SlideShare a Scribd company logo
1 of 55
Waveguides
Mr. HIMANSHU DIWAKAR
Assistant Professor
GETGI
JIT 1
JIT 2
Basic waveguides
1. Waveguide
Rectangular waveguide Circular waveguide Coaxial line
Optical waveguide Parallel-plate waveguide
JIT 3
๏ƒ˜ Transverse Electro Magnetic (TEM) wave:
Here both electric and magnetic fields are directed
components. (i.e.) E z = 0 and Hz = 0
๏ƒ˜ Transverse Electric (TE) wave: Here only the electric field is purely transverse to the direction
of propagation and the magnetic field is not purely transverse. (i.e.) E z = 0, Hz โ‰  0
๏ƒ˜ Transverse Magnetic (TM) wave: Here only magnetic field is transverse to the direction of
propagation and the electric field is not purely transverse. (i.e.) E z โ‰  0, Hz = 0.
๏ƒ˜ Hybrid (HE) wave: Here neither electric nor magnetic fields are purely transverse to the
direction of propagation. (i.e.) E z โ‰  0, Hz โ‰  0.
4
Types of Modes
JIT
Transmission line
๏ฑ Voltage applied between conductors(E: vertically between
the conductors)
๏ฑ Interior fields: TEM (Transverse ElectroMagnetic) wave
(wave vector indicates the direction of wave propagation
as well as the direction of power flow)
1. Waveguide
JIT 5
Waveguide
๏ฑ A waveguide is a structure that guides waves, such
as electromagnetic waves or sound waves They enable a signal to
propagate with minimal loss of energy by restricting expansion to
one dimension or two
๏ฑ Zigzag reflection, waveguide mode, cutoff frequency
๏ญ๏ฅ๏ท๏€ฝ๏€ฝ๏€ฝ k|||| du kk
JIT 6
JIT 7
The electric and magnetic wave equations in frequency
domain is given by
๐›ป2
๐ธ = ๐›พ2
๐ธ
๐›ป2
๐ป = ๐›พ2
๐ป
๐›พ2
= ๐‘—๐œ”๐œ‡(๐œŽ + ๐‘—๐œ”๐œ€)
For a loss less dielectric or perfect conductor
๐›พ2
= โˆ’๐œ”2
๐œ‡๐œ€
The above equations are like Helmholtz equations
๐›ป2
๐ธ๐‘ง๐‘  = ๐›พ2
๐ธ๐‘ง๐‘ 
Let ๐ธ๐‘ง๐‘ =X(x).Y(y).Z(z)
Be the solution of above equations
JIT 8
Contโ€™d
So separation equation
-๐‘˜ ๐‘ฅ
2
โˆ’๐‘˜ ๐‘ฆ
2
โˆ’๐‘˜ ๐‘ง
2
= ๐›พ2
On Solving the above equations
๐ธ๐‘ง๐‘  = ๐ด. sin ๐‘˜ ๐‘ฅ. ๐‘ฅ + ๐ต. cos(๐‘˜ ๐‘ฅ. ๐‘ฅ) ร— ๐ถ. sin ๐‘˜ ๐‘ฆ. ๐‘ฆ + ๐ท. cos(๐‘˜ ๐‘ฆ. ๐‘ฆ)
ร— ๐ธ. sin ๐‘˜ ๐‘ง. ๐‘ง + ๐น. cos(๐‘˜ ๐‘ง. ๐‘ง)
The propagation of wave in guide is conventionally assumed in +ve Z
direction.
JIT 9
Here the propagation constant ๐›พ๐‘” in guide differs from intrinsic
propagation constant ๐›พ
Let ๐›พ๐‘”
2 = ๐›พ 2 + ๐‘˜ ๐‘ฅ
2
+ ๐‘˜ ๐‘ฆ
2
And ๐›พ๐‘”
2
= ๐›พ 2
+ ๐‘˜ ๐‘
2
Where ๐‘˜ ๐‘= ๐‘˜ ๐‘ฅ
2
+ ๐‘˜ ๐‘ฆ
2
is cutoff wave number.
For a lossless dielectric ๐›พ2 = โˆ’๐œ”2 ๐œ‡๐œ€
So ๐›พ๐‘”= ยฑ๐‘— ๐œ”2 ๐œ‡๐œ€ โˆ’ ๐‘˜ ๐‘
2
So there are three casesโ€ฆ.
JIT 10
Contโ€™d
Case 1
If ๐œ”2
๐œ‡๐œ€ = ๐‘˜ ๐‘
2
๐›พ๐‘”= 0 no propagation
This is critical condition for cutoff propagation
๐œ”๐‘=
1
๐œ‡๐œ–
๐‘˜ ๐‘ฅ
2
+ ๐‘˜ ๐‘ฆ
2
๐‘“๐‘=
1
2๐œ‹ ๐œ‡๐œ–
๐‘˜ ๐‘ฅ
2
+ ๐‘˜ ๐‘ฆ
2
JIT 11
JIT 12
Case 2
If ๐œ”2
๐œ‡๐œ€ > ๐‘˜ ๐‘
2
๐›พ๐‘”= ยฑ๐‘—๐›ฝ๐‘” = ยฑ๐‘—๐œ” ๐œ‡๐œ– 1 โˆ’
๐‘“๐‘
๐‘“
2
This shows that operating frequency should be greater than critical
frequency to propagate the wave in wave in wave guide
JIT 13
Case 3
If ๐œ”2
๐œ‡๐œ€ < ๐‘˜ ๐‘
2
๐›พ๐‘”= ยฑ๐›ผ ๐‘” = ยฑ๐œ” ๐œ‡๐œ–
๐‘“๐‘
๐‘“
2
โˆ’ 1
This shows that if operating frequency is below the cutoff frequency the
wave will decay exponentially wrt a factor -๐›ผ ๐‘” ๐‘ง and there will no wave
propagation
There for the solution of Helmholtz equation in rectangular co-ordinates
is given by
๐ธ๐‘ง๐‘  = ๐ด. sin ๐‘˜ ๐‘ฅ. ๐‘ฅ + ๐ต. cos(๐‘˜ ๐‘ฅ. ๐‘ฅ) ร— ๐ถ. sin ๐‘˜ ๐‘ฆ. ๐‘ฆ + ๐ท. cos(๐‘˜ ๐‘ฆ. ๐‘ฆ)
ร— ๐‘’โˆ’๐‘—๐›ฝ
Rectangular waveguide
๏ƒพ ๏ฑ WR (Waveguide Rectangular) series
- EIA (Electronic Industry Association) designation
WR-62
- Size: 1.58 cmx0.79 cm
- Recommended range: 12.4-18.0 GHz
- Cutoff: 9.486 GHz
2/
cm/10054262inch/10062
ab
.a
๏‚ป
๏‚ด๏€ฝ๏€ฝ
๏ƒพ
JIT 14
Waveguide modes
๏ฑ TE (Transverse Electric) mode
- E parallel to the transverse plane of the waveguide
- In waveguide Wave propagates in +ve Z direction
- TEmn in characterized by Ez=0
- In other words the z component of magnetic field must exist
in order to have energy transmission in the guide.
๏ฑ TM (Transverse Magnetic) mode
- H is within the transverse plane of the waveguide
JIT 15
TE modes in rectangular waveguides
๐›ป2 ร— ๐ธ๐‘  = โˆ’๐‘—๐œ”๐œ‡๐ป๐‘ 
๐›ป2 ร— ๐ป๐‘  = โˆ’๐‘—๐œ”๐œ‡๐ธ๐‘ 
Therefore the magnetic field in +ve Z direction ie. The solution of above
partial differential equations
H0z is the amplitude constant, so field equations in rectangular
waveguides
JIT 16
mode:)sin()sin(),(
mode:)cos()cos(),(
mn
zj
nmz
mn
zj
nmz
TMeybxayxE
TEeybxayxH
mn
mn
๏ข
๏ข
๏€ญ
๏€ญ
๏€ฝ
๏€ฝ
222
and,,where nmmnnm bak
b
n
b
a
m
a ๏€ญ๏€ญ๏€ฝ๏€ฝ๏€ฝ ๏ข
๏ฐ๏ฐ
zj
nmzz
mn
eybxaHH ๏ข๏€ญ
๏€ฝ )cos()cos(0
Utilization
Transmission of power
3. Waveguide
JIT 17
TE and TM modes
๏ƒพ ๏ฑ Hz and Ez fields: TE and TM modes
๏ฑ Non-TEM modes: Hz = Ez = 0
๏ฑ Concept of a dominant mode: TE10 mode
mode:)sin()sin(),(
mode:)cos()cos(),(
mn
zj
nmz
mn
zj
nmz
TMeybxayxE
TEeybxayxH
mn
mn
๏ข
๏ข
๏€ญ
๏€ญ
๏€ฝ
๏€ฝ
Boundary condition enforcements
: PEC (Perfect Electric Conductor)
222
and,,where nmmnnm bak
b
n
b
a
m
