 θp2 σy σx σx σy τxy τyx τxy τyx x y
  • 22. 22 Example: The state of plane stress at a point is represented by the stress element below. Determine the principal stresses and draw the corresponding stress element. 80 MPa 80 MPa 50 MPa x y 50 MPa 25 MPa Define the stresses in terms of the established sign convention: σx = -80 MPa σy = 50 MPa τxy = -25 MPa ( ) MPa 6 . 84 MPa 6 . 54 6 . 69 15 25 2 50 80 2 50 80 2 2 2 1 2 2 2 , 1 2 2 2 , 1 − = = ± − = − + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − − ± + − = + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − ± + = σ σ σ τ σ σ σ σ σ xy y x y x
  • 23. 23 ( ) ° ° = ° + ° = = − − − = − = 5 . 100 , 5 . 10 180 21.0 and 0 . 21 2 3846 . 0 50 80 25 2 2 tan 2 2 tan p p p y x xy p θ θ θ σ σ τ θ ( ) ( ) ( ) MPa 6 . 84 5 . 10 2 sin 25 5 . 10 2 cos 2 50 80 2 50 80 2 sin 2 cos 2 2 1 1 − = ° − + ° − − + + − = + − + + = x xy y x y x x σ θ τ θ σ σ σ σ σ But we must check which angle goes with which principal stress. σ1 = 54.6 MPa with θp1 = 100.5° σ2 = -84.6 MPa with θp2 = 10.5° 84.6 MPa 84.6 MPa 54.6 MPa x y 54.6 MPa 10.5 o 100.5 o
  • 24. 24 The two principal stresses determined so far are the principal stresses in the xy plane. But … remember that the stress element is 3D, so there are always three principal stresses. y x σx σx σy σy τ τ τ τ σx, σy, τxy = τyx = τ yp zp xp σ1 σ1 σ2 σ2 σ3 = 0 σ1, σ2, σ3 = 0 Usually we take σ1 > σ2 > σ3. Since principal stresses can be com- pressive as well as tensile, σ3 could be a negative (compressive) stress, rather than the zero stress.
  • 25. 25 Maximum Shear Stress ( ) ( ) ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − = = − − − = + − − = xy y x s xy y x y x xy y x y x d d τ σ σ θ θ τ θ σ σ θ τ θ τ θ σ σ τ 2 2 tan 0 2 sin 2 2 cos 2 cos 2 sin 2 1 1 1 1 To find the maximum shear stress, we must differentiate the trans- formation equation for shear. There are two values of 2θs in the range 0-360°, with values differing by 180°. There are two values of θs in the range 0-180°, with values differing by 90°. So, the planes on which the maximum shear stresses act are mutually perpendicular. Because shear stresses on perpendicular planes have equal magnitudes, the maximum positive and negative shear stresses differ only in sign.
  • 26. 26 2θs τxy (σ x – σ y ) / 2 R ( ) θ τ θ σ σ τ τ σ σ θ 2 cos 2 sin 2 2 2 tan 1 1 xy y x y x xy y x s + − − = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − = We can now solve for the maximum shear stress by substituting for θs in the stress transformation equation for τx1y1. R R R y x s xy s xy y x 2 2 sin 2 cos 2 2 2 2 σ σ θ τ θ τ σ σ − − = = + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = max min 2 2 max 2 τ τ τ σ σ τ − = + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = xy y x
  • 27. 27 Use equations for sin θs and cos θs or τx1y1 to find out which face has the positive shear stress and which the negative. What normal stresses act on the planes with maximum shear stress? Substitute for θs in the equations for σx1 and σy1 to get s y x y x σ σ σ σ σ = + = = 2 1 1 x y σs θs σs σs σs τmax τmax τmax τmax σy σx σx σy τxy τyx τxy τyx x y
  • 28. 28 Example: The state of plane stress at a point is represented by the stress element below. Determine the maximum shear stresses and draw the corresponding stress element. 80 MPa 80 MPa 50 MPa x y 50 MPa 25 MPa Define the stresses in terms of the established sign convention: σx = -80 MPa σy = 50 MPa τxy = -25 MPa ( ) MPa 6 . 69 25 2 50 80 2 2 2 max 2 2 max = − + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − − = + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = τ τ σ σ τ xy y x MPa 15 2 50 80 2 − = + − = + = s y x s σ σ σ σ
