SlideShare a Scribd company logo
1 of 95
Chapter 2
Transmission Line Theory
Shankar Gangaju
shankar62099@gmail.com
Kathmandu Engineering College
Kalimati, Kathmandu
Transmission Line
• Medium for point to point transmission or guidance of
energy from source to the load with or without losses.
• Properties of Transmission Line
– Operating frequency ( Bandwidth)
– Power handling capacity
– Physical size
– Costs
– Line impedance (characteristics impedance, input
impedance and output impedance)
– Transmission efficiency
– Reflection coefficient
– Transfer function
Types of Transmission Line
• LF Use: Open Wire, Twisted pair, co-axial
cable
• Microwave frequency use: Optical fiber,
waveguides, strip lines
Guided Transmission Media
• Twisted Pair
• Coaxial cable
• Optical fiber
Twisted Pair
Twisted Pair - Applications
• Most common medium
• Telephone network
– Between house and local exchange (subscriber
loop)
• Within buildings
– To private branch exchange (PBX)
• For local area networks (LAN)
– 10Mbps or 100Mbps
Twisted Pair - Transmission
Characteristics
• Analog
– Amplifiers every 5km to 6km
• Digital
– repeater every 2km or 3km
• Limited distance
• Limited bandwidth (1MHz)
• Limited data rate (100MHz)
• Susceptible to interference and noise
Near End Crosstalk
• Coupling of signal from one pair to another
• near transmitted signal is picked up by near
receiving pair
Unshielded and Shielded TP
• Unshielded Twisted Pair (UTP)
– Ordinary telephone wire
– Cheapest
– Easiest to install
– Suffers from external EM interference
• Shielded Twisted Pair (STP)
– Metal braid that reduces interference
– More expensive
– Harder to handle (thick, heavy)
UTP Categories
• Cat 3
– up to 16MHz
– Voice grade found in most offices
– Twist length of 7.5 cm to 10 cm
• Cat 4
– up to 20 MHz
• Cat 5
– up to 100MHz
– Commonly pre-installed in new office buildings
– Twist length 0.6 cm to 0.85 cm
• Cat 5E (Enhanced) –see tables
• Cat 6
• Cat 7
Coaxial Cable
Coaxial Cable Applications
• Most versatile medium
• Television distribution
– Ariel to TV
– Cable TV
• Long distance telephone transmission
– Can carry 10,000 voice calls simultaneously
– Being replaced by fiber optic
• Short distance computer systems links
• Local area networks
Coaxial Cable - Transmission
Characteristics
• Analog
– Amplifiers every few km
– Closer for higher frequency
– Up to 500MHz
• Digital
– Repeater every 1km
– Closer for higher data rates
Optical Fiber
Optical Fiber - Benefits
• Greater capacity
– Data rates of hundreds of Gbps
• Smaller size & weight
• Lower attenuation
• Electromagnetic isolation
• Greater repeater spacing
– 10s of km at least
Optical Fiber - Applications
• Long-haul trunks
• Metropolitan trunks
• Rural exchange trunks
• Subscriber loops
• LANs
Optical Fiber - Transmission
Characteristics
• Act as wave guide for 1014 to 1015 Hz
– Portions of infrared and visible spectrum
• Light Emitting Diode (LED)
– Cheaper
– Wider operating temp range
– Last longer
• Injection Laser Diode (ILD)
– More efficient
– Greater data rate
• Wavelength Division Multiplexing
Optical Fiber Transmission Modes
Transmission Characteristics of
Guided Media
Frequency
Range
Typical
Attenuation
Typical
Delay
Repeater
Spacing
Twisted pair
(with loading)
0 to 3.5 kHz 0.2 dB/km @
1 kHz
50 µs/km 2 km
Twisted pairs
(multi-pair
cables)
0 to 1 MHz 0.7 dB/km @
1 kHz
5 µs/km 2 km
Coaxial cable 0 to 500 MHz 7 dB/km @ 10
MHz
4 µs/km 1 to 9 km
Optical fiber 186 to 370
THz
0.2 to 0.5
dB/km
5 µs/km 40 km
Comparison of Shielded and
Unshielded Twisted Pair
Attenuation (dB per 100 m) Near-end Crosstalk (dB)
Frequency
(MHz)
Category 3
UTP
Category 5
UTP
150-ohm
STP
Category 3
UTP
Category 5
UTP
150-ohm
STP
1 2.6 2.0 1.1 41 62 58
4 5.6 4.1 2.2 32 53 58
16 13.1 8.2 4.4 23 44 50.4
25 — 10.4 6.2 — 41 47.5
100 — 22.0 12.3 — 32 38.5
300 — — 21.4 — — 31.3
Frequency Utilization for Fiber
Applications
Wavelength (in
vacuum) range
(nm)
Frequency
range (THz)
Band
label
Fiber type Application
820 to 900 366 to 333 Multimode LAN
1280 to 1350 234 to 222 S Single mode Various
1528 to 1561 196 to 192 C Single mode WDM
1561 to 1620 185 to 192 L Single mode WDM
76
77
78
79
80
81
82
83
84
85
Double stub matching
• Single stub tuners are able to match any load
impedance to a transmission line but it suffer
from the disadvantage of requiring a variable
length of line between the load and the stub.
• This may pose some difficulty if an adjustable if
an adjustable tuner was desired.
• In this case, double stub tuner uses two tuning
stubs in fixed position.
• This can be achieved by inserting two stub at
specified location along the transmission line.
• In double stub configuration, the stubs are
inserted at pre-determined locations.
• If the load impedance is changed, one simply
has to replace the stubs with another set of
different length.
Solution of Question No. 2
TL Theory Chap 2 - Transmission Line Types & Applications Explained
TL Theory Chap 2 - Transmission Line Types & Applications Explained

