Power Divider

3,249 views

Published on

Published in: Technology, Business
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
3,249
On SlideShare
0
From Embeds
0
Number of Embeds
43
Actions
Shares
0
Downloads
213
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Power Divider

  1. 1. Power Divider Microwave Engineering CHO, Yong Heui
  2. 2. Microwave Engineering1. Power dividerBasic properties  Division of power: scattering matrix  Lossless system [ ][ ] [ ][ ] T * - V+ V+ = V− V− T * - S  c 0 α 1−α 2    a S lossy =  α 1−α 2 β 1−α 2 − β 2 1−α 2 − β 2  β  t     t e r i 3-port networks 5-port networksn 2 g EM Wave Lab
  3. 3. Microwave Engineering1. Power dividerT-junction power divider  Simple 3-port network  Waveguide or microstrip line  Lossless or all-port matched network Yin = jB + Y1 + Y2 at Y0 port 출처 : RFDH.com 3 EM Wave Lab
  4. 4. Microwave Engineering1. Power divider2:1 ratio power divider  Find the output characteristic impedances so that the input power is divided in a 2:1 ratio when a source impedance is 50 [Ohms]  Z1 = 3Z 0  S11 = 0 3 2 Z2 = Z0 S 22 = − 2 3 1 S33 = − 3 4 EM Wave Lab
  5. 5. Microwave Engineering1. Power dividerT-junction resistive power divider  Port impedance: Z0 1  Series resistance: R = Z0 3  All port matched network  Lossy network 0 1 1  1  S lossy = 1 0 1  2 1 1 0   5 EM Wave Lab
  6. 6. Microwave Engineering1. Power dividerWilkinson power divider   All port matched network Lossy network  Isolation port: 2 and 3  Even-odd mode analysis: superposition 출처 : RFDH.com 0 1 1  j   S lossy =− 1 0 0 2  1 0 0   6 EM Wave Lab
  7. 7. Microwave Engineering1. Power dividerBroadband divider  Multisection Wilkinson power divider  Simulation  Fabrication 7 EM Wave Lab
  8. 8. Microwave Engineering2. CouplerDirectional coupler  4 port network  Input①, through②, coupled③, and isolated④ port  Waveguide or microstrip line  Even-odd mode analysis 8 EM Wave Lab
  9. 9. Microwave Engineering2. CouplerVoltage ratio  Quarter-wave length line  Symmetric line  Quadrature hybrid V2 = − j 1− C 2 V1 V3 =C V1 V4 = 0, where C is a coupling factor V1 9 EM Wave Lab
  10. 10. Microwave Engineering2. CouplerBroadband directional coupler  Multisection directional coupler 10 EM Wave Lab
  11. 11. Microwave Engineering2. CouplerCrosstalk   Signal switching  Forward crosstalk  Backward crosstalk 1 A c tiv e lin e Z o , tp d Zo 2 Zo Cm Lm tr 3 Zo 4 V ic tim L in e Z o , tp d Zo Chip level PCB level 11 EM Wave Lab
  12. 12. Microwave Engineering2. CouplerLange coupler   Tight coupling Edge-coupled lines  Fabrication: narrow width and wire bonding  MMIC (Monolithic Microwave Integrated Circuit) 출처 : RFDH.com VGA (Variable Gain Amplifier) 12 EM Wave Lab
  13. 13. Microwave Engineering3. HybridQuadrature (branch line) hybrid   90° hybrid 3dB coupler  Symmetric port  Even-odd mode analysis 0 j 1 0   j 0 0 1 −1    S= 2 1 0 0 j     0 1 j 0 출처 : RFDH.com 13 EM Wave Lab
  14. 14. Microwave Engineering3. HybridRing (rat race) hybrid   180° hybrid 3dB coupler  Asymmetric port  Even-odd mode analysis 0 1 1 0  0 − 1 − j 1 0   S= 2 1 0 0 1   0 − 1 1 0 출처 : RFDH.com 14 EM Wave Lab

×