  • 29. 29 ( ) ° ° − = ° + − ° − = − = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − − − = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − = 5 . 55 , 5 . 34 180 0 . 69 and 0 . 69 2 6 . 2 25 2 50 80 2 2 tan s s xy y x s θ θ τ σ σ θ ( ) ( ) ( ) ( ) ( ) MPa 6 . 69 5 . 34 2 cos 25 5 . 34 2 sin 2 50 80 2 cos 2 sin 2 1 1 1 1 − = − − + − − − − = + − − = y x xy y x y x τ θ τ θ σ σ τ But we must check which angle goes with which shear stress. τmax = 69.6 MPa with θsmax = 55.5° τmin = -69.6 MPa with θsmin = -34.5° 15 MPa 15 MPa 15 MPa x y 15 MPa 69.6 MPa -34.5o 55.5 o
  • 30. 30 Finally, we can ask how the principal stresses and maximum shear stresses are related and how the principal angles and maximum shear angles are related. 2 2 2 2 2 2 2 1 max max 2 1 2 2 2 1 2 2 2 , 1 σ σ τ τ σ σ τ σ σ σ σ τ σ σ σ σ σ − = = − + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = − + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − ± + = xy y x xy y x y x p p s y x xy p xy y x s θ θ θ σ σ τ θ τ σ σ θ 2 cot 2 tan 1 2 tan 2 2 tan 2 2 tan − = − = − = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − =
  • 32. 32 80 MPa 80 MPa 50 MPa x y 50 MPa 25 MPa Original Problem σx = -80, σy = 50, τxy = 25 84.6 MPa 84.6 MPa 54.6 MPa x y 54.6 MPa 10.5 o 100.5 o Principal Stresses σ1 = 54.6, σ2 = 0, σ3 = -84.6 15 MPa 15 MPa 15 MPa x y 15 MPa 69.6 MPa -34.5o 55.5o Maximum Shear τmax = 69.6, σs = -15 ° ° − = ° ± ° = ° ± = 5 . 55 , 5 . 34 45 5 . 10 45 s s p s θ θ θ θ ( ) MPa 6 . 69 2 6 . 84 6 . 54 2 max max 2 1 max = − − = − = τ τ σ σ τ
  • 33. 1 Mohr’s Circle for Plane Stress Transformation equations for plane stress. Procedure for constructing Mohr’s circle. Stresses on an inclined element. Principal stresses and maximum shear stresses. Introduction to the stress tensor.
  • 34. 2 Stress Transformation Equations σx σx σy τxy τyx τxy τyx x y x y σx1 θ y1 x1 σx1 σy1 σy1 τx y 1 1 τy x 1 1 τx y 1 1 τy x 1 1 ( ) θ τ θ σ σ τ θ τ θ σ σ σ σ σ 2 cos 2 sin 2 2 sin 2 cos 2 2 1 1 1 xy y x y x xy y x y x x + − − = + − + + = If we vary θ from 0° to 360°, we will get all possible values of σx1 and τx1y1 for a given stress state. It would be useful to represent σx1 and τx1y1 as functions of θ in graphical form.
  • 35. 3 To do this, we must re-write the transformation equations. ( ) θ τ θ σ σ τ θ τ θ σ σ σ σ σ 2 cos 2 sin 2 2 sin 2 cos 2 2 1 1 1 xy y x y x xy y x y x x + − − = + − = + − Eliminate θ by squaring both sides of each equation and adding the two equations together. 2 2 2 1 1 2 1 2 2 xy y x y x y x x τ σ σ τ σ σ σ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + − Define σavg and R 2 2 2 2 xy y x y x avg R τ σ σ σ σ σ + ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = + =
  • 36. 4 Substitue for σavg and R to get ( ) 2 2 1 1 2 1 R y x avg x = + − τ σ σ which is the equation for a circle with centre (σavg,0) and radius R. This circle is usually referred to as Mohr’s circle, after the German civil engineer Otto Mohr (1835-1918). He developed the graphical technique for drawing the circle in 1882. The construction of Mohr’s circle is one of the few graphical techniques still used in engineering. It provides a simple and clear picture of an otherwise complicated analysis.