More Related Content

What's hot

What's hot (20)

Scattering matrix
Scattering matrixScattering matrix
Scattering matrix
 
Ec 2401 wireless communication unit 2
Ec 2401 wireless communication   unit 2Ec 2401 wireless communication   unit 2
Ec 2401 wireless communication unit 2
 
Pulse Modulation ppt
Pulse Modulation pptPulse Modulation ppt
Pulse Modulation ppt
 
Antenna PARAMETERS
Antenna PARAMETERSAntenna PARAMETERS
Antenna PARAMETERS
 
Reflex klystron amplifier , microwave klystron amplifier
Reflex klystron amplifier , microwave klystron amplifierReflex klystron amplifier , microwave klystron amplifier
Reflex klystron amplifier , microwave klystron amplifier
 
Directional couplers 22
Directional couplers 22Directional couplers 22
Directional couplers 22
 
Matched filter
Matched filterMatched filter
Matched filter
 
Antenna Basics
Antenna BasicsAntenna Basics
Antenna Basics
 
EC6503 TLWG - Properties of Smith Chart
EC6503 TLWG - Properties of Smith ChartEC6503 TLWG - Properties of Smith Chart
EC6503 TLWG - Properties of Smith Chart
 
OPTICAL FIBER COMMUNICATION UNIT-1
OPTICAL FIBER COMMUNICATION UNIT-1OPTICAL FIBER COMMUNICATION UNIT-1
OPTICAL FIBER COMMUNICATION UNIT-1
 
transmission-line-and-waveguide-ppt
transmission-line-and-waveguide-ppttransmission-line-and-waveguide-ppt
transmission-line-and-waveguide-ppt
 
219272664 s-parameters
219272664 s-parameters219272664 s-parameters
219272664 s-parameters
 
ASk,FSK,PSK
ASk,FSK,PSKASk,FSK,PSK
ASk,FSK,PSK
 
carrier synchronization
carrier synchronizationcarrier synchronization
carrier synchronization
 
Pre emphasis and de-emphasis
Pre emphasis and de-emphasisPre emphasis and de-emphasis
Pre emphasis and de-emphasis
 
DPCM
DPCMDPCM
DPCM
 
Antennas and Wave Propagation
Antennas and Wave Propagation Antennas and Wave Propagation
Antennas and Wave Propagation
 
Pre-emphasis and De-emphasis.pptx
Pre-emphasis and De-emphasis.pptxPre-emphasis and De-emphasis.pptx
Pre-emphasis and De-emphasis.pptx
 