a ๏€ญ๏€ญ๏€ฝ๏€ฝ๏€ฝ ๏ข
๏ฐ๏ฐ
3. Waveguide
JIT 18
Cutoff wave no kc = ๐‘˜ ๐‘ฅ
2
+ ๐‘˜ ๐‘ฆ
2
Where ๐‘˜ ๐‘ฅ=๐‘Ž ๐‘š and ๐‘˜ ๐‘ฆ=๐‘ ๐‘›
kc =
๐‘š๐œ‹
๐‘Ž
2
+
๐‘›๐œ‹
๐‘
2
= ๐œ”๐‘ ๐œ‡๐œ€
fc =
1
๐œ‡๐œ€
๐‘š๐œ‹
๐‘Ž
2
+
๐‘›๐œ‹
๐‘
2
Propagation constant as discussed earlier
๐›พ๐‘”= ยฑ๐‘— ๐œ”2 ๐œ‡๐œ€ โˆ’ ๐‘˜ ๐‘
2
So from case-1 and case-2 propagation constant or phase constant
๐›ฝ๐‘” = ๐œ” ๐œ‡๐œ– 1 โˆ’
๐‘“๐‘
๐‘“
2
JIT 19
๏ƒ˜And attenuation constant
๐›ผ ๐‘” = ๐œ” ๐œ‡๐œ–
๐‘“๐‘
๐‘“
2
โˆ’ 1
๏ƒ˜We know that ๐‘“๐‘ =
๐‘
๐œ† ๐‘
๐‘Ž๐‘›๐‘‘ ๐œ† ๐‘ =
๐‘
๐‘“๐‘
๏ƒ˜So cutoff frequency
๐œ† ๐‘ =
๐‘
๐‘
2๐œ‹
๐‘š
๐‘Ž
2
+
๐‘›
๐‘
2
๐œ† ๐‘ =
2
๐‘š
๐‘Ž
2
+
๐‘›
๐‘
2
JIT 20
Dominant mode: TE10 mode
๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒจ
๏ƒฆ
๏€ญ๏€ฝ
a
k
๏ฐ
๏ข 2
10
.0and1where
)/cos(
)cos()cos(),(
10
10
01
๏€ฝ๏€ฝ
๏€ฝ
๏€ฝ
๏€ญ
๏€ญ
nm
eax
eybxayxH
zj
zj
z
๏ข
๏ข
๏ฐ
๏ƒพ
3. Waveguide
JIT 21
Parallel-plate waveguide
2. Parallel-plate
Phase front: out of phase
Phase front: in phase (guided mode)๏ƒพ
JIT 22
Wavenumbers
22
mm kk ๏€ญ๏€ฝ๏ข
mediumcnonmagnetiandLossless
c
n
c
k r
rooo
๏ท๏ฅ๏ท
๏ฅ๏ฅ๏ญ๏ท๏ฅ๏ญ๏ท ๏€ฝ๏€ฝ๏€ฝ๏€ฝ
indexrefrectiveaiswheren
2. Parallel-plate
JIT 23
๏ฐ๏ฆ๏ฆ mdkdk mm 2๏€ฝ๏€ซ๏€ซ๏€ซ
d
m
km
๏ฐ
๏€ฝ
Reflections
2. Parallel-plate
JIT 24
0๏€ฝ๏ฆ๏ฐ๏ฆ ๏€ฝ
TE and TM modes
2. Parallel-plate
TM modeTE mode
JIT 25
Cutoff frequency
22
22
1111
11
2
coscoscoscoscos
๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒจ
๏ƒฆ
๏€ญ๏€ฝ๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒจ
๏ƒฆ
๏€ญ๏€ฝ๏€ญ๏€ฝ
๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒจ
๏ƒฆ
๏€ฝ๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒจ
๏ƒฆ
๏€ฝ๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒจ
๏ƒฆ
๏€ฝ๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒจ
๏ƒฆ
๏€ฝ๏‚ฎ๏€ฝ ๏€ญ๏€ญ๏€ญ๏€ญ
nd
cm
k
kd
m
kkk
nd
m
nd
cm
kd
m
k
k
kk
mm
m
mmm
๏ท
๏ฐ๏ฐ
๏ข
๏ฌ
๏ท
๏ฐ๏ฐ
๏ฑ๏ฑ
nd
cm
m cm
๏ฐ
๏ท ๏€ฝ:mode,forfrequencycutoff
2
1 ๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒจ
๏ƒฆ
๏€ญ๏€ฝ
๏ท
๏ท๏ท
๏ข cm
m
c
n
propagate.notdoesmodetheandimaginaryis,If
propagate.willmodetheandconstantphasevalued-real,If
mcm
mcm
๏ข๏ท๏ท
๏ข๏ท๏ท
๏€ผ
๏€พ
2. Parallel-plate
JIT 26
m
ndc
cm
cm
22
:hwavelengtcutoff ๏€ฝ๏€ฝ
๏ท
๏ฐ
๏ฌ
2
1
2
๏ƒท๏ƒท
๏ƒธ
๏ƒถ
๏ƒง๏ƒง
๏ƒจ
๏ƒฆ
๏€ญ๏€ฝ
cm
m
n
๏ฌ
๏ฌ
๏ฌ
๏ฐ
๏ข
Cutoff wavelength
2. Parallel-plate
JIT 27
TE mode representation
๏€จ ๏€ฉ ๏€จ ๏€ฉ
๏€จ ๏€ฉ
waves.planedownwardandupwardtheof
ionsuperpositthefromresultingpatternceinterferentheisfieldmodeTEThe
cutoff)abovemode(TE
)cos(sin)Re(),(
sinsin2)(
,and
'
0
'
000
r
0
r
0
ztxkEeEtzE
exkEexkjEeeeEE
zxkk
eEeEE
mm
tj
ysy
zj
m
zj
m
zjxjkxjk
ys
zxzmxmzmxm
jj
ys
mmmmm
๏ข๏ท
๏ข๏ข
๏ท
๏ข๏ข๏ข
๏€ญ๏€ฝ๏€ฝ
๏€ฝ๏€ฝ๏€ญ๏€ฝ
๏€ซ๏€ฝ๏€ซ๏€ญ๏€ฝ๏€ซ๏€ฝ
๏€ญ๏€ฝ
๏€ญ๏€ญ๏€ญ๏€ญ
๏‚ท๏€ญ๏‚ท๏€ญ
aaraakaak du
kk du
2. Parallel-plate
JIT 28
๏€จ ๏€ฉ ๏€จ ๏€ฉ
)cutoffbelowmodeTE(
)cos(sin),(andsin
1
2
1,If
'
0
'
0
22
texkEtzEexkEE
n
c
n
j
z
my
z
mys
cm
cmcm
cm
mmcm
mm
๏ท
๏ฌ
๏ฌ
๏ฌ
๏ฐ
๏ท
๏ท๏ท
๏ข๏ก๏ท๏ท
๏ก๏ก ๏€ญ๏€ญ
๏€ฝ๏€ฝ
๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒจ
๏ƒฆ
๏€ญ๏€ฝ๏ƒท๏ƒท
๏ƒธ
๏ƒถ
๏ƒง๏ƒง
๏ƒจ
๏ƒฆ
๏€ญ๏€ฝ๏€ฝ๏€ผ
TE mode representation
infinity.approachesas90gapproachin
increases,anglewavethe,decreased)isor(cutoffbeyondincreasedisAs
guide.down theprogressforwardnomakingarethey
forth;andbackreflectingjustarewavesplanetheand0),(cutoffAt
o
cm
๏ท
๏ฌ๏ท
๏ฑ๏ท๏ท ๏€ฝ๏€ฝ m
cm
cm
m
๏ฌ
๏ฌ
๏ท
๏ท
๏ฑ ๏€ฝ๏€ฝcos
2. Parallel-plate
JIT 29
Phase and group velocity
mm
c
n
k ๏ฑ
๏ท
๏ฑ๏ข sinsinm ๏€ฝ๏€ฝ
m
pm
n
c
v
๏ฑ๏ข
๏ท
sin
velocityPhase
m
๏€ฝ๏€ฝ
m
cm
m
gm
n
c
n
c
d
d
v ๏ฑ
๏ท
๏ท
๏ข
๏ท
sin1:velocityGroup
2
๏€ฝ๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒจ
๏ƒฆ
๏€ญ๏€ฝ๏€ฝ
.relativityspecialaofprincipletheenot violat:
mediumin thelightofspeedtheexceedmayThis
2. Parallel-plate
JIT 30
Field analysis
cnkk /where22
๏ท๏€ฝ๏€ญ๏€ฝ๏ƒ‘ ss EE
):variation-,0(0
)ofcomponenta(onlymodesTE
2
2
2
2
2
2
2
2
2
zj
ysysysysys
m
ezE
y
EkE
z
E
y
E
x
y
๏ข๏€ญ
๏€ฝ
๏‚ถ
๏‚ถ
๏€ฝ๏€ซ
๏‚ถ
๏‚ถ
๏€ซ
๏‚ถ
๏‚ถ
๏€ซ
๏‚ถ
๏‚ถ
E
zj
mys
m
exfEE ๏ข๏€ญ
๏€ฝ )(0
0)()(
)( 2
2
2
2
๏€ฝ๏€ญ๏€ซ xfk
dx
xfd
mm
m
๏ข 0)(
)(
, 2
2
2
22
2 ๏€ฝ๏€ซ๏€ฝ๏€ญ xfk
dx
xfd
kk mm
m
mm๏ข
๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒจ
๏ƒฆ
๏€ฝ๏‚ฎ๏€ฝ๏€ฝ
๏€ซ๏€ฝ
d
xm
xfdxxE
xkxkxf
my
mmm
๏ฐ
sin)(.and0atzerobemust:BC
),sin()cos()(
๏ƒพ
๏ƒพ
2. Parallel-plate
JIT 31
Characteristics of TE mode
cavityresonantldimensionaOne
2
sinsincutoff,At
2
2
cutoff,At/2and0
.2isshiftphasetrip-roundNet
walls.conductingebetween thdownandupbouncessimplywaveThe
zero.isguidein theincidenceofanglewaveplanethecutoff,At
00 ๏ƒท๏ƒท
๏ƒธ
๏ƒถ
๏ƒง๏ƒง
๏ƒจ
๏ƒฆ
๏€ฝ๏€ฝ๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒจ
๏ƒฆ
๏€ฝ
๏€ฝ๏ƒž๏€ฝ๏ƒž๏€ฝ๏€ฝ๏€ฝ
cm
ysys
cm
cm
cmmm
xn
EE
d
xm
EE
n
m
d
n
d
m
nkk
m
๏ฌ
๏ฐ๏ฐ
๏ฌ
๏ฌ
๏ฐ๏ฐ
๏ฌ๏ฐ๏ข
๏ฐ
zj
ys
m
e
d
xm
EE ๏ข๏ฐ ๏€ญ
๏ƒท
๏ƒธ
๏ƒถ
๏ƒง
๏ƒจ
๏ƒฆ
๏€ฝ sin0๏ƒพ
2. Parallel-plate
JIT 32
Field representations
x
zj
mmz
zj
mmx
ys
z
ys mm
exkEjexkEk
z
E
x
E
y
j
zx
aaaaE
E
HE
H
s
s
ss
s
๏ข๏ข
๏ข
๏ท๏ญ
๏€ญ๏€ญ
๏€ซ๏€ฝ
๏‚ถ
๏‚ถ
๏€ญ
๏‚ถ
๏‚ถ
๏€ฝ๏‚ด๏ƒ‘
๏€ญ๏€ฝ๏‚ด๏ƒ‘
)sin()cos(
,ofcomponentaOnly
modeTEaforofcomponentsand
00
zj
m
m
zs
zj
m
m
xs
mm