  • 37. 5 Sign Convention for Mohr’s Circle x y σx1 θ y1 x1 σx1 σy1 σy1 τx y 1 1 τy x 1 1 τx y 1 1 τy x 1 1 ( ) 2 2 1 1 2 1 R y x avg x = + − τ σ σ σx1 τx1y1 R 2θ σavg Notice that shear stress is plotted as positive downward. The reason for doing this is that 2θ is then positive counterclockwise, which agrees with the direction of 2θ used in the derivation of the tranformation equations and the direction of θ on the stress element. Notice that although 2θ appears in Mohr’s circle, θ appears on the stress element.
  • 38. 6 Procedure for Constructing Mohr’s Circle 1. Draw a set of coordinate axes with σx1 as abscissa (positive to the right) and τx1y1 as ordinate (positive downward). 2. Locate the centre of the circle c at the point having coordinates σx1 = σavg and τx1y1 = 0. 3. Locate point A, representing the stress conditions on the x face of the element by plotting its coordinates σx1 = σx and τx1y1 = τxy. Note that point A on the circle corresponds to θ = 0°. 4. Locate point B, representing the stress conditions on the y face of the element by plotting its coordinates σx1 = σy and τx1y1 = −τxy. Note that point B on the circle corresponds to θ = 90°. 5. Draw a line from point A to point B, a diameter of the circle passing through point c. Points A and B (representing stresses on planes at 90° to each other) are at opposite ends of the diameter (and therefore 180° apart on the circle). 6. Using point c as the centre, draw Mohr’s circle through points A and B. This circle has radius R. (based on Gere)
  • 40. 8 Stresses on an Inclined Element 1. On Mohr’s circle, measure an angle 2θ counterclockwise from radius cA, because point A corresponds to θ = 0 and hence is the reference point from which angles are measured. 2. The angle 2θ locates the point D on the circle, which has coordinates σx1 and τx1y1. Point D represents the stresses on the x1 face of the inclined element. 3. Point E, which is diametrically opposite point D on the circle, is located at an angle 2θ + 180° from cA (and 180° from cD). Thus point E gives the stress on the y1 face of the inclined element. 4. So, as we rotate the x1y1 axes counterclockwise by an angle θ, the point on Mohr’s circle corresponding to the x1 face moves counterclockwise through an angle 2θ. (based on Gere)
  • 41. 9 σx σx σy τxy τyx τxy τyx x y A (θ=0) σx1 τx1y1 c R B (θ=90) A B x y σx1 θ y1 x1 σx1 σy1 σy1 τx y 1 1 τy x 1 1 τx y 1 1 τy x 1 1 2θ D D (θ) σx1 τx1y1 σy1 -τx1y1 2θ+180 E (θ+90) E
  • 42. 10 Principal Stresses σx σx σy τxy τyx τxy τyx x y A (θ=0) σx1 τx1y1 c R B (θ=90) A B x y σ1 θp1 σ1 σ2 σ2 θp2 P1 2θp1 P2 2θp2 σ1 σ2
  • 43. 11 Maximum Shear Stress σx σx σy τxy τyx τxy τyx x y A (θ=0) σx1 τx1y1 c R B (θ=90) A B 2θs σs τmax τmin x y σs θs σs σs σs τmax τmax τmax τmax Note carefully the directions of the shear forces.