Modulation of LED
Modulation of LEDModulation of LED
Modulation of LED
 
Digital Communication: Information Theory
Digital Communication: Information TheoryDigital Communication: Information Theory
Digital Communication: Information Theory
 

Similar to TL Theory Chap 2 - Transmission Line Types & Applications Explained

Transmission media ppt
Transmission media pptTransmission media ppt
Transmission media pptShubham Singh
 
Communication systems v5
Communication systems v5Communication systems v5
Communication systems v5babak danyal
 
Physical layer
Physical layerPhysical layer
Physical layerabs_14284
 
Chapter 2 Physical Layer_Transmission Media.ppt
Chapter 2 Physical Layer_Transmission Media.pptChapter 2 Physical Layer_Transmission Media.ppt
Chapter 2 Physical Layer_Transmission Media.pptSachidanandBNaragund
 
CS553_ST7_Ch04-TransmissionMedia (2).ppt
CS553_ST7_Ch04-TransmissionMedia (2).pptCS553_ST7_Ch04-TransmissionMedia (2).ppt
CS553_ST7_Ch04-TransmissionMedia (2).ppttahaniali27
 
CS553_ST7_Ch04-TransmissionMedia (1).ppt
CS553_ST7_Ch04-TransmissionMedia (1).pptCS553_ST7_Ch04-TransmissionMedia (1).ppt
CS553_ST7_Ch04-TransmissionMedia (1).pptZahidHasanWright
 
CS553_ST7_Ch04-TransmissionMedia.ppt
CS553_ST7_Ch04-TransmissionMedia.pptCS553_ST7_Ch04-TransmissionMedia.ppt
CS553_ST7_Ch04-TransmissionMedia.pptIraCervo2
 
Transmission medium in mobile computing in it
Transmission medium in mobile computing in itTransmission medium in mobile computing in it
Transmission medium in mobile computing in it20UCA041SAMA
 
20.) physical (optics copper and power)
20.) physical (optics copper and power)20.) physical (optics copper and power)
20.) physical (optics copper and power)Jeff Green
 
وسائط نقل البيانات خلال شبكة الحاسب
وسائط نقل البيانات خلال شبكة الحاسب  وسائط نقل البيانات خلال شبكة الحاسب
وسائط نقل البيانات خلال شبكة الحاسب fatma shabaen
 
Transmission media
Transmission mediaTransmission media
Transmission mediakinish kumar
 

Similar to TL Theory Chap 2 - Transmission Line Types & Applications Explained (20)

physical.ppt
physical.pptphysical.ppt
physical.ppt
 
physical.ppt
physical.pptphysical.ppt
physical.ppt
 
lesson_3.pptx
lesson_3.pptxlesson_3.pptx
lesson_3.pptx
 
Transmission media ppt
Transmission media pptTransmission media ppt
Transmission media ppt
 
Communication systems v5
Communication systems v5Communication systems v5
Communication systems v5
 
Physical layer
Physical layerPhysical layer
Physical layer
 
TransmissionMedia.ppt
TransmissionMedia.pptTransmissionMedia.ppt
TransmissionMedia.ppt
 
04 transmission media
04 transmission media04 transmission media
04 transmission media
 
Chapter 2 Physical Layer_Transmission Media.ppt
Chapter 2 Physical Layer_Transmission Media.pptChapter 2 Physical Layer_Transmission Media.ppt
Chapter 2 Physical Layer_Transmission Media.ppt
 
04 transmission media
04 transmission media04 transmission media
04 transmission media
 
Optical networking
Optical networkingOptical networking
Optical networking
 
CS553_ST7_Ch04-TransmissionMedia (2).ppt
CS553_ST7_Ch04-TransmissionMedia (2).pptCS553_ST7_Ch04-TransmissionMedia (2).ppt
CS553_ST7_Ch04-TransmissionMedia (2).ppt
 
CS553_ST7_Ch04-TransmissionMedia (1).ppt
CS553_ST7_Ch04-TransmissionMedia (1).pptCS553_ST7_Ch04-TransmissionMedia (1).ppt
CS553_ST7_Ch04-TransmissionMedia (1).ppt
 
