
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
Subspace clustering discovers the clusters embedded in multiple, overlapping subspaces of high
dimensional data. Many significant subspace clustering algorithms exist, each having different
characteristics caused by the use of different techniques, assumptions, heuristics used etc. A comprehensive
classification scheme is essential which will consider all such characteristics to divide subspace clustering
approaches in various families. The algorithms belonging to same family will satisfy common
characteristics. Such a categorization will help future developers to better understand the quality criteria to
be used and similar algorithms to be used to compare results with their proposed clustering algorithms. In
this paper, we first proposed the concept of SCAF (Subspace Clustering Algorithms’ Family).
Characteristics of SCAF will be based on the classes such as cluster orientation, overlap of dimensions etc.
As an illustration, we further provided a comprehensive, systematic description and comparison of few
significant algorithms belonging to “Axis parallel, overlapping, density based” SCAF.
Be the first to like this
Be the first to comment