  • 44. 12 Example: The state of plane stress at a point is represented by the stress element below. Draw the Mohr’s circle, determine the principal stresses and the maximum shear stresses, and draw the corresponding stress elements. 80 MPa 80 MPa 50 MPa x y 50 MPa 25 MPa σ τ 15 2 50 80 2 − = + − = + = = y x avg c σ σ σ c A (θ=0) A B (θ=90) B ( ) ( ) ( ) 6 . 69 25 65 25 15 50 2 2 2 2 = + = + − − = R R R σ1 σ2 MPa 6 . 84 MPa 6 . 54 6 . 69 15 2 1 2 , 1 2 , 1 − = = ± − = ± = σ σ σ σ R c τmax MPa 15 MPa 6 . 69 s max − = = = = c R σ τ
  • 45. 13 84.6 MPa 84.6 MPa 54.6 MPa x y 54.6 MPa 10.5o 100.5 o σ τ c A (θ=0) B (θ=90) R 80 MPa 80 MPa 50 MPa x y 50 MPa 25 MPa σ1 σ2 2θ2 2θ1 ° = ° = ° = ° + = ° = = − = 5 . 10 5 . 100 201 180 0 . 21 2 0 . 21 2 3846 . 0 15 80 25 2 tan 2 1 1 2 2 θ θ θ θ θ 2θ
  • 46. 14 σ τ c A (θ=0) B (θ=90) R 80 MPa 80 MPa 50 MPa x y 50 MPa 25 MPa 2θ2 2θ 15 MPa 15 MPa 15 MPa x y 15 MPa 69.6 MPa -34.5o 55.5 o 2θsmax ° = ° = ° + = ° = 5 . 55 0 . 111 90 0 . 21 2 0 . 21 2 max max 2 s s θ θ θ 2θsmin taking sign convention into account ° − = ° − = − − = ° = 5 . 34 0 . 69 ) 0 . 21 90 ( 2 0 . 21 2 min min 2 s s θ θ θ τmax τmin
  • 47. 15 80 MPa 80 MPa 50 MPa x y 50 MPa 25 MPa A (θ=0) σ τ B (θ=90) 25.8 MPa 25.8 MPa 4.15 MPa x y 4.15 MPa 68.8 MPa x1 y1 -30 o Example: The state of plane stress at a point is represented by the stress element below. Find the stresses on an element inclined at 30° clockwise and draw the corresponding stress elements. -60° -60+180° C (θ = -30°) C D (θ = -30+90°) D 2θ2 σx1 = c – R cos(2θ2+60) σy1 = c + R cos(2θ2+60) τx1y1= -R sin (2θ2+60) σx1 = -26 σy1 = -4 τx1y1= -69 2θ θ = -30° 2θ = -60°
  • 48. 16 σ τ A (θ=0) B (θ=90) Principal Stresses σ1 = 54.6 MPa, σ2 = -84.6 MPa But we have forgotten about the third principal stress! Since the element is in plane stress (σz = 0), the third principal stress is zero. σ1 = 54.6 MPa σ2 = 0 MPa σ3 = -84.6 MPa σ1 σ2 σ3 This means three Mohr’s circles can be drawn, each based on two principal stresses: σ1 and σ3 σ1 and σ2 σ2 and σ3
  • 50. 18 σx σx σy τxy τyx τxy τyx x y The stress element shown is in plane stress. What is the maximum shear stress? A B σx1 τx1y1 A B σ3 σ1 σ2 2 2 1 3 1 ) 3 , 1 max( σ σ σ τ = − = 2 2 1 ) 2 , 1 max( σ σ τ − = 2 2 2 3 2 ) 3 , 2 max( σ σ σ τ = − = overall maximum
  • 51. 19 ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ zz zy zx yz yy yx xz xy xx σ τ τ τ σ τ τ τ σ y z x σxx σxx σyy σyy σzz τxy τyx τxz τzx τzy τyz Introduction to the Stress Tensor Normal stresses on the diagonal Shear stresses off diagaonal τxy = τyx, τxz = τzx, τyz = τzy The normal and shear stresses on a stress element in 3D can be assembled into a 3x3 matrix known as the stress tensor.
  • 52. 20 From our analyses so far, we know that for a given stress system, it is possible to find a set of three principal stresses. We also know that if the principal stresses are acting, the shear stresses must be zero. In terms of the stress tensor, ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ zz zy zx yz yy yx xz xy xx σ τ τ τ σ τ τ τ σ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎝ ⎛ 3 2 1 0 0 0 0 0 0 σ σ σ In mathematical terms, this is the process of matrix diagonaliza- tion in which the eigenvalues of the original matrix are just the principal stresses.