CS553_ST7_Ch04-TransmissionMedia.ppt
CS553_ST7_Ch04-TransmissionMedia.pptCS553_ST7_Ch04-TransmissionMedia.ppt
CS553_ST7_Ch04-TransmissionMedia.ppt
 
04 transmission media
04 transmission media04 transmission media
04 transmission media
 
Transmission medium in mobile computing in it
Transmission medium in mobile computing in itTransmission medium in mobile computing in it
Transmission medium in mobile computing in it
 
FOC.pptx
FOC.pptxFOC.pptx
FOC.pptx
 
20.) physical (optics copper and power)
20.) physical (optics copper and power)20.) physical (optics copper and power)
20.) physical (optics copper and power)
 
وسائط نقل البيانات خلال شبكة الحاسب
وسائط نقل البيانات خلال شبكة الحاسب  وسائط نقل البيانات خلال شبكة الحاسب
وسائط نقل البيانات خلال شبكة الحاسب
 
Transmission media
Transmission mediaTransmission media
Transmission media
 

More from Shankar Gangaju (20)

Tutorial no. 8
Tutorial no. 8Tutorial no. 8
Tutorial no. 8
 
Tutorial no. 7
Tutorial no. 7Tutorial no. 7
Tutorial no. 7
 
Tutorial no. 6
Tutorial no. 6Tutorial no. 6
Tutorial no. 6
 
Tutorial no. 3(1)
Tutorial no. 3(1)Tutorial no. 3(1)
Tutorial no. 3(1)
 
Tutorial no. 5
Tutorial no. 5Tutorial no. 5
Tutorial no. 5
 
Tutorial no. 4
Tutorial no. 4Tutorial no. 4
Tutorial no. 4
 
Tutorial no. 2
Tutorial no. 2Tutorial no. 2
Tutorial no. 2
 
Tutorial no. 1.doc
Tutorial no. 1.docTutorial no. 1.doc
Tutorial no. 1.doc
 
What is a computer
What is a computerWhat is a computer
What is a computer
 
Pointer
PointerPointer
Pointer
 
Array
ArrayArray
Array
 
9.structure & union
9.structure & union9.structure & union
9.structure & union
 
6.array
6.array6.array
6.array
 
5.program structure
5.program structure5.program structure
5.program structure
 
4. function
4. function4. function
4. function
 
3. control statement
3. control statement3. control statement
3. control statement
 
2. operator
2. operator2. operator
2. operator
 
1. introduction to computer
1. introduction to computer1. introduction to computer
1. introduction to computer
 
Ads lab
Ads labAds lab
Ads lab
 
Electromagnetic formula
Electromagnetic formulaElectromagnetic formula
Electromagnetic formula
 

Recently uploaded

power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 

Recently uploaded (20)