exkE
k
jHexkEH ๏ข๏ข
๏ท๏ญ๏ท๏ญ
๏ข ๏€ญ๏€ญ
๏€ฝ๏€ญ๏€ฝ )cos(,)sin( 00๏ƒพ
2. Parallel-plate
JIT 33
๏€จ ๏€ฉ ๏€จ ๏€ฉ
๏€จ ๏€ฉ1cossinand
)(cos)(sin||
||
22222
00222/1220
**
๏€ฝ๏€ซ๏€ฝ๏€ซ
๏€ฝ๏€ฝ๏€ซ๏€ซ๏€ฝ
๏€ซ๏€ฝ๏‚ท๏€ฝ
AAkk
EkE
xkxkk
E
HHHH
mm
mmmm
zszsxsxsxs
*
๏ข
๏จ๏ท๏ญ
๏ข
๏ท๏ญ
๏‘
s
sss
H
HHH
Intrinsic impedance
๏ƒพ
2. Parallel-plate
JIT 34
Circular waveguide
๏ƒพ ๏ฑ WC (Waveguide Circular) series
๏ฑ Hz and Ez fields: TE and TM modes
3. Waveguide
JIT 35
JIT 36
๏ƒ˜ A microstrip is constructed with a flat conductor suspended over a ground
plane. The conductor and ground plane are separated by a dielectric.
๏ƒ˜ The surface microstrip transmission line also has free space (air) as the
dielectric above the conductor.
๏ƒ˜ This structure can be built in materials other than printed circuit boards,
but will always consist of a conductor separated from a ground plane by
some dielectric material.
Microstrip transmission line
4. Tx line
Circular waveguide
๏ƒ˜Circular waveguides offer implementation advantages
over rectangular waveguide in that installation is much simpler.
๏ƒ˜When forming runs for turns and offsets - particularly when large radii
are involved - and the wind loading is less on a round cross-section,
meaning towers do not need to be as robust.
JIT 37
For a circular waveguide of radius a,
we can perform the same sequence
of steps in cylindrical coordinates as
we did in rectangular coordinates to
find the transverse field components
in terms of the longitudinal (i.e. Ez,
Hz) components.
JIT 38
The scalar Helmholtz equation in cylindrical co-ordinate is given by
Using the method of separation of variables, the solution of above equation
is assumed
๐›น = ๐‘… ๐‘Ÿ . โˆ… โˆ… . ๐‘ ๐‘ง โˆ’โˆ’โˆ’โˆ’ โˆ’(1)
Substituting (1) into (a) and solving this equation for
๐‘… ๐‘Ÿ , โˆ… โˆ… ๐‘Ž๐‘›๐‘‘ ๐‘ ๐‘ง
So here also
๐‘˜ ๐‘
2
+ ๐›พ2
= ๐›พ๐‘”
2
This is also called as characteristic equation of Besselโ€™s equations.
For a lossless guide
๐›ฝ๐‘” = ยฑ ๐œ”2 ๐œ‡๐œ– โˆ’ ๐‘˜ ๐‘
2
JIT 39
(a)
The total solution of Helmholtz equation in cylindrical co-ordinate
JIT 40
TE Modes in Circular Waveguides
It is commonly assumed that the waves in a circular waveguide are
propagating in the positive z direction. Here in this mode ๐ธ๐‘ง = 0, so
๐ธ ๐‘ฅ, ๐ธ ๐‘ฆ, ๐ป ๐‘ฅ, ๐ป ๐‘ฆ ๐‘Ž๐‘›๐‘‘ ๐ป๐‘ง.
After substituting boundary conditions the final solution is
๐›น = ๐›น0. ๐ฝ ๐‘› ๐‘˜ ๐‘. ๐‘Ÿ cos ๐‘›โˆ… . ๐‘’โˆ’๐‘—๐›ฝ ๐‘” ๐‘ง
For a lossless dielectric, Maxwellโ€™s equations
๐›ป ร— ๐ธ = โˆ’๐‘—๐œ”๐œ‡๐ป๐‘ 
๐›ป ร— ๐ป = ๐‘—๐œ”๐œ‡๐ธ๐‘ 
JIT 41
In cylindrical co-ordinates, the components of E and
H fields can be expressed as
JIT 42
When the differentiation ๐œ•/๐œ•๐‘ง is replaced by (โˆ’๐‘—๐›ฝ๐‘”)and the z
component ๐ธ๐‘ง by zero, the TE mode equations in terms of ๐ป๐‘งin
circular waveguide are expressed as ๐ธ ๐‘ = 0
JIT 43
Where ๐‘˜ ๐‘
2
= ๐œ”2 ๐œ‡๐œ– โˆ’ ๐›ฝ๐‘”
The permissible value of kc can be written as
๐‘˜ ๐‘ =
๐‘‹ ๐‘›๐‘
โ€ฒ
๐‘Ž
Where ๐‘‹ ๐‘›๐‘
โ€ฒ
is a constant
And from above table ๐‘‹ ๐‘›๐‘
โ€ฒ
=1.841 for TM11 MODE
JIT 44
The final equations for the E and H fields can be
written as
JIT 45
๏ƒ˜Where Zg = Er/ ๐ปโˆ…, = - ๐ธโˆ…/ Hr has been replaced for the wave
impedance in the guide and where n = 0,1,2,3,... And p = 1, 2, 3, 4,....
๏ƒ˜The first subscript n represents the number of full cycles of field
variation in one revolution through 2๐œ‹ rad of โˆ….
๏ƒ˜The second subscript p indicates the number of zeroes of ๐ธโˆ….
๏ƒ˜The mode propagation constant is determined by
๐›ฝ๐‘” = ยฑ ๐œ”2 ๐œ‡๐œ– โˆ’
๐‘‹ ๐‘›๐‘
โ€ฒ
๐‘Ž
JIT 46
The cutoff wave number of a mode is that for which the mode
propagation constant vanishes. Hence
๐‘˜ ๐‘ =
๐‘‹ ๐‘›๐‘
โ€ฒ
๐‘Ž
= ๐œ”๐‘ ๐œ‡๐œ–
So
๐‘“๐‘ =
๐‘‹ ๐‘›๐‘
โ€ฒ
2๐œ‹๐‘Ž ๐œ‡๐œ–
And the phase velocity for TE modes is
๐‘ฃ๐‘” =
๐œ”
๐›ฝ๐‘”
=
๐‘ฃ ๐‘
1 โˆ’
๐‘“๐‘
๐‘“
2
๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘ฃ ๐‘ =
1
๐œ‡๐œ–
=
๐‘
๐œ‡ ๐‘Ÿ ๐œ– ๐‘Ÿ
JIT 47
The wavelength and wave impedance for TE modes in a circular guide
are given, respectively, by
JIT 48
๐’ ๐’ˆ =
๐‘ฌ ๐’™
๐‘ฏ ๐’š
=
TM Modes in Circular Waveguides
The TMnp modes in a circular guide are characterized by Hz = 0.
However, the z component of the electric field E, must exist in order to
have energy transmission in the guide.
Consequently, the Helmholtz equation for Ez in a circular waveguide is
given by
Its solution is given in Eq.
Which is subject to the given boundary conditions.
JIT 49
(A)
JIT 50
Similarly
On differentiating equation (A) wrt z and substituting the result in
above equations yield the field equations of TMnp modes in a
circular waveguide:
JIT 51
JIT 52
Some of the TM-mode characteristic equations in the circular guide
are identical to those of the TE mode, but some are different. For
convenience, all are shown here:
JIT 53
It should be noted that the dominant mode, or the mode
of lowest cutoff frequency in a circular waveguide, is
the mode of TEnp that has the smallest value of the
product, kc .a = 1. 841, as shown in above Table.
JIT 54
JIT 55
Thank you