  • 53. 21 80 MPa 80 MPa 50 MPa x y 50 MPa 25 MPa Example: The state of plane stress at a point is represented by the stress element below. Find the principal stresses. ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − − = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = 50 25 25 80 y yx xy x M σ τ τ σ We must find the eigenvalues of this matrix. Remember the general idea of eigenvalues. We are looking for values of λ such that: Ar = λr where r is a vector, and A is a matrix. Ar – λr = 0 or (A – λI) r = 0 where I is the identity matrix. For this equation to be true, either r = 0 or det (A – λI) = 0. Solving the latter equation (the “characteristic equation”) gives us the eigenvalues λ1 and λ2.
  • 54. 22 6 . 54 , 6 . 84 0 4625 30 0 ) 25 )( 25 ( ) 50 )( 80 ( 0 50 25 25 80 det 2 − = = − + = − − − − − − = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − − − − λ λ λ λ λ λ λ So, the principal stresses are –84.6 MPa and 54.6 MPa, as before. Knowing the eigenvalues, we can find the eigenvectors. These can be used to find the angles at which the principal stresses act. To find the eigenvectors, we substitute the eigenvalues into the equation (A – λI ) r = 0 one at a time and solve for r. ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − − − − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − − − − 0 0 6 . 54 50 25 25 6 . 54 80 0 0 50 25 25 80 y x y x λ λ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛− − = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − − − 1 186 . 0 186 . 0 0 0 64 . 4 25 25 6 . 134 y x y x is one eigenvector.
  • 55. 23 ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − − − − − − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − − − − 0 0 ) 6 . 84 ( 50 25 25 ) 6 . 84 ( 80 0 0 50 25 25 80 y x y x λ λ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − 1 388 . 5 388 . 5 0 0 6 . 134 25 25 6 . 4 y x y x is the other eigenvector. Before finding the angles at which the principal stresses act, we can check to see if the eigenvectors are correct. C M C D M C D 1 50 25 25 80 1 1 388 . 5 186 . 0 6 . 84 0 0 6 . 54 − = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − − = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛− = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛− = = = − − 033 . 0 179 . 0 967 . 0 179 . 0 factors - co of matrix where det 1 1 1 C A A C C T
  • 56. 24 ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛− ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛− = 6 . 84 0 0 6 . 54 1 1 388 . 5 186 . 0 50 25 25 80 033 . 0 179 . 0 967 . 0 179 . 0 D To find the angles, we must calculate the unit eigenvectors: ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ → ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛− → ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛− 183 . 0 938 . 0 1 388 . 5 983 . 0 183 . 0 1 186 . 0 And then assemble them into a rotation matrix R so that det R = +1. 1 ) 183 . 0 )( 183 . 0 ( ) 983 . 0 )( 983 . 0 ( det 983 . 0 183 . 0 183 . 0 983 . 0 = − − = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = R R R M R D R T = ′ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = θ θ θ θ cos sin sin cos The rotation matrix has the form So θ = 10.5°, as we found earlier for one of the principal angles.
  • 57. 25 ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛− = ′ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = ′ = ′ 6 . 54 0 0 6 . 84 983 . 0 183 . 0 183 . 0 983 . 0 50 25 25 80 983 . 0 183 . 0 183 . 0 983 . 0 D D R M R D T Using the rotation angle of 10.5°, the matrix M (representing the original stress state of the element) can be transformed to matrix D’ (representing the principal stress state). 84.6 MPa 84.6 MPa 54.6 MPa x y 54.6 MPa 10.5o 100.5 o So, the transformation equations, Mohr’s circle, and eigenvectors all give the same result for the principal stress element.
  • 58. 26 ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − − − = ′ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = ′ = ′ 1 1 15 . 4 8 . 68 8 . 68 8 . 25 866 . 0 5 . 0 5 . 0 866 . 0 50 25 25 80 866 . 0 5 . 0 5 . 0 866 . 0 y yx xy x T M M R M R M σ τ τ σ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ° − ° − ° − − ° − = 866 . 0 5 . 0 5 . 0 866 . 0 ) 30 cos( ) 30 sin( ) 30 sin( ) 30 cos( R 25.8 MPa 25.8 MPa 4.15 MPa x y 4.15 MPa 68.8 MPa x1 y1 -30 o Finally, we can use the rotation matrix approach to find the stresses on an inclined element with θ = -30°. Again, the transformation equations, Mohr’s circle, and the stress tensor approach all give the same result.