power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 

TL Theory Chap 2 - Transmission Line Types & Applications Explained

  • 1. Chapter 2 Transmission Line Theory Shankar Gangaju shankar62099@gmail.com Kathmandu Engineering College Kalimati, Kathmandu
  • 2. Transmission Line • Medium for point to point transmission or guidance of energy from source to the load with or without losses. • Properties of Transmission Line – Operating frequency ( Bandwidth) – Power handling capacity – Physical size – Costs – Line impedance (characteristics impedance, input impedance and output impedance) – Transmission efficiency – Reflection coefficient – Transfer function
  • 3. Types of Transmission Line • LF Use: Open Wire, Twisted pair, co-axial cable • Microwave frequency use: Optical fiber, waveguides, strip lines
  • 4. Guided Transmission Media • Twisted Pair • Coaxial cable • Optical fiber
  • 6. Twisted Pair - Applications • Most common medium • Telephone network – Between house and local exchange (subscriber loop) • Within buildings – To private branch exchange (PBX) • For local area networks (LAN) – 10Mbps or 100Mbps
  • 7. Twisted Pair - Transmission Characteristics • Analog – Amplifiers every 5km to 6km • Digital – repeater every 2km or 3km • Limited distance • Limited bandwidth (1MHz) • Limited data rate (100MHz) • Susceptible to interference and noise
  • 8. Near End Crosstalk • Coupling of signal from one pair to another • near transmitted signal is picked up by near receiving pair
  • 9. Unshielded and Shielded TP • Unshielded Twisted Pair (UTP) – Ordinary telephone wire – Cheapest – Easiest to install – Suffers from external EM interference • Shielded Twisted Pair (STP) – Metal braid that reduces interference – More expensive – Harder to handle (thick, heavy)
  • 10. UTP Categories • Cat 3 – up to 16MHz – Voice grade found in most offices – Twist length of 7.5 cm to 10 cm • Cat 4 – up to 20 MHz • Cat 5 – up to 100MHz – Commonly pre-installed in new office buildings – Twist length 0.6 cm to 0.85 cm • Cat 5E (Enhanced) –see tables • Cat 6 • Cat 7
  • 12. Coaxial Cable Applications • Most versatile medium • Television distribution – Ariel to TV – Cable TV • Long distance telephone transmission – Can carry 10,000 voice calls simultaneously – Being replaced by fiber optic • Short distance computer systems links • Local area networks
  • 13. Coaxial Cable - Transmission Characteristics • Analog – Amplifiers every few km – Closer for higher frequency – Up to 500MHz • Digital – Repeater every 1km – Closer for higher data rates
  • 15. Optical Fiber - Benefits • Greater capacity – Data rates of hundreds of Gbps • Smaller size & weight • Lower attenuation • Electromagnetic isolation • Greater repeater spacing – 10s of km at least
  • 16. Optical Fiber - Applications • Long-haul trunks • Metropolitan trunks • Rural exchange trunks • Subscriber loops • LANs
  • 17. Optical Fiber - Transmission Characteristics • Act as wave guide for 1014 to 1015 Hz – Portions of infrared and visible spectrum • Light Emitting Diode (LED) – Cheaper – Wider operating temp range – Last longer • Injection Laser Diode (ILD) – More efficient – Greater data rate • Wavelength Division Multiplexing
  • 19. Transmission Characteristics of Guided Media Frequency Range Typical Attenuation Typical Delay Repeater Spacing Twisted pair (with loading) 0 to 3.5 kHz 0.2 dB/km @ 1 kHz 50 µs/km 2 km Twisted pairs (multi-pair cables) 0 to 1 MHz 0.7 dB/km @ 1 kHz 5 µs/km 2 km Coaxial cable 0 to 500 MHz 7 dB/km @ 10 MHz 4 µs/km 1 to 9 km Optical fiber 186 to 370 THz 0.2 to 0.5 dB/km 5 µs/km 40 km
  • 20. Comparison of Shielded and Unshielded Twisted Pair Attenuation (dB per 100 m) Near-end Crosstalk (dB) Frequency (MHz) Category 3 UTP Category 5 UTP 150-ohm STP Category 3 UTP Category 5 UTP 150-ohm STP 1 2.6 2.0 1.1 41 62 58 4 5.6 4.1 2.2 32 53 58 16 13.1 8.2 4.4 23 44 50.4 25 — 10.4 6.2 — 41 47.5 100 — 22.0 12.3 — 32 38.5 300 — — 21.4 — — 31.3
  • 21. Frequency Utilization for Fiber Applications Wavelength (in vacuum) range (nm) Frequency range (THz) Band label Fiber type Application 820 to 900 366 to 333 Multimode LAN 1280 to 1350 234 to 222 S Single mode Various 1528 to 1561 196 to 192 C Single mode WDM 1561 to 1620 185 to 192 L Single mode WDM
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76. 76
  • 77. 77
  • 78. 78
  • 79. 79
  • 80. 80
  • 81. 81
  • 82. 82
  • 83. 83
  • 84. 84
  • 85. 85
  • 86. Double stub matching • Single stub tuners are able to match any load impedance to a transmission line but it suffer from the disadvantage of requiring a variable length of line between the load and the stub. • This may pose some difficulty if an adjustable if an adjustable tuner was desired. • In this case, double stub tuner uses two tuning stubs in fixed position. • This can be achieved by inserting two stub at specified location along the transmission line.
  • 87.
  • 88. • In double stub configuration, the stubs are inserted at pre-determined locations. • If the load impedance is changed, one simply has to replace the stubs with another set of different length.
  • 89.
  • 90.
  • 91.
  • 92.