More Related Content

What's hot

Microwave Engineering Lecture Notes
Microwave Engineering Lecture NotesMicrowave Engineering Lecture Notes
Microwave Engineering Lecture NotesFellowBuddy.com
ย 
wave-guides
wave-guideswave-guides
wave-guidesATTO RATHORE
ย 
Waveguide for Microwave Communication
Waveguide for Microwave CommunicationWaveguide for Microwave Communication
Waveguide for Microwave CommunicationMd. Shoheluzzaman
ย 
Pulse Modulation ppt
Pulse Modulation pptPulse Modulation ppt
Pulse Modulation pptsanjeev2419
ย 
ppt-of-waveguide
ppt-of-waveguideppt-of-waveguide
ppt-of-waveguideATTO RATHORE
ย 
FUNDAMENTAL PARAMETERS OF ANTENNA
FUNDAMENTAL PARAMETERS OF ANTENNAFUNDAMENTAL PARAMETERS OF ANTENNA
FUNDAMENTAL PARAMETERS OF ANTENNAEngr KALIM ULLAH KHAN
ย 
Microstrip TL 1st 3
Microstrip TL 1st 3Microstrip TL 1st 3
Microstrip TL 1st 3HIMANSHU DIWAKAR
ย 
Solved problems in waveguides
Solved problems in waveguidesSolved problems in waveguides
Solved problems in waveguidessubhashinivec
ย 
Power Divider
Power DividerPower Divider
Power DividerYong Heui Cho
ย 
Transmission lines
Transmission linesTransmission lines
Transmission linesSuneel Varma
ย 
BASIC CONCEPTS OF TRANSMISSION LINES & WAVEGUIDES ForC 18 DECE unit 1, SBTET
BASIC CONCEPTS OF TRANSMISSION LINES  &  WAVEGUIDES ForC 18 DECE unit 1, SBTETBASIC CONCEPTS OF TRANSMISSION LINES  &  WAVEGUIDES ForC 18 DECE unit 1, SBTET
BASIC CONCEPTS OF TRANSMISSION LINES & WAVEGUIDES ForC 18 DECE unit 1, SBTETjanakiravi
ย 
Introduction to rf and microwave circuits
Introduction to rf and microwave circuitsIntroduction to rf and microwave circuits
Introduction to rf and microwave circuitsShankar Gangaju
ย 
Transmission line, single and double matching
Transmission line, single and double matchingTransmission line, single and double matching
Transmission line, single and double matchingShankar Gangaju
ย 
Optical Fiber Communication Part 3 Optical Digital Receiver
Optical Fiber Communication Part 3 Optical Digital ReceiverOptical Fiber Communication Part 3 Optical Digital Receiver
Optical Fiber Communication Part 3 Optical Digital ReceiverMadhumita Tamhane
ย 

What's hot (20)

Microwave Engineering Lecture Notes
Microwave Engineering Lecture NotesMicrowave Engineering Lecture Notes
Microwave Engineering Lecture Notes
ย 
wave-guides
wave-guideswave-guides
wave-guides
ย 
Waveguide for Microwave Communication
Waveguide for Microwave CommunicationWaveguide for Microwave Communication
Waveguide for Microwave Communication
ย 
Pulse Modulation ppt
Pulse Modulation pptPulse Modulation ppt
Pulse Modulation ppt
ย 
Waveguide
WaveguideWaveguide
Waveguide
ย 
ppt-of-waveguide
ppt-of-waveguideppt-of-waveguide
ppt-of-waveguide
ย 
FUNDAMENTAL PARAMETERS OF ANTENNA
FUNDAMENTAL PARAMETERS OF ANTENNAFUNDAMENTAL PARAMETERS OF ANTENNA
FUNDAMENTAL PARAMETERS OF ANTENNA
ย 
Mode ppt.bmk
Mode ppt.bmkMode ppt.bmk
Mode ppt.bmk
ย 
Microstrip TL 1st 3
Microstrip TL 1st 3Microstrip TL 1st 3
Microstrip TL 1st 3
ย 
Solved problems in waveguides
Solved problems in waveguidesSolved problems in waveguides
Solved problems in waveguides
ย 
Power Divider
Power DividerPower Divider
Power Divider
ย 
Transmission lines
Transmission linesTransmission lines
Transmission lines
ย 
Antenna (2)
Antenna (2)Antenna (2)
Antenna (2)
ย 
BASIC CONCEPTS OF TRANSMISSION LINES & WAVEGUIDES ForC 18 DECE unit 1, SBTET
BASIC CONCEPTS OF TRANSMISSION LINES  &  WAVEGUIDES ForC 18 DECE unit 1, SBTETBASIC CONCEPTS OF TRANSMISSION LINES  &  WAVEGUIDES ForC 18 DECE unit 1, SBTET
BASIC CONCEPTS OF TRANSMISSION LINES & WAVEGUIDES ForC 18 DECE unit 1, SBTET
ย 
Reflection and Transmission coefficients in transmission line
Reflection and Transmission coefficients in transmission lineReflection and Transmission coefficients in transmission line
Reflection and Transmission coefficients in transmission line
ย 
Introduction to rf and microwave circuits
Introduction to rf and microwave circuitsIntroduction to rf and microwave circuits
Introduction to rf and microwave circuits
ย 
Transmission line, single and double matching
Transmission line, single and double matchingTransmission line, single and double matching
Transmission line, single and double matching
ย 
FM Demodulator
FM DemodulatorFM Demodulator
FM Demodulator
ย 
ASk,FSK,PSK
ASk,FSK,PSKASk,FSK,PSK
ASk,FSK,PSK
ย 
Optical Fiber Communication Part 3 Optical Digital Receiver
Optical Fiber Communication Part 3 Optical Digital ReceiverOptical Fiber Communication Part 3 Optical Digital Receiver
Optical Fiber Communication Part 3 Optical Digital Receiver
ย 

Similar to Microwave waveguides 1st 1

Microwave PPT.ppt
Microwave PPT.pptMicrowave PPT.ppt
Microwave PPT.pptssusercc6e98
ย 
Transmissionline
TransmissionlineTransmissionline
TransmissionlinePankajPalta2
ย 
Waveguides12
Waveguides12Waveguides12
Waveguides12Gaurav Yogesh
ย 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineeringPriyanka Anni
ย 
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxNotes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxDibyadipRoy1
ย 
ch09.pdf
ch09.pdfch09.pdf
ch09.pdfAmir830050
ย 
Transmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxTransmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxRituparna Mitra
ย 
Dispersion equation for groove nonradiative dielectric waveguide
Dispersion equation for groove nonradiative dielectric waveguideDispersion equation for groove nonradiative dielectric waveguide
Dispersion equation for groove nonradiative dielectric waveguideYong Heui Cho
ย 
Unit22 maxwells equation
Unit22 maxwells equationUnit22 maxwells equation
Unit22 maxwells equationAmit Rastogi
ย 
Three Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek AhlawatThree Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek AhlawatVIVEK AHLAWAT
ย 
Mapping WGMs of erbium doped glass microsphere using near-field optical probe...
Mapping WGMs of erbium doped glass microsphere using near-field optical probe...Mapping WGMs of erbium doped glass microsphere using near-field optical probe...
Mapping WGMs of erbium doped glass microsphere using near-field optical probe...NuioKila
ย 
Lecture 09 em transmission lines
Lecture 09   em transmission linesLecture 09   em transmission lines
Lecture 09 em transmission linesAmit Rastogi
ย 
finite element method for waveguide
finite element method for waveguidefinite element method for waveguide
finite element method for waveguideAnuj012
ย 
Anuj 10mar2016
Anuj 10mar2016Anuj 10mar2016
Anuj 10mar2016Anuj012
ย 

Similar to Microwave waveguides 1st 1 (20)

