
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
This paper presents a hybrid data mining approach based on supervised learning and unsupervised learning to identify the closest data patterns in the data base. This technique enables to achieve the maximum accuracy rate with minimal complexity. The proposed algorithm is compared with traditional clustering and classification algorithm and it is also implemented with multidimensional datasets. The implementation results show better prediction accuracy and reliability.
Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.
Be the first to comment