UNIT I.ppt
UNIT I.pptUNIT I.ppt
UNIT I.ppt
ย 
Lect1
Lect1Lect1
Lect1
ย 
emtl
emtlemtl
emtl
ย 
Lect2.ppt
Lect2.pptLect2.ppt
Lect2.ppt
ย 
Microwave PPT.ppt
Microwave PPT.pptMicrowave PPT.ppt
Microwave PPT.ppt
ย 
Transmissionline
TransmissionlineTransmissionline
Transmissionline
ย 
Tem
TemTem
Tem
ย 
Waveguides12
Waveguides12Waveguides12
Waveguides12
ย 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineering
ย 
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxNotes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
ย 
ch09.pdf
ch09.pdfch09.pdf
ch09.pdf
ย 
Transmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxTransmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptx
ย 
Dispersion equation for groove nonradiative dielectric waveguide
Dispersion equation for groove nonradiative dielectric waveguideDispersion equation for groove nonradiative dielectric waveguide
Dispersion equation for groove nonradiative dielectric waveguide
ย 
maxwells equation
 maxwells equation maxwells equation
maxwells equation
ย 
Unit22 maxwells equation
Unit22 maxwells equationUnit22 maxwells equation
Unit22 maxwells equation
ย 
Three Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek AhlawatThree Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek Ahlawat
ย 
Mapping WGMs of erbium doped glass microsphere using near-field optical probe...
Mapping WGMs of erbium doped glass microsphere using near-field optical probe...Mapping WGMs of erbium doped glass microsphere using near-field optical probe...
Mapping WGMs of erbium doped glass microsphere using near-field optical probe...
ย 
Lecture 09 em transmission lines
Lecture 09   em transmission linesLecture 09   em transmission lines
Lecture 09 em transmission lines
ย 
finite element method for waveguide
finite element method for waveguidefinite element method for waveguide
finite element method for waveguide
ย 
Anuj 10mar2016
Anuj 10mar2016Anuj 10mar2016
Anuj 10mar2016
ย 

More from HIMANSHU DIWAKAR

741 Integrated circuit (IC)
741 Integrated circuit (IC)741 Integrated circuit (IC)
741 Integrated circuit (IC)HIMANSHU DIWAKAR
ย 
Radio wave propagation
Radio wave propagationRadio wave propagation
Radio wave propagationHIMANSHU DIWAKAR
ย 
Current mirrors (using BJT & MOSFET)
Current mirrors (using BJT & MOSFET)Current mirrors (using BJT & MOSFET)
Current mirrors (using BJT & MOSFET)HIMANSHU DIWAKAR
ย 
Phase Lock Loop (PLL)
Phase Lock Loop (PLL)Phase Lock Loop (PLL)
Phase Lock Loop (PLL)HIMANSHU DIWAKAR
ย 
Waveform genrators (comparators schmitt trigger)
Waveform genrators (comparators schmitt trigger)Waveform genrators (comparators schmitt trigger)
Waveform genrators (comparators schmitt trigger)HIMANSHU DIWAKAR
ย 
555 timer & applications
555 timer & applications555 timer & applications
555 timer & applicationsHIMANSHU DIWAKAR
ย 
MOS transistor 13
MOS transistor 13MOS transistor 13
MOS transistor 13HIMANSHU DIWAKAR
ย 
MOSFET fabrication 12
MOSFET fabrication 12MOSFET fabrication 12
MOSFET fabrication 12HIMANSHU DIWAKAR
ย 
Attenuators and phase shifters 24
Attenuators and phase shifters 24Attenuators and phase shifters 24
Attenuators and phase shifters 24HIMANSHU DIWAKAR
ย 
Microwave propagation in ferrites 23
Microwave propagation in ferrites 23Microwave propagation in ferrites 23
Microwave propagation in ferrites 23HIMANSHU DIWAKAR
ย 
Microwave linear beam 31
Microwave linear beam 31Microwave linear beam 31
Microwave linear beam 31HIMANSHU DIWAKAR
ย 
Microwave hybrid circuits 2nd 1
Microwave hybrid circuits 2nd 1Microwave hybrid circuits 2nd 1
Microwave hybrid circuits 2nd 1HIMANSHU DIWAKAR
ย 
Microwave cavity 1st 4
Microwave cavity 1st 4Microwave cavity 1st 4
Microwave cavity 1st 4HIMANSHU DIWAKAR
ย 
Fourier transforms of discrete signals (DSP) 5
Fourier transforms of discrete signals (DSP) 5Fourier transforms of discrete signals (DSP) 5
Fourier transforms of discrete signals (DSP) 5HIMANSHU DIWAKAR
ย 
The discrete fourier transform (dsp) 4
The discrete fourier transform  (dsp) 4The discrete fourier transform  (dsp) 4
The discrete fourier transform (dsp) 4HIMANSHU DIWAKAR
ย 
Discrete time filter design by windowing 3
Discrete time filter design by windowing 3Discrete time filter design by windowing 3
Discrete time filter design by windowing 3HIMANSHU DIWAKAR
ย 
Design of infinite impulse response digital filters 2
Design of infinite impulse response digital filters 2Design of infinite impulse response digital filters 2
Design of infinite impulse response digital filters 2HIMANSHU DIWAKAR
ย 

More from HIMANSHU DIWAKAR (20)

741 Integrated circuit (IC)
741 Integrated circuit (IC)741 Integrated circuit (IC)
741 Integrated circuit (IC)
ย 
Radio wave propagation
Radio wave propagationRadio wave propagation
Radio wave propagation
ย 
Current mirrors (using BJT & MOSFET)
Current mirrors (using BJT & MOSFET)Current mirrors (using BJT & MOSFET)
Current mirrors (using BJT & MOSFET)
ย 
Phase Lock Loop (PLL)
Phase Lock Loop (PLL)Phase Lock Loop (PLL)
Phase Lock Loop (PLL)
ย 
Waveform genrators (comparators schmitt trigger)
Waveform genrators (comparators schmitt trigger)Waveform genrators (comparators schmitt trigger)
Waveform genrators (comparators schmitt trigger)
ย 
555 timer & applications
555 timer & applications555 timer & applications
555 timer & applications
ย 
DACs &ADCs
DACs &ADCsDACs &ADCs
DACs &ADCs
ย 
MOS transistor 13
MOS transistor 13MOS transistor 13
MOS transistor 13
ย 
MOSFET fabrication 12
MOSFET fabrication 12MOSFET fabrication 12
MOSFET fabrication 12
ย 
Vlsi design 11
Vlsi design 11Vlsi design 11
Vlsi design 11
ย 
Attenuators and phase shifters 24
Attenuators and phase shifters 24Attenuators and phase shifters 24
Attenuators and phase shifters 24
ย 
Microwave propagation in ferrites 23
Microwave propagation in ferrites 23Microwave propagation in ferrites 23
Microwave propagation in ferrites 23
ย 
Microwave linear beam 31
Microwave linear beam 31Microwave linear beam 31
Microwave linear beam 31
ย 
Microwave hybrid circuits 2nd 1
Microwave hybrid circuits 2nd 1Microwave hybrid circuits 2nd 1
Microwave hybrid circuits 2nd 1
ย 
Microwave cavity 1st 4
Microwave cavity 1st 4Microwave cavity 1st 4
Microwave cavity 1st 4
ย 
Tem mode 1st 2
Tem mode 1st 2Tem mode 1st 2
Tem mode 1st 2
ย 
Fourier transforms of discrete signals (DSP) 5
Fourier transforms of discrete signals (DSP) 5Fourier transforms of discrete signals (DSP) 5
Fourier transforms of discrete signals (DSP) 5
ย 
The discrete fourier transform (dsp) 4
The discrete fourier transform  (dsp) 4The discrete fourier transform  (dsp) 4
The discrete fourier transform (dsp) 4
ย 
Discrete time filter design by windowing 3
Discrete time filter design by windowing 3Discrete time filter design by windowing 3
Discrete time filter design by windowing 3
ย 
Design of infinite impulse response digital filters 2
Design of infinite impulse response digital filters 2Design of infinite impulse response digital filters 2
Design of infinite impulse response digital filters 2
ย 

Recently uploaded

Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...drmkjayanthikannan
ย 
Ground Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementGround Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementDr. Deepak Mudgal
ย 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayEpec Engineered Technologies
ย 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxNANDHAKUMARA10
ย 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...Amil baba
ย 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfsumitt6_25730773
ย 
Bhubaneswar๐ŸŒนCall Girls Bhubaneswar โคKomal 9777949614 ๐Ÿ’Ÿ Full Trusted CALL GIRL...
Bhubaneswar๐ŸŒนCall Girls Bhubaneswar โคKomal 9777949614 ๐Ÿ’Ÿ Full Trusted CALL GIRL...Bhubaneswar๐ŸŒนCall Girls Bhubaneswar โคKomal 9777949614 ๐Ÿ’Ÿ Full Trusted CALL GIRL...
Bhubaneswar๐ŸŒนCall Girls Bhubaneswar โคKomal 9777949614 ๐Ÿ’Ÿ Full Trusted CALL GIRL...Call Girls Mumbai
ย 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxpritamlangde
ย 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
ย 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
ย 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
ย 
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptxrouholahahmadi9876
ย 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
ย 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
ย 
Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7
Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7
Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X79953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
fitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptfitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptAfnanAhmad53
ย 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxSCMS School of Architecture
ย 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
ย 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
ย 

Recently uploaded (20)

Signal Processing and Linear System Analysis
Signal Processing and Linear System AnalysisSignal Processing and Linear System Analysis
Signal Processing and Linear System Analysis
ย 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
ย 
Ground Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementGround Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth Reinforcement
ย 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
ย 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptx
ย 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
ย 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
ย 
Bhubaneswar๐ŸŒนCall Girls Bhubaneswar โคKomal 9777949614 ๐Ÿ’Ÿ Full Trusted CALL GIRL...
Bhubaneswar๐ŸŒนCall Girls Bhubaneswar โคKomal 9777949614 ๐Ÿ’Ÿ Full Trusted CALL GIRL...Bhubaneswar๐ŸŒนCall Girls Bhubaneswar โคKomal 9777949614 ๐Ÿ’Ÿ Full Trusted CALL GIRL...
Bhubaneswar๐ŸŒนCall Girls Bhubaneswar โคKomal 9777949614 ๐Ÿ’Ÿ Full Trusted CALL GIRL...
ย 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
ย 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
ย 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
ย 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
ย 
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
ย 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
ย 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
ย 
Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7
Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7
Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7
ย 
fitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptfitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .ppt
ย 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
ย 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
ย 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
ย 

Microwave waveguides 1st 1

  • 3. Basic waveguides 1. Waveguide Rectangular waveguide Circular waveguide Coaxial line Optical waveguide Parallel-plate waveguide JIT 3
  • 4. ๏ƒ˜ Transverse Electro Magnetic (TEM) wave: Here both electric and magnetic fields are directed components. (i.e.) E z = 0 and Hz = 0 ๏ƒ˜ Transverse Electric (TE) wave: Here only the electric field is purely transverse to the direction of propagation and the magnetic field is not purely transverse. (i.e.) E z = 0, Hz โ‰  0 ๏ƒ˜ Transverse Magnetic (TM) wave: Here only magnetic field is transverse to the direction of propagation and the electric field is not purely transverse. (i.e.) E z โ‰  0, Hz = 0. ๏ƒ˜ Hybrid (HE) wave: Here neither electric nor magnetic fields are purely transverse to the direction of propagation. (i.e.) E z โ‰  0, Hz โ‰  0. 4 Types of Modes JIT
  • 5. Transmission line ๏ฑ Voltage applied between conductors(E: vertically between the conductors) ๏ฑ Interior fields: TEM (Transverse ElectroMagnetic) wave (wave vector indicates the direction of wave propagation as well as the direction of power flow) 1. Waveguide JIT 5
  • 6. Waveguide ๏ฑ A waveguide is a structure that guides waves, such as electromagnetic waves or sound waves They enable a signal to propagate with minimal loss of energy by restricting expansion to one dimension or two ๏ฑ Zigzag reflection, waveguide mode, cutoff frequency ๏ญ๏ฅ๏ท๏€ฝ๏€ฝ๏€ฝ k|||| du kk JIT 6
  • 8. The electric and magnetic wave equations in frequency domain is given by ๐›ป2 ๐ธ = ๐›พ2 ๐ธ ๐›ป2 ๐ป = ๐›พ2 ๐ป ๐›พ2 = ๐‘—๐œ”๐œ‡(๐œŽ + ๐‘—๐œ”๐œ€) For a loss less dielectric or perfect conductor ๐›พ2 = โˆ’๐œ”2 ๐œ‡๐œ€ The above equations are like Helmholtz equations ๐›ป2 ๐ธ๐‘ง๐‘  = ๐›พ2 ๐ธ๐‘ง๐‘  Let ๐ธ๐‘ง๐‘ =X(x).Y(y).Z(z) Be the solution of above equations JIT 8
  • 9. Contโ€™d So separation equation -๐‘˜ ๐‘ฅ 2 โˆ’๐‘˜ ๐‘ฆ 2 โˆ’๐‘˜ ๐‘ง 2 = ๐›พ2 On Solving the above equations ๐ธ๐‘ง๐‘  = ๐ด. sin ๐‘˜ ๐‘ฅ. ๐‘ฅ + ๐ต. cos(๐‘˜ ๐‘ฅ. ๐‘ฅ) ร— ๐ถ. sin ๐‘˜ ๐‘ฆ. ๐‘ฆ + ๐ท. cos(๐‘˜ ๐‘ฆ. ๐‘ฆ) ร— ๐ธ. sin ๐‘˜ ๐‘ง. ๐‘ง + ๐น. cos(๐‘˜ ๐‘ง. ๐‘ง) The propagation of wave in guide is conventionally assumed in +ve Z direction. JIT 9
  • 10. Here the propagation constant ๐›พ๐‘” in guide differs from intrinsic propagation constant ๐›พ Let ๐›พ๐‘” 2 = ๐›พ 2 + ๐‘˜ ๐‘ฅ 2 + ๐‘˜ ๐‘ฆ 2 And ๐›พ๐‘” 2 = ๐›พ 2 + ๐‘˜ ๐‘ 2 Where ๐‘˜ ๐‘= ๐‘˜ ๐‘ฅ 2 + ๐‘˜ ๐‘ฆ 2 is cutoff wave number. For a lossless dielectric ๐›พ2 = โˆ’๐œ”2 ๐œ‡๐œ€ So ๐›พ๐‘”= ยฑ๐‘— ๐œ”2 ๐œ‡๐œ€ โˆ’ ๐‘˜ ๐‘ 2 So there are three casesโ€ฆ. JIT 10 Contโ€™d
  • 11. Case 1 If ๐œ”2 ๐œ‡๐œ€ = ๐‘˜ ๐‘ 2 ๐›พ๐‘”= 0 no propagation This is critical condition for cutoff propagation ๐œ”๐‘= 1 ๐œ‡๐œ– ๐‘˜ ๐‘ฅ 2 + ๐‘˜ ๐‘ฆ 2 ๐‘“๐‘= 1 2๐œ‹ ๐œ‡๐œ– ๐‘˜ ๐‘ฅ 2 + ๐‘˜ ๐‘ฆ 2 JIT 11
  • 12. JIT 12 Case 2 If ๐œ”2 ๐œ‡๐œ€ > ๐‘˜ ๐‘ 2 ๐›พ๐‘”= ยฑ๐‘—๐›ฝ๐‘” = ยฑ๐‘—๐œ” ๐œ‡๐œ– 1 โˆ’ ๐‘“๐‘ ๐‘“ 2 This shows that operating frequency should be greater than critical frequency to propagate the wave in wave in wave guide
  • 13. JIT 13 Case 3 If ๐œ”2 ๐œ‡๐œ€ < ๐‘˜ ๐‘ 2 ๐›พ๐‘”= ยฑ๐›ผ ๐‘” = ยฑ๐œ” ๐œ‡๐œ– ๐‘“๐‘ ๐‘“ 2 โˆ’ 1 This shows that if operating frequency is below the cutoff frequency the wave will decay exponentially wrt a factor -๐›ผ ๐‘” ๐‘ง and there will no wave propagation There for the solution of Helmholtz equation in rectangular co-ordinates is given by ๐ธ๐‘ง๐‘  = ๐ด. sin ๐‘˜ ๐‘ฅ. ๐‘ฅ + ๐ต. cos(๐‘˜ ๐‘ฅ. ๐‘ฅ) ร— ๐ถ. sin ๐‘˜ ๐‘ฆ. ๐‘ฆ + ๐ท. cos(๐‘˜ ๐‘ฆ. ๐‘ฆ) ร— ๐‘’โˆ’๐‘—๐›ฝ
  • 14. Rectangular waveguide ๏ƒพ ๏ฑ WR (Waveguide Rectangular) series - EIA (Electronic Industry Association) designation WR-62 - Size: 1.58 cmx0.79 cm - Recommended range: 12.4-18.0 GHz - Cutoff: 9.486 GHz 2/ cm/10054262inch/10062 ab .a ๏‚ป ๏‚ด๏€ฝ๏€ฝ ๏ƒพ JIT 14
  • 15. Waveguide modes ๏ฑ TE (Transverse Electric) mode - E parallel to the transverse plane of the waveguide - In waveguide Wave propagates in +ve Z direction - TEmn in characterized by Ez=0 - In other words the z component of magnetic field must exist in order to have energy transmission in the guide. ๏ฑ TM (Transverse Magnetic) mode - H is within the transverse plane of the waveguide JIT 15
  • 16. TE modes in rectangular waveguides ๐›ป2 ร— ๐ธ๐‘  = โˆ’๐‘—๐œ”๐œ‡๐ป๐‘  ๐›ป2 ร— ๐ป๐‘  = โˆ’๐‘—๐œ”๐œ‡๐ธ๐‘  Therefore the magnetic field in +ve Z direction ie. The solution of above partial differential equations H0z is the amplitude constant, so field equations in rectangular waveguides JIT 16 mode:)sin()sin(),( mode:)cos()cos(),( mn zj nmz mn zj nmz TMeybxayxE TEeybxayxH mn mn ๏ข ๏ข ๏€ญ ๏€ญ ๏€ฝ ๏€ฝ 222 and,,where nmmnnm bak b n b a m a ๏€ญ๏€ญ๏€ฝ๏€ฝ๏€ฝ ๏ข ๏ฐ๏ฐ zj nmzz mn eybxaHH ๏ข๏€ญ ๏€ฝ )cos()cos(0
  • 18. TE and TM modes ๏ƒพ ๏ฑ Hz and Ez fields: TE and TM modes ๏ฑ Non-TEM modes: Hz = Ez = 0 ๏ฑ Concept of a dominant mode: TE10 mode mode:)sin()sin(),( mode:)cos()cos(),( mn zj nmz mn zj nmz TMeybxayxE TEeybxayxH mn mn ๏ข ๏ข ๏€ญ ๏€ญ ๏€ฝ ๏€ฝ Boundary condition enforcements : PEC (Perfect Electric Conductor) 222 and,,where nmmnnm bak b n b a m a ๏€ญ๏€ญ๏€ฝ๏€ฝ๏€ฝ ๏ข ๏ฐ๏ฐ 3. Waveguide JIT 18
  • 19. Cutoff wave no kc = ๐‘˜ ๐‘ฅ 2 + ๐‘˜ ๐‘ฆ 2 Where ๐‘˜ ๐‘ฅ=๐‘Ž ๐‘š and ๐‘˜ ๐‘ฆ=๐‘ ๐‘› kc = ๐‘š๐œ‹ ๐‘Ž 2 + ๐‘›๐œ‹ ๐‘ 2 = ๐œ”๐‘ ๐œ‡๐œ€ fc = 1 ๐œ‡๐œ€ ๐‘š๐œ‹ ๐‘Ž 2 + ๐‘›๐œ‹ ๐‘ 2 Propagation constant as discussed earlier ๐›พ๐‘”= ยฑ๐‘— ๐œ”2 ๐œ‡๐œ€ โˆ’ ๐‘˜ ๐‘ 2 So from case-1 and case-2 propagation constant or phase constant ๐›ฝ๐‘” = ๐œ” ๐œ‡๐œ– 1 โˆ’ ๐‘“๐‘ ๐‘“ 2 JIT 19
  • 20. ๏ƒ˜And attenuation constant ๐›ผ ๐‘” = ๐œ” ๐œ‡๐œ– ๐‘“๐‘ ๐‘“ 2 โˆ’ 1 ๏ƒ˜We know that ๐‘“๐‘ = ๐‘ ๐œ† ๐‘ ๐‘Ž๐‘›๐‘‘ ๐œ† ๐‘ = ๐‘ ๐‘“๐‘ ๏ƒ˜So cutoff frequency ๐œ† ๐‘ = ๐‘ ๐‘ 2๐œ‹ ๐‘š ๐‘Ž 2 + ๐‘› ๐‘ 2 ๐œ† ๐‘ = 2 ๐‘š ๐‘Ž 2 + ๐‘› ๐‘ 2 JIT 20
  • 21. Dominant mode: TE10 mode ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒจ ๏ƒฆ ๏€ญ๏€ฝ a k ๏ฐ ๏ข 2 10 .0and1where )/cos( )cos()cos(),( 10 10 01 ๏€ฝ๏€ฝ ๏€ฝ ๏€ฝ ๏€ญ ๏€ญ nm eax eybxayxH zj zj z ๏ข ๏ข ๏ฐ ๏ƒพ 3. Waveguide JIT 21
  • 22. Parallel-plate waveguide 2. Parallel-plate Phase front: out of phase Phase front: in phase (guided mode)๏ƒพ JIT 22
  • 23. Wavenumbers 22 mm kk ๏€ญ๏€ฝ๏ข mediumcnonmagnetiandLossless c n c k r rooo ๏ท๏ฅ๏ท ๏ฅ๏ฅ๏ญ๏ท๏ฅ๏ญ๏ท ๏€ฝ๏€ฝ๏€ฝ๏€ฝ indexrefrectiveaiswheren 2. Parallel-plate JIT 23
  • 24. ๏ฐ๏ฆ๏ฆ mdkdk mm 2๏€ฝ๏€ซ๏€ซ๏€ซ d m km ๏ฐ ๏€ฝ Reflections 2. Parallel-plate JIT 24
  • 25. 0๏€ฝ๏ฆ๏ฐ๏ฆ ๏€ฝ TE and TM modes 2. Parallel-plate TM modeTE mode JIT 25
  • 26. Cutoff frequency 22 22 1111 11 2 coscoscoscoscos ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒจ ๏ƒฆ ๏€ญ๏€ฝ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒจ ๏ƒฆ ๏€ญ๏€ฝ๏€ญ๏€ฝ ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒจ ๏ƒฆ ๏€ฝ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒจ ๏ƒฆ ๏€ฝ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒจ ๏ƒฆ ๏€ฝ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒจ ๏ƒฆ ๏€ฝ๏‚ฎ๏€ฝ ๏€ญ๏€ญ๏€ญ๏€ญ nd cm k kd m kkk nd m nd cm kd m k k kk mm m mmm ๏ท ๏ฐ๏ฐ ๏ข ๏ฌ ๏ท ๏ฐ๏ฐ ๏ฑ๏ฑ nd cm m cm ๏ฐ ๏ท ๏€ฝ:mode,forfrequencycutoff 2 1 ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒจ ๏ƒฆ ๏€ญ๏€ฝ ๏ท ๏ท๏ท ๏ข cm m c n propagate.notdoesmodetheandimaginaryis,If propagate.willmodetheandconstantphasevalued-real,If mcm mcm ๏ข๏ท๏ท ๏ข๏ท๏ท ๏€ผ ๏€พ 2. Parallel-plate JIT 26
  • 28. TE mode representation ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ waves.planedownwardandupwardtheof ionsuperpositthefromresultingpatternceinterferentheisfieldmodeTEThe cutoff)abovemode(TE )cos(sin)Re(),( sinsin2)( ,and ' 0 ' 000 r 0 r 0 ztxkEeEtzE exkEexkjEeeeEE zxkk eEeEE mm tj ysy zj m zj m zjxjkxjk ys zxzmxmzmxm jj ys mmmmm ๏ข๏ท ๏ข๏ข ๏ท ๏ข๏ข๏ข ๏€ญ๏€ฝ๏€ฝ ๏€ฝ๏€ฝ๏€ญ๏€ฝ ๏€ซ๏€ฝ๏€ซ๏€ญ๏€ฝ๏€ซ๏€ฝ ๏€ญ๏€ฝ ๏€ญ๏€ญ๏€ญ๏€ญ ๏‚ท๏€ญ๏‚ท๏€ญ aaraakaak du kk du 2. Parallel-plate JIT 28
  • 29. ๏€จ ๏€ฉ ๏€จ ๏€ฉ )cutoffbelowmodeTE( )cos(sin),(andsin 1 2 1,If ' 0 ' 0 22 texkEtzEexkEE n c n j z my z mys cm cmcm cm mmcm mm ๏ท ๏ฌ ๏ฌ ๏ฌ ๏ฐ ๏ท ๏ท๏ท ๏ข๏ก๏ท๏ท ๏ก๏ก ๏€ญ๏€ญ ๏€ฝ๏€ฝ ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒจ ๏ƒฆ ๏€ญ๏€ฝ๏ƒท๏ƒท ๏ƒธ ๏ƒถ ๏ƒง๏ƒง ๏ƒจ ๏ƒฆ ๏€ญ๏€ฝ๏€ฝ๏€ผ TE mode representation infinity.approachesas90gapproachin increases,anglewavethe,decreased)isor(cutoffbeyondincreasedisAs guide.down theprogressforwardnomakingarethey forth;andbackreflectingjustarewavesplanetheand0),(cutoffAt o cm ๏ท ๏ฌ๏ท ๏ฑ๏ท๏ท ๏€ฝ๏€ฝ m cm cm m ๏ฌ ๏ฌ ๏ท ๏ท ๏ฑ ๏€ฝ๏€ฝcos 2. Parallel-plate JIT 29
  • 30. Phase and group velocity mm c n k ๏ฑ ๏ท ๏ฑ๏ข sinsinm ๏€ฝ๏€ฝ m pm n c v ๏ฑ๏ข ๏ท sin velocityPhase m ๏€ฝ๏€ฝ m cm m gm n c n c d d v ๏ฑ ๏ท ๏ท ๏ข ๏ท sin1:velocityGroup 2 ๏€ฝ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒจ ๏ƒฆ ๏€ญ๏€ฝ๏€ฝ .relativityspecialaofprincipletheenot violat: mediumin thelightofspeedtheexceedmayThis 2. Parallel-plate JIT 30
  • 31. Field analysis cnkk /where22 ๏ท๏€ฝ๏€ญ๏€ฝ๏ƒ‘ ss EE ):variation-,0(0 )ofcomponenta(onlymodesTE 2 2 2 2 2 2 2 2 2 zj ysysysysys m ezE y EkE z E y E x y ๏ข๏€ญ ๏€ฝ ๏‚ถ ๏‚ถ ๏€ฝ๏€ซ ๏‚ถ ๏‚ถ ๏€ซ ๏‚ถ ๏‚ถ ๏€ซ ๏‚ถ ๏‚ถ E zj mys m exfEE ๏ข๏€ญ ๏€ฝ )(0 0)()( )( 2 2 2 2 ๏€ฝ๏€ญ๏€ซ xfk dx xfd mm m ๏ข 0)( )( , 2 2 2 22 2 ๏€ฝ๏€ซ๏€ฝ๏€ญ xfk dx xfd kk mm m mm๏ข ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒจ ๏ƒฆ ๏€ฝ๏‚ฎ๏€ฝ๏€ฝ ๏€ซ๏€ฝ d xm xfdxxE xkxkxf my mmm ๏ฐ sin)(.and0atzerobemust:BC ),sin()cos()( ๏ƒพ ๏ƒพ 2. Parallel-plate JIT 31
  • 32. Characteristics of TE mode cavityresonantldimensionaOne 2 sinsincutoff,At 2 2 cutoff,At/2and0 .2isshiftphasetrip-roundNet walls.conductingebetween thdownandupbouncessimplywaveThe zero.isguidein theincidenceofanglewaveplanethecutoff,At 00 ๏ƒท๏ƒท ๏ƒธ ๏ƒถ ๏ƒง๏ƒง ๏ƒจ ๏ƒฆ ๏€ฝ๏€ฝ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒจ ๏ƒฆ ๏€ฝ ๏€ฝ๏ƒž๏€ฝ๏ƒž๏€ฝ๏€ฝ๏€ฝ cm ysys cm cm cmmm xn EE d xm EE n m d n d m nkk m ๏ฌ ๏ฐ๏ฐ ๏ฌ ๏ฌ ๏ฐ๏ฐ ๏ฌ๏ฐ๏ข ๏ฐ zj ys m e d xm EE ๏ข๏ฐ ๏€ญ ๏ƒท ๏ƒธ ๏ƒถ ๏ƒง ๏ƒจ ๏ƒฆ ๏€ฝ sin0๏ƒพ 2. Parallel-plate JIT 32
  • 34. ๏€จ ๏€ฉ ๏€จ ๏€ฉ ๏€จ ๏€ฉ1cossinand )(cos)(sin|| || 22222 00222/1220 ** ๏€ฝ๏€ซ๏€ฝ๏€ซ ๏€ฝ๏€ฝ๏€ซ๏€ซ๏€ฝ ๏€ซ๏€ฝ๏‚ท๏€ฝ AAkk EkE xkxkk E HHHH mm mmmm zszsxsxsxs * ๏ข ๏จ๏ท๏ญ ๏ข ๏ท๏ญ ๏‘ s sss H HHH Intrinsic impedance ๏ƒพ 2. Parallel-plate JIT 34
  • 35. Circular waveguide ๏ƒพ ๏ฑ WC (Waveguide Circular) series ๏ฑ Hz and Ez fields: TE and TM modes 3. Waveguide JIT 35
  • 36. JIT 36 ๏ƒ˜ A microstrip is constructed with a flat conductor suspended over a ground plane. The conductor and ground plane are separated by a dielectric. ๏ƒ˜ The surface microstrip transmission line also has free space (air) as the dielectric above the conductor. ๏ƒ˜ This structure can be built in materials other than printed circuit boards, but will always consist of a conductor separated from a ground plane by some dielectric material. Microstrip transmission line 4. Tx line
  • 37. Circular waveguide ๏ƒ˜Circular waveguides offer implementation advantages over rectangular waveguide in that installation is much simpler. ๏ƒ˜When forming runs for turns and offsets - particularly when large radii are involved - and the wind loading is less on a round cross-section, meaning towers do not need to be as robust. JIT 37
  • 38. For a circular waveguide of radius a, we can perform the same sequence of steps in cylindrical coordinates as we did in rectangular coordinates to find the transverse field components in terms of the longitudinal (i.e. Ez, Hz) components. JIT 38
  • 39. The scalar Helmholtz equation in cylindrical co-ordinate is given by Using the method of separation of variables, the solution of above equation is assumed ๐›น = ๐‘… ๐‘Ÿ . โˆ… โˆ… . ๐‘ ๐‘ง โˆ’โˆ’โˆ’โˆ’ โˆ’(1) Substituting (1) into (a) and solving this equation for ๐‘… ๐‘Ÿ , โˆ… โˆ… ๐‘Ž๐‘›๐‘‘ ๐‘ ๐‘ง So here also ๐‘˜ ๐‘ 2 + ๐›พ2 = ๐›พ๐‘” 2 This is also called as characteristic equation of Besselโ€™s equations. For a lossless guide ๐›ฝ๐‘” = ยฑ ๐œ”2 ๐œ‡๐œ– โˆ’ ๐‘˜ ๐‘ 2 JIT 39 (a)
  • 40. The total solution of Helmholtz equation in cylindrical co-ordinate JIT 40
  • 41. TE Modes in Circular Waveguides It is commonly assumed that the waves in a circular waveguide are propagating in the positive z direction. Here in this mode ๐ธ๐‘ง = 0, so ๐ธ ๐‘ฅ, ๐ธ ๐‘ฆ, ๐ป ๐‘ฅ, ๐ป ๐‘ฆ ๐‘Ž๐‘›๐‘‘ ๐ป๐‘ง. After substituting boundary conditions the final solution is ๐›น = ๐›น0. ๐ฝ ๐‘› ๐‘˜ ๐‘. ๐‘Ÿ cos ๐‘›โˆ… . ๐‘’โˆ’๐‘—๐›ฝ ๐‘” ๐‘ง For a lossless dielectric, Maxwellโ€™s equations ๐›ป ร— ๐ธ = โˆ’๐‘—๐œ”๐œ‡๐ป๐‘  ๐›ป ร— ๐ป = ๐‘—๐œ”๐œ‡๐ธ๐‘  JIT 41
  • 42. In cylindrical co-ordinates, the components of E and H fields can be expressed as JIT 42
  • 43. When the differentiation ๐œ•/๐œ•๐‘ง is replaced by (โˆ’๐‘—๐›ฝ๐‘”)and the z component ๐ธ๐‘ง by zero, the TE mode equations in terms of ๐ป๐‘งin circular waveguide are expressed as ๐ธ ๐‘ = 0 JIT 43 Where ๐‘˜ ๐‘ 2 = ๐œ”2 ๐œ‡๐œ– โˆ’ ๐›ฝ๐‘”
  • 44. The permissible value of kc can be written as ๐‘˜ ๐‘ = ๐‘‹ ๐‘›๐‘ โ€ฒ ๐‘Ž Where ๐‘‹ ๐‘›๐‘ โ€ฒ is a constant And from above table ๐‘‹ ๐‘›๐‘ โ€ฒ =1.841 for TM11 MODE JIT 44
  • 45. The final equations for the E and H fields can be written as JIT 45
  • 46. ๏ƒ˜Where Zg = Er/ ๐ปโˆ…, = - ๐ธโˆ…/ Hr has been replaced for the wave impedance in the guide and where n = 0,1,2,3,... And p = 1, 2, 3, 4,.... ๏ƒ˜The first subscript n represents the number of full cycles of field variation in one revolution through 2๐œ‹ rad of โˆ…. ๏ƒ˜The second subscript p indicates the number of zeroes of ๐ธโˆ…. ๏ƒ˜The mode propagation constant is determined by ๐›ฝ๐‘” = ยฑ ๐œ”2 ๐œ‡๐œ– โˆ’ ๐‘‹ ๐‘›๐‘ โ€ฒ ๐‘Ž JIT 46
  • 47. The cutoff wave number of a mode is that for which the mode propagation constant vanishes. Hence ๐‘˜ ๐‘ = ๐‘‹ ๐‘›๐‘ โ€ฒ ๐‘Ž = ๐œ”๐‘ ๐œ‡๐œ– So ๐‘“๐‘ = ๐‘‹ ๐‘›๐‘ โ€ฒ 2๐œ‹๐‘Ž ๐œ‡๐œ– And the phase velocity for TE modes is ๐‘ฃ๐‘” = ๐œ” ๐›ฝ๐‘” = ๐‘ฃ ๐‘ 1 โˆ’ ๐‘“๐‘ ๐‘“ 2 ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘ฃ ๐‘ = 1 ๐œ‡๐œ– = ๐‘ ๐œ‡ ๐‘Ÿ ๐œ– ๐‘Ÿ JIT 47
  • 48. The wavelength and wave impedance for TE modes in a circular guide are given, respectively, by JIT 48 ๐’ ๐’ˆ = ๐‘ฌ ๐’™ ๐‘ฏ ๐’š =
  • 49. TM Modes in Circular Waveguides The TMnp modes in a circular guide are characterized by Hz = 0. However, the z component of the electric field E, must exist in order to have energy transmission in the guide. Consequently, the Helmholtz equation for Ez in a circular waveguide is given by Its solution is given in Eq. Which is subject to the given boundary conditions. JIT 49 (A)
  • 51. Similarly On differentiating equation (A) wrt z and substituting the result in above equations yield the field equations of TMnp modes in a circular waveguide: JIT 51
  • 53. Some of the TM-mode characteristic equations in the circular guide are identical to those of the TE mode, but some are different. For convenience, all are shown here: JIT 53
  • 54. It should be noted that the dominant mode, or the mode of lowest cutoff frequency in a circular waveguide, is the mode of TEnp that has the smallest value of the product, kc .a = 1. 841, as shown in above Table. JIT 54